1
|
Bruno DR, Cleale RM, Jardon G, Short T, Mills B, Pedraza JR. Outcomes after treatment of nonsevere gram-negative clinical mastitis with ceftiofur hydrochloride for 2 or 5 days compared with negative control. J Dairy Sci 2024; 107:2390-2405. [PMID: 37923203 DOI: 10.3168/jds.2023-23684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
A study was conducted at 3 commercial dairies in California to compare outcomes of treating nonsevere (mild and moderate) gram-negative (GN) clinical mastitis (CM) with intramammary (IMM) ceftiofur HCl (125 mg of ceftiofur HCl per tube) in either 2-d (SP2) or 5-d (SP5) treatment programs compared with nontreatment (CON). In addition, we contrasted results from cases classified as mild and moderate. Four hundred fifteen cases were included in the final dataset, including 135 CON, 133 SP2, and 147 SP5. Milk from quarters with CM was sampled for on-farm culture (OFC) to differentiate gram-positive (GP) and GN bacteria, with results known within 24 h. Those with GN infections were randomly assigned to experimental groups, while those with GP, mixed infections, and contaminated samples did not continue in the study and received standard farm therapy. For cows with GN infections, a sample was submitted for MALDI-TOF assay. Only nonsevere cases were enrolled, and all quarters yielded monocultures of GN species. Clinical scores were obtained 0, 1, 2, 3, 4, 5, 14, 21, and 28 ± 3 d relative to enrollment. Milk samples were collected from quarters 14, 21, and 28 ± 3 d after enrollment, and submitted for routine culture and, when appropriate, submitted to MALDI-TOF evaluation. For many response criteria, there were significant interactions between treatments and CM severity scores at the time of enrollment, with effectiveness of ceftiofur HCl treatment being more beneficial compared with CON as mastitis clinical severity increased. While most treatment responses were significant for animals with mild or moderate GN mastitis, the largest responses were noted among cows with moderate CM cases.
Collapse
Affiliation(s)
- D R Bruno
- University of California Agriculture and Natural Resources, Cooperative Extension, Fresno, CA 93710.
| | | | - G Jardon
- Department of Animal Science, South Dakota State University, Brookings, SD 57007
| | - T Short
- Zoetis, Parsippany, NJ 07054
| | - B Mills
- Cattle Services, Mooresville, NC 28115
| | | |
Collapse
|
2
|
Lee KY, Atwill ER, Li X, Feldmann HR, Williams DR, Weimer BC, Aly SS. Impact of zinc supplementation on phenotypic antimicrobial resistance of fecal commensal bacteria from pre-weaned dairy calves. Sci Rep 2024; 14:4448. [PMID: 38396015 PMCID: PMC10891156 DOI: 10.1038/s41598-024-54738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to evaluate the impact of dietary zinc supplementation in pre-weaned dairy calves on the phenotypic antimicrobial resistance (AMR) of fecal commensal bacteria. A repository of fecal specimens from a random sample of calves block-randomized into placebo (n = 39) and zinc sulfate (n = 28) groups collected over a zinc supplementation clinical trial at the onset of calf diarrhea, calf diarrheal cure, and the last day of 14 cumulative days of zinc or placebo treatment were analyzed. Antimicrobial susceptibility testing was conducted for Enterococcus spp. (n = 167) and E. coli (n = 44), with one representative isolate of each commensal bacteria tested per sample. Parametric survival interval regression models were constructed to evaluate the association between zinc treatment and phenotypic AMR, with exponentiated accelerated failure time (AFT) coefficients adapted for MIC instead of time representing the degree of change in AMR (MIC Ratio, MR). Findings from our study indicated that zinc supplementation did not significantly alter the MIC in Enterococcus spp. for 13 drugs: gentamicin, vancomycin, ciprofloxacin, erythromycin, penicillin, nitrofurantoin, linezolid, quinupristin/dalfopristin, tylosin tartrate, streptomycin, daptomycin, chloramphenicol, and tigecycline (MR = 0.96-2.94, p > 0.05). In E. coli, zinc supplementation was not associated with resistance to azithromycin (MR = 0.80, p > 0.05) and ceftriaxone (MR = 0.95, p > 0.05). However, a significant reduction in E. coli MIC values was observed for ciprofloxacin (MR = 0.17, 95% CI 0.03-0.97) and nalidixic acid (MR = 0.28, 95% CI 0.15-0.53) for zinc-treated compared to placebo-treated calves. Alongside predictions of MIC values generated from these 17 AFT models, findings from this study corroborate the influence of age and antimicrobial exposure on phenotypic AMR.
