1
|
Azeez SO, Adeboye SE. Advances in understanding plant-pathogen interactions: insights from tomato as a model system. Virusdisease 2024; 35:537-552. [PMID: 39464738 PMCID: PMC11502661 DOI: 10.1007/s13337-024-00889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 10/29/2024] Open
Abstract
The impact of plant diseases coupled with climate change on agriculture worldwide cannot be overemphasized from negative effects on crop yield as well as economy to food insecurity. The model plants are essential for understanding the intricacies of plant-pathogen interactions. One of such plants is the tomato (Solanum lycopersicum L.). Researchers hope to increase tomato productivity and boost its resilience to pathogen attacks by utilizing OMICS and biotechnological methods. With an emphasis on tomato viral infections, this review summarizes significant discoveries and developments from earlier research. The analysis elucidates ongoing efforts to advance plant pathology by exploring the implications for sustainability and tomato production.
Collapse
Affiliation(s)
| | - Seyi Ebun Adeboye
- Agricultural Biotechnology Department, National Biotechnology Development Agency, Abuja, Nigeria
| |
Collapse
|
2
|
Ontiveros I, Fernández-Pozo N, Esteve-Codina A, López-Moya JJ, Díaz-Pendón JA. Enhanced Susceptibility to Tomato Chlorosis Virus (ToCV) in Hsp90- and Sgt1-Silenced Plants: Insights from Gene Expression Dynamics. Viruses 2023; 15:2370. [PMID: 38140611 PMCID: PMC10747942 DOI: 10.3390/v15122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The emerging whitefly-transmitted crinivirus tomato chlorosis virus (ToCV) causes substantial economic losses by inducing yellow leaf disorder in tomato crops. This study explores potential resistance mechanisms by examining early-stage molecular responses to ToCV. A time-course transcriptome analysis compared naïve, mock, and ToCV-infected plants at 2, 7, and 14 days post-infection (dpi). Gene expression changes were most notable at 2 and 14 dpi, likely corresponding to whitefly feeding and viral infection. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed key genes and pathways associated with ToCV infection, including those related to plant immunity, flavonoid and steroid biosynthesis, photosynthesis, and hormone signaling. Additionally, virus-derived small interfering RNAs (vsRNAs) originating from ToCV predominantly came from RNA2 and were 22 nucleotides in length. Furthermore, two genes involved in plant immunity, Hsp90 (heat shock protein 90) and its co-chaperone Sgt1 (suppressor of the G2 allele of Skp1) were targeted through viral-induced gene silencing (VIGS), showing a potential contribution to basal resistance against viral infections since their reduction correlated with increased ToCV accumulation. This study provides insights into tomato plant responses to ToCV, with potential implications for developing effective disease control strategies.
Collapse
Affiliation(s)
- Irene Ontiveros
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Noé Fernández-Pozo
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain;
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Juan Antonio Díaz-Pendón
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| |
Collapse
|
3
|
Jo Y, Choi H, Lee BC, Hong JS, Kim SM, Cho WK. Exploring Tomato Fruit Viromes through Transcriptome Data Analysis. Viruses 2023; 15:2139. [PMID: 38005817 PMCID: PMC10674750 DOI: 10.3390/v15112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
This study delves into the complex landscape of viral infections in tomatoes (Solanum lycopersicum) using available transcriptome data. We conducted a virome analysis, revealing 219 viral contigs linked to four distinct viruses: tomato chlorosis virus (ToCV), southern tomato virus (STV), tomato yellow leaf curl virus (TYLCV), and cucumber mosaic virus (CMV). Among these, ToCV predominated in contig count, followed by STV, TYLCV, and CMV. A notable finding was the prevalence of coinfections, emphasizing the concurrent presence of multiple viruses in tomato plants. Despite generally low viral levels in fruit transcriptomes, STV emerged as the primary virus based on viral read count. We delved deeper into viral abundance and the contributions of RNA segments to replication. While initially focused on studying the impact of sound treatment on tomato fruit transcriptomes, the unexpected viral presence underscores the importance of considering viruses in plant research. Geographical variations in virome communities hint at potential forensic applications. Phylogenetic analysis provided insights into viral origins and genetic diversity, enhancing our understanding of the Korean tomato virome. In conclusion, this study advances our knowledge of the tomato virome, stressing the need for robust pest control in greenhouse-grown tomatoes and offering insights into virus management and crop protection.
