1
|
Le Y, Zhang M, Wu P, Wang H, Ni J. Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing. ENGINEERING MICROBIOLOGY 2024; 4:100174. [PMID: 39628591 PMCID: PMC11610967 DOI: 10.1016/j.engmic.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 12/06/2024]
Abstract
The depletion of fossil fuels and their impact on the environment have led to efforts to develop alternative sustainable fuels. While biofuel derived from lignocellulose is considered a sustainable, renewable, and green energy source, enhancing biofuel production and achieving a cost-effective bioconversion of lignocellulose at existing bio-refineries remains a challenge. Consolidated bioprocessing (CBP) using thermophiles can simplify this operation by integrating multiple processes, such as hydrolytic enzyme production, lignocellulose degradation, biofuel fermentation, and product distillation. This paper reviews recent developments in the conversion of lignocellulose to biofuel using thermophile-based CBP. First, advances in thermostable enzyme and thermophilic lignocellulolytic microorganism discovery and development for lignocellulosic biorefinery use are outlined. Then, several thermophilic CBP candidates and thermophilic microbes engineered to drive CBP of lignocellulose are reviewed. CRISPR/Cas-based genome editing tools developed for thermophiles are also highlighted. The potential applications of the Design-Build-Test-Learn (DBTL) synthetic biology strategy for designing and constructing thermophilic CBP hosts are also discussed in detail. Overall, this review illustrates how to develop highly sophisticated thermophilic CBP hosts for use in lignocellulosic biorefinery applications.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengqi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Pengju Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Huilei Wang
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
2
|
Omar MN, Minggu MM, Nor Muhammad NA, Abdul PM, Zhang Y, Ramzi AB. Towards consolidated bioprocessing of biomass and plastic substrates for semi-synthetic production of bio-poly(ethylene furanoate) (PEF) polymer using omics-guided construction of artificial microbial consortia. Enzyme Microb Technol 2024; 177:110429. [PMID: 38537325 DOI: 10.1016/j.enzmictec.2024.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
Poly(ethylene furanoate) (PEF) plastic is a 100% renewable polyester that is currently being pursued for commercialization as the next-generation bio-based plastic. This is in line with growing demand for circular bioeconomy and new plastics economy that is aimed at minimizing plastic waste mismanagement and lowering carbon footprint of plastics. However, the current catalytic route for the synthesis of PEF is impeded with technical challenges including high cost of pretreatment and catalyst refurbishment. On the other hand, the semi-biosynthetic route of PEF plastic production is of increased biotechnological interest. In particular, the PEF monomers (Furan dicarboxylic acid and ethylene glycol) can be synthesized via microbial-based biorefinery and purified for subsequent catalyst-mediated polycondensation into PEF. Several bioengineering and bioprocessing issues such as efficient substrate utilization and pathway optimization need to be addressed prior to establishing industrial-scale production of the monomers. This review highlights current advances in semi-biosynthetic production of PEF monomers using consolidated waste biorefinery strategies, with an emphasis on the employment of omics-driven systems biology approaches in enzyme discovery and pathway construction. The roles of microbial protein transporters will be discussed, especially in terms of improving substrate uptake and utilization from lignocellulosic biomass, as well as from depolymerized plastic waste as potential bio-feedstock. The employment of artificial bioengineered microbial consortia will also be highlighted to provide streamlined systems and synthetic biology strategies for bio-based PEF monomer production using both plant biomass and plastic-derived substrates, which are important for circular and new plastics economy advances.