Collapse
Affiliation(s)
- Katie Y Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Edward R Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Hillary R Feldmann
- Veterinary Medicine Teaching and Research Center, University of California Davis, Tulare, CA, USA
| | - Deniece R Williams
- Veterinary Medicine Teaching and Research Center, University of California Davis, Tulare, CA, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Sharif S Aly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
- Veterinary Medicine Teaching and Research Center, University of California Davis, Tulare, CA, USA.
| |
Collapse
|
3
|
Vasco KA, Carbonell S, Sloup RE, Bowcutt B, Colwell RR, Graubics K, Erskine R, Norby B, Ruegg PL, Zhang L, Manning SD. Persistent effects of intramammary ceftiofur treatment on the gut microbiome and antibiotic resistance in dairy cattle. Anim Microbiome 2023; 5:56. [PMID: 37946266 PMCID: PMC10636827 DOI: 10.1186/s42523-023-00274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/09/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Intramammary (IMM) ceftiofur treatment is commonly used in dairy farms to prevent mastitis, though its impact on the cattle gut microbiome and selection of antibiotic-resistant bacteria has not been elucidated. Herein, we enrolled 40 dairy (Holstein) cows at the end of the lactation phase for dry-cow therapy: 20 were treated with IMM ceftiofur (Spectramast®DC) and a non-antibiotic internal teat sealant (bismuth subnitrate) and 20 (controls) received only bismuth subnitrate. Fecal grab samples were collected before and after treatment (weeks 1, 2, 3, 5, 7, and 9) for bacterial quantification and metagenomic next-generation sequencing. RESULTS Overall, 90% and 24% of the 278 samples had Gram-negative bacteria with resistance to ampicillin and ceftiofur, respectively. Most of the cows treated with ceftiofur did not have an increase in the number of resistant bacteria; however, a subset (25%) shed higher levels of ceftiofur-resistant bacteria for up to 2 weeks post-treatment. At week 5, the antibiotic-treated cows had lower microbiota abundance and richness, whereas a greater abundance of genes encoding extended-spectrum β-lactamases (ESBLs), CfxA, ACI-1, and CMY, was observed at weeks 1, 5 and 9. Moreover, the contig and network analyses detected associations between β-lactam resistance genes and phages, mobile genetic elements, and specific genera. Commensal bacterial populations belonging to Bacteroidetes most commonly possessed ESBL genes followed by members of Enterobacteriaceae. CONCLUSION This study highlights variable, persistent effects of IMM ceftiofur treatment on the gut microbiome and resistome in dairy cattle. Antibiotic-treated cattle had an increased abundance of specific taxa and genes encoding ESBL production that persisted for 9 weeks. Fecal shedding of ESBL-producing Enterobacteriaceae, which was classified as a serious public health threat, varied across animals. Together, these findings highlight the need for additional studies aimed at identifying factors associated with shedding levels and the dissemination and persistence of antibiotic resistance determinants on dairy farms across geographic locations.