Collapse
Affiliation(s)
- Yeonhwa Jo
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Hoseong Choi
- Plant Health Center, Seoul National University, Seoul 08826, Republic of Korea;
| | - Bong Choon Lee
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Jin-Sung Hong
- Department of Applied Biology, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Sang-Min Kim
- Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
4
|
Brine TJ, Crawshaw S, Murphy AM, Pate AE, Carr JP, Wamonje FO. Identification and characterization of Phaseolus vulgaris endornavirus 1, 2 and 3 in common bean cultivars of East Africa. Virus Genes 2023; 59:741-751. [PMID: 37563541 PMCID: PMC10500008 DOI: 10.1007/s11262-023-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Persistent viruses include members of the family Endornavirus that cause no apparent disease and are transmitted exclusively via seed or pollen. It is speculated that these RNA viruses may be mutualists that enhance plant resilience to biotic and abiotic stresses. Using reverse transcription coupled polymerase chain reactions, we investigated if common bean (Phaseolus vulgaris L.) varieties popular in east Africa were hosts for Phaseolus vulgaris endornavirus (PvEV) 1, 2 or 3. Out of 26 bean varieties examined, four were infected with PvEV1, three were infected with both PvEV1 and PvEV2 and three had infections of all three (PvEV) 1, 2 and 3. Notably, this was the first identification of PvEV3 in common bean from Africa. Using high-throughput sequencing of two east African bean varieties (KK022 and KK072), we confirmed the presence of these viruses and generated their genomes. Intra- and inter-species sequence comparisons of these genomes with comparator sequences from GenBank revealed clear species demarcation. In addition, phylogenetic analyses based on sequences generated from the helicase domains showed that geographical distribution does not correlate to genetic relatedness or the occurrence of endornaviruses. These findings are an important first step towards future investigations to determine if these viruses engender positive effects in common bean, a vital crop in east Africa.
Collapse
Affiliation(s)
- Thomas J Brine
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
- Pest and Pathogen Ecology, National Institute of Agricultural Botany, East Malling, ME19 6BJ, UK.
| |
Collapse
|
5
|
Alcalá Briseño RI, Batuman O, Brawner J, Cuellar WJ, Delaquis E, Etherton BA, French-Monar RD, Kreuze JF, Navarrete I, Ogero K, Plex Sulá AI, Yilmaz S, Garrett KA. Translating virome analyses to support biosecurity, on-farm management, and crop breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1056603. [PMID: 36998684 PMCID: PMC10043385 DOI: 10.3389/fpls.2023.1056603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Virome analysis via high-throughput sequencing (HTS) allows rapid and massive virus identification and diagnoses, expanding our focus from individual samples to the ecological distribution of viruses in agroecological landscapes. Decreases in sequencing costs combined with technological advances, such as automation and robotics, allow for efficient processing and analysis of numerous samples in plant disease clinics, tissue culture laboratories, and breeding programs. There are many opportunities for translating virome analysis to support plant health. For example, virome analysis can be employed in the development of biosecurity strategies and policies, including the implementation of virome risk assessments to support regulation and reduce the movement of infected plant material. A challenge is to identify which new viruses discovered through HTS require regulation and which can be allowed to move in germplasm and trade. On-farm management strategies can incorporate information from high-throughput surveillance, monitoring for new and known viruses across scales, to rapidly identify important agricultural viruses and understand their abundance and spread. Virome indexing programs can be used to generate clean germplasm and seed, crucial for the maintenance of seed system production and health, particularly in vegetatively propagated crops such as roots, tubers, and bananas. Virome analysis in breeding programs can provide insight into virus expression levels by generating relative abundance data, aiding in breeding cultivars resistant, or at least tolerant, to viruses. The integration of network analysis and machine learning techniques can facilitate designing and implementing management strategies, using novel forms of information to provide a scalable, replicable, and practical approach to developing management strategies for viromes. In the long run, these management strategies will be designed by generating sequence databases and building on the foundation of pre-existing knowledge about virus taxonomy, distribution, and host range. In conclusion, virome analysis will support the early adoption and implementation of integrated control strategies, impacting global markets, reducing the risk of introducing novel viruses, and limiting virus spread. The effective translation of virome analysis depends on capacity building to make benefits available globally.