Collapse
Affiliation(s)
- Mohd Norfikri Omar
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), UKM, Bangi, Selangor 43600, Malaysia
| | - Matthlessa Matthew Minggu
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), UKM, Bangi, Selangor 43600, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), UKM, Bangi, Selangor 43600, Malaysia
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia; Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), UKM, Bangi, Selangor 43600, Malaysia.
| |
Collapse
|
3
|
Chu PH, Jenol MA, Phang LY, Ibrahim MF, Purkan P, Hadi S, Abd-Aziz S. Innovative approaches for amino acid production via consolidated bioprocessing of agricultural biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33303-33324. [PMID: 38710845 DOI: 10.1007/s11356-024-33534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/27/2024] [Indexed: 05/08/2024]
Abstract
Agricultural plantations in Indonesia and Malaysia yield substantial waste, necessitating proper disposal to address environmental concerns. Yet, these wastes, rich in starch and lignocellulosic content, offer an opportunity for value-added product development, particularly amino acid production. Traditional methods often rely on costly commercial enzymes to convert biomass into fermentable sugars for amino acid production. An alternative, consolidated bioprocessing, enables the direct conversion of agricultural biomass into amino acids using selected microorganisms. This review provides a comprehensive assessment of the potential of agricultural biomass in Indonesia and Malaysia for amino acid production through consolidated bioprocessing. It explores suitable microorganisms and presents a case study on using Bacillus subtilis ATCC 6051 to produce 9.56 mg/mL of amino acids directly from pineapple plant stems. These findings contribute to the advancement of sustainable amino acid production methods using agricultural biomass especially in Indonesia and Malaysia through consolidated bioprocessing, reducing waste and enhancing environmental sustainability.
Collapse
Affiliation(s)
- Pei-Hsia Chu
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Azwan Jenol
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Lai-Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Purkan Purkan
- Biochemistry Division, Department of Chemistry, Faculty of Science and Technology, Airlangga University, Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Sofijan Hadi
- Biochemistry Division, Department of Chemistry, Faculty of Science and Technology, Airlangga University, Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Biochemistry Division, Department of Chemistry, Faculty of Science and Technology, Airlangga University, Jl. Mulyorejo, Surabaya, 60115, Indonesia.
| |
Collapse
|
4
|
Dennis JA, Johnson NW, Thorpe TW, Wallace S. Biocompatible α-Methylenation of Metabolic Butyraldehyde in Living Bacteria. Angew Chem Int Ed Engl 2023; 62:e202306347. [PMID: 37477977 PMCID: PMC10952924 DOI: 10.1002/anie.202306347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Small molecule organocatalysts are abundant in all living organisms. However, their use as organocatalysts in cells has been underexplored. Herein, we report that organocatalytic aldol chemistry can be interfaced with living Escherichia coli to enable the α-methylenation of cellular aldehydes using biogenic amines such as L-Pro or phosphate. The biocompatible reaction is mild and can be interfaced with butyraldehyde generated from D-glucose via engineered metabolism to enable the production of 2-methylenebutanal (2-MB) and 2-methylbutanal (2-MBA) by anaerobic fermentation, and 2-methylbutanol (2-MBO) by whole-cell catalysis. Overall, this study demonstrates the combination of non-enzymatic organocatalytic and metabolic reactions in vivo for the sustainable synthesis of valuable non-natural chemicals that cannot be accessed using enzymatic chemistry alone.
Collapse
Affiliation(s)
- Jonathan A. Dennis
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Nick W. Johnson
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
| | - Thomas W. Thorpe
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
| | - Stephen Wallace
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
| |
Collapse
|
5
|
Elmore JR, Dexter GN, Baldino H, Huenemann JD, Francis R, Peabody GL, Martinez-Baird J, Riley LA, Simmons T, Coleman-Derr D, Guss AM, Egbert RG. High-throughput genetic engineering of nonmodel and undomesticated bacteria via iterative site-specific genome integration. SCIENCE ADVANCES 2023; 9:eade1285. [PMID: 36897939 PMCID: PMC10005180 DOI: 10.1126/sciadv.ade1285] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/01/2023] [Indexed: 05/31/2023]
Abstract
Efficient genome engineering is critical to understand and use microbial functions. Despite recent development of tools such as CRISPR-Cas gene editing, efficient integration of exogenous DNA with well-characterized functions remains limited to model bacteria. Here, we describe serine recombinase-assisted genome engineering, or SAGE, an easy-to-use, highly efficient, and extensible technology that enables selection marker-free, site-specific genome integration of up to 10 DNA constructs, often with efficiency on par with or superior to replicating plasmids. SAGE uses no replicating plasmids and thus lacks the host range limitations of other genome engineering technologies. We demonstrate the value of SAGE by characterizing genome integration efficiency in five bacteria that span multiple taxonomy groups and biotechnology applications and by identifying more than 95 heterologous promoters in each host with consistent transcription across environmental and genetic contexts. We anticipate that SAGE will rapidly expand the number of industrial and environmental bacteria compatible with high-throughput genetics and synthetic biology.