Collapse
Affiliation(s)
- Karla A Vasco
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Samantha Carbonell
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Rebekah E Sloup
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Bailey Bowcutt
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Rita R Colwell
- University of Maryland, Institute for Advanced Computer Studies, College Park, MD, 20742, USA
- Cosmos ID, Inc, Germantown, MD, 20874, USA
| | | | - Ronald Erskine
- Department of Large Animal Clinical Sciences, Michigan State University, E. Lansing, MI, 48824, USA
| | - Bo Norby
- Department of Large Animal Clinical Sciences, Michigan State University, E. Lansing, MI, 48824, USA
| | - Pamela L Ruegg
- Department of Large Animal Clinical Sciences, Michigan State University, E. Lansing, MI, 48824, USA.
| | - Lixin Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, E. Lansing, MI, 48824, USA.
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Cella E, Okello E, Rossitto PV, Cenci-Goga BT, Grispoldi L, Williams DR, Sheedy DB, Pereira R, Karle BM, Lehenbauer TW, Aly SS. Estimating the Rates of Acquisition and loss of Resistance of Enterobacteriaceae to Antimicrobial Drugs in Pre-Weaned Dairy Calves. Microorganisms 2021; 9:microorganisms9102103. [PMID: 34683424 PMCID: PMC8539406 DOI: 10.3390/microorganisms9102103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/27/2022] Open
Abstract
The objective of this study was to investigate the effect of the antimicrobial drugs (AMD) on the shedding of resistant Enterobacteriaceae in feces of pre-weaned dairy calves. The AMD considered were ceftiofur, administered parenterally, and neomycin sulfate added in milk replacer and fed to calves during the first 20 days of life. Fifty-five calves, aged one to three days, were enrolled and followed to 64 days. Fecal samples were collected three times/week and treatments recorded daily. Enterobacteriaceae were quantified for a subset of 33 calves using spiral plating on plain, ceftiofur supplemented, and neomycin supplemented MacConkey agar. Negative binomial models were used to predict the association between treatment with AMD and the gain and loss of Enterobacteriaceae resistance over time. Acquisition of resistance by the Enterobacteriaceae occurred during treatment and peaked between days three to four post-treatment before decreasing to below treatment levels at days seven to eight post-treatment. Acquisition of neomycin resistance was observed on the first sampling day (day four from the start of feeding medicated milk replacer) to day eight, followed by cyclical peaks until day 29, when the Enterobacteriaceae counts decreased below pre-treatment. Enterobacteriaceae resistance against both AMD increased after AMD administration and didn’t return to pre-therapeutic status until seven or more days after therapy had been discontinued. The study findings provide valuable insights into the dynamics of Enterobacteriaceae under routine AMD use in calves.
Collapse
Affiliation(s)
- Elisa Cella
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA; (E.C.); (E.O.); (P.V.R.); (D.R.W.); (D.B.S.); (T.W.L.)
| | - Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA; (E.C.); (E.O.); (P.V.R.); (D.R.W.); (D.B.S.); (T.W.L.)
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Paul V. Rossitto
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA; (E.C.); (E.O.); (P.V.R.); (D.R.W.); (D.B.S.); (T.W.L.)
| | - Beniamino T. Cenci-Goga
- Laboratorio di Ispezione degli Alimenti di Origine Animale, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (B.T.C.-G.); (L.G.)
| | - Luca Grispoldi
- Laboratorio di Ispezione degli Alimenti di Origine Animale, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (B.T.C.-G.); (L.G.)
| | - Deniece R. Williams
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA; (E.C.); (E.O.); (P.V.R.); (D.R.W.); (D.B.S.); (T.W.L.)
| | - David B. Sheedy
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA; (E.C.); (E.O.); (P.V.R.); (D.R.W.); (D.B.S.); (T.W.L.)
| | - Richard Pereira
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Betsy M. Karle
- Cooperative Extension, Division of Agriculture and Natural Resources, University of California, Orland, CA 95963, USA;
| | - Terry W. Lehenbauer
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA; (E.C.); (E.O.); (P.V.R.); (D.R.W.); (D.B.S.); (T.W.L.)
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Sharif S. Aly
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA; (E.C.); (E.O.); (P.V.R.); (D.R.W.); (D.B.S.); (T.W.L.)
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
- Correspondence:
| |
Collapse
|