Collapse
Affiliation(s)
- Ricardo I. Alcalá Briseño
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Plant Pathology Department, Oregon State University, Corvallis, OR, United States
| | - Ozgur Batuman
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Southwest Florida Research and Education Center (SWFREC), Immokalee, FL, United States
| | - Jeremy Brawner
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Wilmer J. Cuellar
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Erik Delaquis
- International Center for Tropical Agriculture (CIAT), Vientiane, Laos
| | - Berea A. Etherton
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | | | - Jan F. Kreuze
- Crop and System Sciences Division, International Potato Center (CIP), Lima, Peru
| | - Israel Navarrete
- Crop and System Sciences Division, International Potato Center (CIP), Quito, Ecuador
| | - Kwame Ogero
- Crop and System Sciences Division, International Potato Center (CIP), Mwanza, Tanzania
| | - Aaron I. Plex Sulá
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Salih Yilmaz
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Southwest Florida Research and Education Center (SWFREC), Immokalee, FL, United States
| | - Karen A. Garrett
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Moya-Ruiz CD, Gómez P, Juárez M. Occurrence, Distribution, and Management of Aphid-Transmitted Viruses in Cucurbits in Spain. Pathogens 2023; 12:422. [PMID: 36986344 PMCID: PMC10057868 DOI: 10.3390/pathogens12030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
The effectiveness of pest and disease management in crops relies on knowledge about their presence and distribution in crop-producing areas. Aphids and whiteflies are among the main threats to vegetable crops since these hemipterans feed on plants, causing severe damage, and are also able to transmit a large number of devastating plant viral diseases. In particular, the widespread occurrence of aphid-transmitted viruses in cucurbit crops, along with the lack of effective control measures, makes surveillance programs and virus epidemiology necessary for providing sound advice and further integration into the management strategies that can ensure sustainable food production. This review describes the current presence and distribution of aphid-transmitted viruses in cucurbits in Spain, providing valuable epidemiological information, including symptom expressions of virus-infected plants for further surveillance and viral detection. We also provide an overview of the current measures for virus infection prevention and control strategies in cucurbits and indicate the need for further research and innovative strategies against aphid pests and their associated viral diseases.
Collapse
Affiliation(s)
- Celia De Moya-Ruiz
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, 30100 Murcia, Spain
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, 30100 Murcia, Spain
| | - Miguel Juárez
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández de Elche, 03312 Orihuela, Spain
| |
Collapse
|
7
|
Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics. Viruses 2022; 14:v14112481. [PMID: 36366579 PMCID: PMC9693158 DOI: 10.3390/v14112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Southern tomato amalgavirus (STV) is a cryptic pathogen that is abundant in tomato production fields and intensifies the resurgence of tomato yellow stunt disease (ToYSD), together with other phytoviruses. Here, we mapped the geographical and genomic diversity, phylogenetics, and evolutionary dynamics of STV. We found that STV prevailed across China and Pakistan, with a maximum average rate of infection of 43.19% in Beijing, China, and 40.08% in Punjab, Pakistan. Subsequently, we amplified, cloned, and annotated the complete genome sequences of STV isolates from Solanum lycopersicum L. in China (OP548653 and OP548652) and Pakistan (MT066231) using Sanger and next-generation sequencing (NGS). These STV isolates displayed close evolutionary relationships with others from Asia, America, and Europe. Whole-genome-based molecular diversity analysis showed that STV populations had 33 haplotypes with a gene diversity (Hd) of 0.977 and a nucleotide diversity (π) of 0.00404. The genetic variability of RNA-dependent RNA-polymerase (RdRp) was higher than that of the putative coat protein (CP) p42. Further analysis revealed that STV isolates were likely to be recombinant but with a lower-to-moderate level of confidence. With a variable distribution pattern of positively and negatively selected sites, negative selection pressure predominantly acted on p42 and RdRp. These findings elaborated on the molecular variability and evolutionary trends among STV populations across major tomato-producing regions of the world.
