1
|
Cao KX, Deng ZC, Li SJ, Yi D, He X, Yang XJ, Guo YM, Sun LH. Poultry Nutrition: Achievement, Challenge, and Strategy. J Nutr 2024; 154:3554-3565. [PMID: 39424066 DOI: 10.1016/j.tjnut.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Poultry, a vital economic animal, provide a high-quality protein source for human nutrition. Over the past decade, the poultry industry has witnessed substantial achievements in breeding, precision feeding, and welfare farming. However, there are still many challenges restricting the sustainable development of the poultry industry. First, overly focused breeding strategies on production performance have been shown to induce metabolic diseases in poultry. Second, a lack of robust methods for assessing the nutritional requirements poses a challenge to the practical implementation of precision feeding. Third, antibiotic alternatives and feed safety management remain pressing concerns within the poultry industry. Lastly, environmental pollution and inadequate welfare management in farming have a negative effect on poultry health. Despite numerous proposed strategies and innovative approaches, each faces its own set of strengths and limitations. In this review, we aim to provide a comprehensive understanding of the poultry industry over the past decade, by examining its achievements, challenges, and strategies, to guide its future direction.
Collapse
Affiliation(s)
- Ke-Xin Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhang-Chao Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shi-Jun Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiao-Jun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Ming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Tan L, Li J, Duan Y, Liu J, Zheng S, Liang X, Fang C, Zuo M, Tian G, Yang Y. Current knowledge on the epidemiology and prevention of Avian leukosis virus in China. Poult Sci 2024; 103:104009. [PMID: 39002365 PMCID: PMC11298916 DOI: 10.1016/j.psj.2024.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Avian leukosis virus (ALV) is an enveloped retrovirus with a single-stranded RNA genome, belonging to the genus Alpharetrovirus within the family Retroviridae. The disease (Avian leukosis, AL) caused by ALV is mainly characterized by tumor development and immunosuppression in chickens, which increases susceptibility to other pathogens and leads to significant economic losses in the Chinese poultry industry. The government and poultry industry have made lots of efforts to eradicate ALV, but the threat of which remains not vanished. This review provides a summary of the updated understanding of ALV in China, which mainly focuses on genetic and molecular biology, epidemiology, and diagnostic methods. Additionally, promising antiviral agents and ALV eradication strategies performed in China are also included.
Collapse
Affiliation(s)
- Lei Tan
- College of Animal Science and Technology, Yangtze University, Jingzhou, China; Yunnan Sino-Science Gene Technology Co. Ltd. Kunming, Yunnan, China
| | - Juan Li
- Yunnan Sino-Science Gene Technology Co. Ltd. Kunming, Yunnan, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Yuqing Duan
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Jing Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Shiling Zheng
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Xiongyan Liang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Chun Fang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Mengting Zuo
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Guangming Tian
- College of Animal Science and Technology, Yangtze University, Jingzhou, China.
| | - Yuying Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China.
| |
Collapse
|
3
|
Ceccopieri C, Madej JP. Chicken Secondary Lymphoid Tissues-Structure and Relevance in Immunological Research. Animals (Basel) 2024; 14:2439. [PMID: 39199973 PMCID: PMC11350708 DOI: 10.3390/ani14162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Recent discoveries have indicated the importance of developing modern strategies for vaccinations, more ethical research models, and effective alternatives to antibiotic treatment in farm animals. Chickens (Gallus gallus) play a crucial role in this context given the commercial and economic relevance of poultry production worldwide and the search for analogies between the immune systems of humans and birds. Specifically, chicken secondary lymphoid tissues share similar features to their human counterparts. Chickens have several secondary or peripheral lymphoid tissues that are the sites where the adaptive immune response is initiated. The more general classification of these organs divides them into the spleen and skin-, pineal-, or mucosa-associated lymphoid tissues. Each of these tissues is further subdivided into separate lymphoid structures that perform specific and different functions along the animal's body. A review summarizing the state of the art of research on chicken secondary lymphoid organs is of great relevance for the design of future studies.