Collapse
Affiliation(s)
- Joshua R. Elmore
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gara N. Dexter
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Henri Baldino
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jay D. Huenemann
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996,USA
| | - Ryan Francis
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - George L. Peabody
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Jessica Martinez-Baird
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Lauren A. Riley
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996,USA
| | - Tuesday Simmons
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94701, USA
| | - Devin Coleman-Derr
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94701, USA
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA
| | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Robert G. Egbert
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
6
|
Jin X, Wang JK, Wang Q. Microbial β-glucanases: production, properties, and engineering. World J Microbiol Biotechnol 2023; 39:106. [PMID: 36847914 DOI: 10.1007/s11274-023-03550-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Lignocellulosic biomass, which mainly consists of cellulose and hemicellulose, is the most abundant renewable biopolymer on earth. β-Glucanases are glycoside hydrolases (GHs) that hydrolyze β-glucan, one of the dominant components of the plant cell wall, into cello-oligosaccharides and glucose. Among them, endo-β-1,4-glucanase (EC 3.2.1.4), exo-glucanase/cellobiohydrolase (EC 3.2.1.91), and β-glucosidase (EC 3.2.1.21) play critical roles in the digestion of glucan-like substrates. β-Glucanases have attracted considerable interest within the scientific community due to their applications in the feed, food, and textile industries. In the past decade, there has been considerable progress in the discovery, production, and characterization of novel β-glucanases. Advances in the development of next-generation sequencing techniques, including metagenomics and metatranscriptomics, have unveiled novel β-glucanases isolated from the gastrointestinal microbiota. The study of β-glucanases is beneficial for research and development of commercial products. In this study, we review the classification, properties, and engineering of β-glucanases.
Collapse
Affiliation(s)
- Xinyi Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China.,Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China.,Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China. .,Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Shi TQ, Darvishi F, Cao M, Ji B, Ji XJ. Editorial: Design and construction of microbial cell factories for the production of fuels and chemicals. Front Bioeng Biotechnol 2023; 11:1198317. [PMID: 37152641 PMCID: PMC10154672 DOI: 10.3389/fbioe.2023.1198317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- *Correspondence: Tian-Qiong Shi, ; Farshad Darvishi, , ; Mingfeng Cao, ; Boyang Ji, ; Xiao-Jun Ji,
| | - Farshad Darvishi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran
- *Correspondence: Tian-Qiong Shi, ; Farshad Darvishi, , ; Mingfeng Cao, ; Boyang Ji, ; Xiao-Jun Ji,
| | - Mingfeng Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China
- *Correspondence: Tian-Qiong Shi, ; Farshad Darvishi, , ; Mingfeng Cao, ; Boyang Ji, ; Xiao-Jun Ji,
| | - Boyang Ji
- BioInnovation InstituteCopenhagen, Denmark
- *Correspondence: Tian-Qiong Shi, ; Farshad Darvishi, , ; Mingfeng Cao, ; Boyang Ji, ; Xiao-Jun Ji,
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Tian-Qiong Shi, ; Farshad Darvishi, , ; Mingfeng Cao, ; Boyang Ji, ; Xiao-Jun Ji,
| |
Collapse
|
8
|