Collapse
|
8
|
Rubio L, Guinot-Moreno FJJ, Sanz-López C, Galipienso L. Discovery and Diagnosis of a New Sobemovirus Infecting Cyperus esculentus Showing Leaf Yellow Mosaic and Dwarfism Using Small-RNA High Throughput Sequencing. PLANTS 2022; 11:plants11152002. [PMID: 35956480 PMCID: PMC9370808 DOI: 10.3390/plants11152002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
C. esculentus is a profitable crop in Valencia, Spain, but the emergence of a disease causing of leaf yellow mosaic, dwarfism, and a drastic decrease in tuber production has become a problem. The small-RNA high-throughput sequencing (HTS) of a diseased C. esculentus plant identified only one virus, which could be the causal agent of this disease. The amino-acid comparison with viral sequences from GenBank and phylogenetic analyses indicated that this was a new species of genus Sobemovirus, and the name Xufa yellow dwarf virus was proposed. Completion with Sanger sequencing yielded a contig of 3072 nt corresponding to about 75% of the typical genome of sobemoviruses, including ORFs 2a (polyprotein-containing protease, VPG, and other proteins), 2b (RNA-dependent RNA polymerase), and 3 (coat protein). The nucleotide sequence was used to develop fast and accurate methods for the detection and quantification of xufa yellow dwarf virus (XYDV) based on reverse transcription (RT) and DNA amplification. XYDV was detected in leaves and tubers and showed a high incidence in the field in both symptomatic (almost 100%) and asymptomatic (70%) plants, but its accumulation was much higher in symptomatic plants. The relevance of these results for disease control was discussed.
Collapse
Affiliation(s)
- Luis Rubio
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain; (L.R.); (F.J.J.G.-M.); (C.S.-L.)
| | - Francisco J. J. Guinot-Moreno
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain; (L.R.); (F.J.J.G.-M.); (C.S.-L.)
- Universidad Católica de Valencia “San Vicente Mártir”, 46002 Valencia, Valencia, Spain
| | - Carmen Sanz-López
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain; (L.R.); (F.J.J.G.-M.); (C.S.-L.)
- Universitat Politècnica de València, 46022 Valencia, Valencia, Spain
| | - Luis Galipienso
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain; (L.R.); (F.J.J.G.-M.); (C.S.-L.)
- Correspondence:
| |
Collapse
|
9
|
Mrkvová M, Hančinský R, Predajňa L, Alaxin P, Achs A, Tomašechová J, Šoltys K, Mihálik D, Olmos A, Ruiz-García AB, Glasa M. High-Throughput Sequencing Discloses the Cucumber Mosaic Virus (CMV) Diversity in Slovakia and Reveals New Hosts of CMV from the Papaveraceae Family. PLANTS (BASEL, SWITZERLAND) 2022; 11:1665. [PMID: 35807616 PMCID: PMC9269241 DOI: 10.3390/plants11131665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Cucumber mosaic virus (CMV; Cucumovirus, Bromoviridae) is an omnipresent virus characterized by a large host range and high genetic variability. Using high-throughput sequencing, we have characterized near complete genomes of 14 Slovak CMV variants from different plant hosts. Of these, three variants originated from the Papaveraceae species (oilseed poppy, common poppy and great celandine), previously poorly described as CMV natural hosts. Based on a BLAST search and phylogenetic analysis, the Slovak CMV isolates can be divided into two genetically different Groups, Ia and II, respectively. The SL50V variant, characterized by a divergent RNA2 sequence, potentially represents a reassortant variant. In four samples (T101, SL50V, CP2, MVU2-21), the presence of satellite CMV RNA was identified along with CMV. Although mechanically transmitted to experimental cucumber plants, the role of satellite RNA in the symptomatology observed could not be established due to a complex infection of original hosts with different viruses.
Collapse
Affiliation(s)
- Michaela Mrkvová
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
| | - Richard Hančinský
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
| | - Lukáš Predajňa
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| | - Peter Alaxin
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| | - Adam Achs
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| | - Jana Tomašechová
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| | - Katarína Šoltys
- Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia;
| | - Daniel Mihálik
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
| | - Antonio Olmos
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra, Moncada-Náquera Km 4.5, 46113 Moncada, Spain; (A.O.); (A.B.R.-G.)
| | - Ana Belén Ruiz-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra, Moncada-Náquera Km 4.5, 46113 Moncada, Spain; (A.O.); (A.B.R.-G.)