Collapse
Affiliation(s)
| | - Jan P. Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
4
|
Elshafei SO, Mahmoud NA, Almofti YA. Immunoinformatics, molecular docking and dynamics simulation approaches unveil a multi epitope-based potent peptide vaccine candidate against avian leukosis virus. Sci Rep 2024; 14:2870. [PMID: 38311642 PMCID: PMC10838928 DOI: 10.1038/s41598-024-53048-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/27/2024] [Indexed: 02/06/2024] Open
Abstract
Lymphoid leukosis is a poultry neoplastic disease caused by avian leukosis virus (ALV) and is characterized by high morbidity and variable mortality rates in chicks. Currently, no effective treatment and vaccination is the only means to control it. This study exploited the immunoinformatics approaches to construct multi-epitope vaccine against ALV. ABCpred and IEDB servers were used to predict B and T lymphocytes epitopes from the viral proteins, respectively. Antigenicity, allergenicity and toxicity of the epitopes were assessed and used to construct the vaccine with suitable adjuvant and linkers. Secondary and tertiary structures of the vaccine were predicted, refined and validated. Structural errors, solubility, stability, immune simulation, dynamic simulation, docking and in silico cloning were also evaluated.The constructed vaccine was hydrophilic, antigenic and non-allergenic. Ramchandran plot showed most of the residues in the favored and additional allowed regions. ProsA server showed no errors in the vaccine structure. Immune simulation showed significant immunoglobulins and cytokines levels. Stability was enhanced by disulfide engineering and molecular dynamic simulation. Docking of the vaccine with chicken's TLR7 revealed competent binding energies.The vaccine was cloned in pET-30a(+) vector and efficiently expressed in Escherichia coli. This study provided a potent peptide vaccine that could assist in tailoring a rapid and cost-effective vaccine that helps to combat ALV. However, experimental validation is required to assess the vaccine efficiency.
Collapse
Affiliation(s)
- Siham O Elshafei
- Department of Biochemistry, Faculty of Medicine and Surgery, National University, Khartoum, Sudan
| | - Nuha A Mahmoud
- Department of Biochemistry, Faculty of Medicine and Surgery, National University, Khartoum, Sudan
| | - Yassir A Almofti
- Department of Molecular Biology and Bioinformatics, College of Veterinary Medicine, University of Bahri, P.O. Box 1660, Khartoum, Sudan.
| |
Collapse
|
5
|
Gul H, Habib G, Khan IM, Rahman SU, Khan NM, Wang H, Khan NU, Liu Y. Genetic resilience in chickens against bacterial, viral and protozoal pathogens. Front Vet Sci 2022; 9:1032983. [PMID: 36439341 PMCID: PMC9691405 DOI: 10.3389/fvets.2022.1032983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 06/13/2024] Open
Abstract
The genome contributes to the uniqueness of an individual breed, and enables distinctive characteristics to be passed from one generation to the next. The allelic heterogeneity of a certain breed results in a different response to a pathogen with different genomic expression. Disease resistance in chicken is a polygenic trait that involves different genes that confer resistance against pathogens. Such resistance also involves major histocompatibility (MHC) molecules, immunoglobulins, cytokines, interleukins, T and B cells, and CD4+ and CD8+ T lymphocytes, which are involved in host protection. The MHC is associated with antigen presentation, antibody production, and cytokine stimulation, which highlight its role in disease resistance. The natural resistance-associated macrophage protein 1 (Nramp-1), interferon (IFN), myxovirus-resistance gene, myeloid differentiation primary response 88 (MyD88), receptor-interacting serine/threonine kinase 2 (RIP2), and heterophile cells are involved in disease resistance and susceptibility of chicken. Studies related to disease resistance genetics, epigenetics, and quantitative trait loci would enable the identification of resistance markers and the development of disease resistance breeds. Microbial infections are responsible for significant outbreaks and have blighted the poultry industry. Breeding disease-resistant chicken strains may be helpful in tackling pathogens and increasing the current understanding on host genetics in the fight against communicable diseases. Advanced technologies, such as the CRISPR/Cas9 system, whole genome sequencing, RNA sequencing, and high-density single nucleotide polymorphism (SNP) genotyping, aid the development of resistant breeds, which would significantly decrease the use of antibiotics and vaccination in poultry. In this review, we aimed to reveal the recent genetic basis of infection and genomic modification that increase resistance against different pathogens in chickens.