Guo H, Zhao Y, Chang JS, Lee DJ. Enzymes and enzymatic mechanisms in enzymatic degradation of lignocellulosic biomass: A mini-review. BIORESOURCE TECHNOLOGY 2023; 367:128252. [PMID: 36334864 DOI: 10.1016/j.biortech.2022.128252] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Enzymatic hydrolysis is the key step limiting the efficiency of the biorefinery of lignocellulosic biomass. Enzymes involved in enzymatic hydrolysis and their interactions with biomass should be comprehended to form the basis for looking for strategies to improve process efficiency. This article updates the contemporary research on the properties of key enzymes in the lignocellulose biorefinery and their interactions with biomass, adsorption, and hydrolysis. The advanced analytical techniques to track the interactions for exploiting mechanisms are discussed. The challenges and prospects for future research are outlined.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
9
|
Biosynthesis of alkanes/alkenes from fatty acids or derivatives (triacylglycerols or fatty aldehydes). Biotechnol Adv 2022; 61:108045. [DOI: 10.1016/j.biotechadv.2022.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
|
10
|
Deciphering Cellodextrin and Glucose Uptake in Clostridium thermocellum. mBio 2022; 13:e0147622. [PMID: 36069444 PMCID: PMC9601137 DOI: 10.1128/mbio.01476-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sugar uptake is of great significance in industrially relevant microorganisms. Clostridium thermocellum has extensive potential in lignocellulose biorefineries as an environmentally prominent, thermophilic, cellulolytic bacterium. The bacterium employs five putative ATP-binding cassette transporters which purportedly take up cellulose hydrolysates. Here, we first applied combined genetic manipulations and biophysical titration experiments to decipher the key glucose and cellodextrin transporters. In vivo gene inactivation of each transporter and in vitro calorimetric and nuclear magnetic resonance (NMR) titration of each putative sugar-binding protein with various saccharides supported the conclusion that only transporters A and B play the roles of glucose and cellodextrin transport, respectively. To gain insight into the structural mechanism of the transporter specificities, 11 crystal structures, both alone and in complex with appropriate saccharides, were solved for all 5 putative sugar-binding proteins, thus providing detailed specific interactions between the proteins and the corresponding saccharides. Considering the importance of transporter B as the major cellodextrin transporter, we further identified its cryptic, hitherto unknown ATPase-encoding gene as clo1313_2554, which is located outside the transporter B gene cluster. The crystal structure of the ATPase was solved, showing that it represents a typical nucleotide-binding domain of the ATP-binding cassette (ABC) transporter. Moreover, we determined that the inducing effect of cellobiose (G2) and cellulose on cellulosome production could be eliminated by deletion of transporter B genes, suggesting the coupling of sugar transport and regulation of cellulosome components. This study provides key basic information on the sugar uptake mechanism of C. thermocellum and will promote rational engineering of the bacterium for industrial application.
Collapse
|
11
|
Rafieenia R, Atkinson E, Ledesma-Amaro R. Division of labor for substrate utilization in natural and synthetic microbial communities. Curr Opin Biotechnol 2022; 75:102706. [DOI: 10.1016/j.copbio.2022.102706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 01/30/2023]
|
12
|
Garcia CA, Gardner JG. Development and evaluation of an agar capture system (ACS) for high-throughput screening of insoluble particulate substrates with bacterial growth and enzyme activity assays. J Microbiol Methods 2021; 190:106337. [PMID: 34571109 DOI: 10.1016/j.mimet.2021.106337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
We describe a method for containing insoluble particulates for use as substrates in either bacterial growth or enzyme assays. This method was designed for high-throughput screening of environmental or engineered bacteria. Benchmarking this method with several model bacteria uncovered phenotypes not observable with the particulate substrates alone.
Collapse
Affiliation(s)
- Cecelia A Garcia
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, MD, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, MD, USA.
| |
Collapse
|