| | - Miroslav Glasa
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| |
Collapse
|
10
|
Valmonte-Cortes GR, Lilly ST, Pearson MN, Higgins CM, MacDiarmid RM. The Potential of Molecular Indicators of Plant Virus Infection: Are Plants Able to Tell Us They Are Infected? PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020188. [PMID: 35050076 PMCID: PMC8777591 DOI: 10.3390/plants11020188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 05/06/2023]
Abstract
To our knowledge, there are no reports that demonstrate the use of host molecular markers for the purpose of detecting generic plant virus infection. Two approaches involving molecular indicators of virus infection in the model plant Arabidopsis thaliana were examined: the accumulation of small RNAs (sRNAs) using a microfluidics-based method (Bioanalyzer); and the transcript accumulation of virus-response related host plant genes, suppressor of gene silencing 3 (AtSGS3) and calcium-dependent protein kinase 3 (AtCPK3) by reverse transcriptase-quantitative PCR (RT-qPCR). The microfluidics approach using sRNA chips has previously demonstrated good linearity and good reproducibility, both within and between chips. Good limits of detection have been demonstrated from two-fold 10-point serial dilution regression to 0.1 ng of RNA. The ratio of small RNA (sRNA) to ribosomal RNA (rRNA), as a proportion of averaged mock-inoculation, correlated with known virus infection to a high degree of certainty. AtSGS3 transcript decreased between 14- and 28-days post inoculation (dpi) for all viruses investigated, while AtCPK3 transcript increased between 14 and 28 dpi for all viruses. A combination of these two molecular approaches may be useful for assessment of virus-infection of samples without the need for diagnosis of specific virus infection.
Collapse
Affiliation(s)
- Gardette R. Valmonte-Cortes
- School of Science, AUT City Campus, Auckland University of Technology, Auckland 1142, New Zealand;
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand; (S.T.L.); (R.M.M.)
- Correspondence:
| | - Sonia T. Lilly
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand; (S.T.L.); (R.M.M.)
- School of Biological Sciences, The University of Auckland, Thomas Building, 3a Symonds Street, Auckland 1010, New Zealand;
| | - Michael N. Pearson
- School of Biological Sciences, The University of Auckland, Thomas Building, 3a Symonds Street, Auckland 1010, New Zealand;
| | - Colleen M. Higgins
- School of Science, AUT City Campus, Auckland University of Technology, Auckland 1142, New Zealand;
| | - Robin M. MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand; (S.T.L.); (R.M.M.)
- School of Biological Sciences, The University of Auckland, Thomas Building, 3a Symonds Street, Auckland 1010, New Zealand;
| |
Collapse
|
11
|
Prasad A, Sharma N, Chirom O, Prasad M. The sly-miR166-SlyHB module acts as a susceptibility factor during ToLCNDV infection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:233-242. [PMID: 34636959 DOI: 10.1007/s00122-021-03962-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The role of miRNAs during viral pathogenesis is poorly understood in plants. Here, we demonstrate a miRNA/target module that acts as a susceptibility factor during ToLCNDV infection. Tomato leaf curl New Delhi virus (ToLCNDV) is a devastating pathogen that causes huge crop loss. It is spreading to new geographical locations at a very rapid rate-raising serious concerns. Evolution of insecticidal resistance in Bemisia tabaci which acts as the carrier for ToLCNDV has made insect control very difficult in the recent years. Thus, it is important that the host molecular mechanisms associated with ToLCNDV resistance/susceptibility are investigated to develop management strategies. In our study, we have identified that sly-miR166/SlyHB module acts as a susceptibility factor to ToLCNDV in Solanum lycopersicum. Sly-miR166 is differentially regulated upon ToLCNDV infection in two contrasting tomato cultivars; H-88-78-1 (tolerant to ToLCNDV) and Punjab Chhuhara (susceptible to ToLCNDV). Expression analysis of predicted sly-miR166 targets revealed that the expression of SlyHB is negatively correlated with its corresponding miRNA. Virus-induced gene silencing of SlyHB in the susceptible tomato cultivar resulted in the decrease in disease severity suggesting that SlyHB is a negative regulator of plant defence. In summary, our study highlights a miRNA/target module that acts as a susceptibility factor during ToLCNDV infection. To the best of our knowledge, this is the first report that highlights the role of sly-miR166/SlyHB module in ToLCNDV pathogenesis.