Collapse
Affiliation(s)
- Haji Gul
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Sajid Ur Rahman
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Hongcheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
6
|
Mo G, Wei P, Hu B, Nie Q, Zhang X. Advances on genetic and genomic studies of ALV resistance. J Anim Sci Biotechnol 2022; 13:123. [PMID: 36217167 PMCID: PMC9550310 DOI: 10.1186/s40104-022-00769-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Avian leukosis (AL) is a general term for a variety of neoplastic diseases in avian caused by avian leukosis virus (ALV). No vaccine or drug is currently available for the disease. Therefore, the disease can result in severe economic losses in poultry flocks. Increasing the resistance of poultry to ALV may be one effective strategy. In this review, we provide an overview of the roles of genes associated with ALV infection in the poultry genome, including endogenous retroviruses, virus receptors, interferon-stimulated genes, and other immune-related genes. Furthermore, some methods and techniques that can improve ALV resistance in poultry are discussed. The objectives are willing to provide some valuable references for disease resistance breeding in poultry.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, 530001, Guangxi, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
7
|
Li J, Chen J, Dong X, Liang C, Guo Y, Chen X, Huang M, Liao M, Cao W. Residues 140-142, 199-200, 222-223, and 262 in the Surface Glycoprotein of Subgroup A Avian Leukosis Virus Are the Key Sites Determining Tva Receptor Binding Affinity and Infectivity. Front Microbiol 2022; 13:868377. [PMID: 35572683 PMCID: PMC9095613 DOI: 10.3389/fmicb.2022.868377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Subgroup A avian leukosis virus (ALV-A) invades cells through gp85-encoded surface glycoprotein (SU) via specifically recognizing the cellular receptor Tva. To identify the key residues of ALV-A SU that determine the Tva binding affinity and infectivity in DF-1 cells, a strategy of substituting corresponding residues of SU between ALV-A RSA and ALV-E ev-1 (using Tvb as the receptor) was adopted. A series of chimeric soluble gp85 proteins were expressed for co-immunoprecipitation (co-IP) analysis and blocking analysis of viral entry, and various recombinant viruses based on replication-competent avian retrovirus vectors containing Bryan polymerase (RCASBP) were constructed for transfection into DF-1 cells and measurement of the percentage of GFP-positive cells. The results revealed that the substitution of residues V138, W140, Y141, L142, S145, and L154 of host range region 1 (hr1), residues V199, G200, Q202, R222, and R223 of host range region 2 (hr2), and residue G262 of variable region 3 (vr3) reduced the viral infectivity and Tva binding affinity, which was similar to the effects of the −139S, −151N, −155PWVNPF, −201NFD, Δ214–215, and −266S mutations. Our study indicated that hr1 and hr2 contain the principal receptor interaction determinants, with new identified-vr3 also playing a key role in the receptor binding affinity of ALV-A.
Collapse
Affiliation(s)
- Jinqun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyi Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Canxin Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanyan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiang Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengyu Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
8
|
Sharshov K. Avian Pathogens: Editorial and the Perspectives of Research. Microorganisms 2022; 10:543. [PMID: 35336117 PMCID: PMC8955274 DOI: 10.3390/microorganisms10030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
In the last ten years, humanity has faced new challenges in the field of human and animal health, including emerging viral infections [...].