Collapse
Affiliation(s)
- Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Oceania Chirom
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
12
|
Abstract
The microorganisms associated with an organism, the microbiome, have a strong and wide impact in their host biology. In particular, the microbiome modulates both the host defense responses and immunity, thus influencing the fate of infections by pathogens. Indeed, this immune modulation and/or interaction with pathogenic viruses can be essential to define the outcome of viral infections. Understanding the interplay between the microbiome and pathogenic viruses opens future venues to fight viral infections and enhance the efficacy of antiviral therapies. An increasing number of researchers are focusing on microbiome-virus interactions, studying diverse combinations of microbial communities, hosts, and pathogenic viruses. Here, we aim to review these studies, providing an integrative overview of the microbiome impact on viral infection across different pathosystems.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Valencia, Spain
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Valencia, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
13
|
Rubio L, Giménez K, Romero J, Font-San-Ambrosio MI, Alfaro-Fernández A, Galipienso L. Detection and absolute quantitation of watermelon mosaic virus by real-time RT-PCR with a TaqMan probe. J Virol Methods 2021; 300:114416. [PMID: 34896120 DOI: 10.1016/j.jviromet.2021.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/20/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
Watermelon mosaic virus (WMV) causes serious damage to several crops worldwide, mainly cucurbits. Disease control is based on preventing spread and search for natural resistances for plant breeding, which requires tools for sensitive detection and precise quantitation. We developed a procedure based on reverse transcription followed by real-time quantitative polymerase chain reaction (RT-qPCR) with a primer pair and a TaqMan® probe specific for WMV. The primers and probe were designed from conserved sequence stretches to target a wide range of WMV isolates. A standard curve performed with transcripts enabled estimation of WMV RNA copies per ng of total RNA, with a wide dynamic range and sensitivity (104 to 1011). This RT-qPCR was assayed with field samples from different cucurbits and used to evaluate the temporal accumulation in pumpkin plants.
Collapse
Affiliation(s)
- Luis Rubio
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| | - Karen Giménez
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Juan Romero
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | | | - Ana Alfaro-Fernández
- Grupo de Virología, Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Luis Galipienso
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| |
Collapse
|
14
|
Galipienso L, Elvira-González L, Velasco L, Herrera-Vásquez JÁ, Rubio L. Detection of Persistent Viruses by High-Throughput Sequencing in Tomato and Pepper from Panama: Phylogenetic and Evolutionary Studies. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112295. [PMID: 34834658 PMCID: PMC8620285 DOI: 10.3390/plants10112295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
High-throughput sequencing from symptomatic tomato and pepper plants collected in Panama rendered the complete genome of the southern tomato virus (isolate STV_Panama) and bell pepper endornavirus (isolate BPEV_Panama), and almost-complete genomes of three other BPEV isolates. Tomato chlorosis virus, tomato mosaic virus, and impatiens necrotic spot virus were also detected. Analysis of the complete genome of STV and BPEV worldwide isolates revealed nucleotide diversities of 0.004246 and 0.070523, respectively. Bayesian phylogenetic analysis showed two main groups for each virus (I and II), and several subgroups for BPEV (IA, IB, IC, IIA and IIB). Isolate STV_Panama clustered with NC_12-03-08 from USA and Tom3-T from France (99.97% nucleotide identity) in Group I and BPEV_Panama was close to the Canadian isolate BPEV_Ontario (99.66% nucleotide identity) in Subgroup IB. No correlation was observed between geographic and genetic distances for both viruses. Panamanian BPEV isolates were divergent, belonging to Groups I and II (nucleotide identities > 87.33%). Evolutionary analysis showed purifying selection in all encoding regions of both viruses, being stronger in the overlapping region of both STV genes. Finally, recombination was detected in BPEV but not in STV. This is the first report of STV and BPEV in Panama.
Collapse
Affiliation(s)
- Luis Galipienso
- Plant Protection and Biotechnology Center of the Valencian Institute of Agricultural Research, 46113 Moncada, Valencia, Spain;
| | - Laura Elvira-González
- Subtropical and Mediterranean Horticulture Institute (LaMayora), 29010 Algarrobo-Costa, Málaga, Spain;
| | - Leonardo Velasco
- Churriana Center of Andalusian Institute of Agricultural Research, 29140 Churriana, Málaga, Spain;
| | | | - Luis Rubio
- Plant Protection and Biotechnology Center of the Valencian Institute of Agricultural Research, 46113 Moncada, Valencia, Spain;
| |
Collapse
|
15
|
Special Issue "Plant Viruses: From Ecology to Control". Microorganisms 2021; 9:microorganisms9061136. [PMID: 34070318 PMCID: PMC8228693 DOI: 10.3390/microorganisms9061136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
|