Collapse
Affiliation(s)
- Kirill Sharshov
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia
| |
Collapse
|
9
|
Koslová A, Trefil P, Mucksová J, Krchlíková V, Plachý J, Krijt J, Reinišová M, Kučerová D, Geryk J, Kalina J, Šenigl F, Elleder D, Kožich V, Hejnar J. Knock-Out of Retrovirus Receptor Gene Tva in the Chicken Confers Resistance to Avian Leukosis Virus Subgroups A and K and Affects Cobalamin (Vitamin B 12)-Dependent Level of Methylmalonic Acid. Viruses 2021; 13:v13122504. [PMID: 34960774 PMCID: PMC8708277 DOI: 10.3390/v13122504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023] Open
Abstract
The chicken Tva cell surface protein, a member of the low-density lipoprotein receptor family, has been identified as an entry receptor for avian leukosis virus of classic subgroup A and newly emerging subgroup K. Because both viruses represent an important concern for the poultry industry, we introduced a frame-shifting deletion into the chicken tva locus with the aim of knocking-out Tva expression and creating a virus-resistant chicken line. The tva knock-out was prepared by CRISPR/Cas9 gene editing in chicken primordial germ cells and orthotopic transplantation of edited cells into the testes of sterilized recipient roosters. The resulting tva −/− chickens tested fully resistant to avian leukosis virus subgroups A and K, both in in vitro and in vivo assays, in contrast to their susceptible tva +/+ and tva +/− siblings. We also found a specific disorder of the cobalamin/vitamin B12 metabolism in the tva knock-out chickens, which is in accordance with the recently recognized physiological function of Tva as a receptor for cobalamin in complex with transcobalamin transporter. Last but not least, we bring a new example of the de novo resistance created by CRISPR/Cas9 editing of pathogen dependence genes in farm animals and, furthermore, a new example of gene editing in chicken.
Collapse
Affiliation(s)
- Anna Koslová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Pavel Trefil
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Pohoří-Chotouň 90, 254 49 Jílové u Prahy, Czech Republic; (P.T.); (J.M.); (J.K.)
| | - Jitka Mucksová
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Pohoří-Chotouň 90, 254 49 Jílové u Prahy, Czech Republic; (P.T.); (J.M.); (J.K.)
| | - Veronika Krchlíková
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Jiří Plachý
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 08 Prague, Czech Republic; (J.K.); (V.K.)
| | - Markéta Reinišová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Dana Kučerová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Josef Geryk
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Jiří Kalina
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Pohoří-Chotouň 90, 254 49 Jílové u Prahy, Czech Republic; (P.T.); (J.M.); (J.K.)
| | - Filip Šenigl
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Daniel Elleder
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 08 Prague, Czech Republic; (J.K.); (V.K.)
| | - Jiří Hejnar
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
- Correspondence:
| |
Collapse
|
10
|
Zhang Q, Xie T, Mo G, Zhang Z, Lin L, Zhang X. ACSL1 Inhibits ALV-J Replication by IFN-Ⅰ Signaling and PI3K/Akt Pathway. Front Immunol 2021; 12:774323. [PMID: 34777393 PMCID: PMC8585972 DOI: 10.3389/fimmu.2021.774323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/07/2021] [Indexed: 01/06/2023] Open
Abstract
J subgroup avian leukosis virus (ALV-J) infection causes serious immunosuppression problems, leading to hematopoietic malignancy tumors in chicken. It has been demonstrated that interferon-stimulated genes (ISGs) could limit ALV-J replication; nevertheless, the underlying mechanisms remain obscure. Here, we demonstrate that Long-chain Acyl-CoA synthetase 1 (ACSL1) is an interferon (IFN)-stimulated gene that specifically restricts the replication of ALV-J due to the higher IFN-I production. More importantly, ACSL1 induces primary monocyte-derived macrophages (MDMs) to pro-inflammatory phenotypic states during ALV-J infection, and ACSL1 mediates apoptosis through the PI3K/Akt signaling pathway in ALV-J-infected primary monocyte-derived macrophages (MDMs). Overall, these results provide evidence that ACSL1 contributes to the antiviral response against ALV-J.
Collapse
Affiliation(s)
- Qihong Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Zihao Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Ling Lin
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|