1
|
Lipilkina TA, Xu C, Barbosa MDS, Khramova VN, Shebeko SK, Ermakov AM, Ivanova IV, Todorov SD. Beneficial and Safety Properties of a Bacteriocinogenic and Putative Probiotic Latilactobacillus sakei subsp. sakei 2a Strain. Foods 2024; 13:3770. [PMID: 39682842 DOI: 10.3390/foods13233770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
This work aimed to evaluate some of the probiotic features and safety of the bacteriocin-producing Latilactobacillus sakei subsp. sakei 2a. The effect of selected commercial drugs from different generic groups and antibiotics on the growth of Ltb. sakei subsp. sakei 2a was also determined. The presence of virulence factors was determined based on PCR with total DNA from Ltb. sakei subsp. sakei 2a. Good growth of Ltb. sakei subsp. sakei 2a was recorded in MRS broth supplemented with 0.2% or 0.4% oxbile or in MRS broth adjusted to a pH from 5.0-9.0. Auto-aggregation of Ltb. sakei subsp. sakei 2a was 62.59%. Different levels of co-aggregation were recorded between Ltb. sakei subsp. sakei 2a and Enterococcus faecalis ATCC19443, Ltb. sakei ATCC15521 and Listeria monocytogenes ScottA. Growth of Ltb. sakei subsp. sakei 2a was not inhibited by commercial drugs from different generic groups. The inhibitory effect on the growth of Ltb. sakei subsp. sakei 2a was recorded only in the presence of Arotin [selective serotonin reuptake inhibitor antidepressant] Minimal Inhibition Concentration (MIC) 1.0 mg/mL, Atlansil [Antiarrhythmic] MIC 0.625 mg/mL, Diclofenac potassium [non-steroidal anti-inflammatory drug (NSAID)] MIC 2.5 mg/mL and Spidufen [NSAID] MIC 15.0 mg/mL. Only two antibiotics tested in this study, Amoxil and Urotrobel, inhibited the growth of Ltb. sakei subsp. sakei 2a with a MIC of <0.5 mg/mL and 5.0 mg/mL, respectively. However, Ltb. sakei subsp. sakei 2a generated positive PCR results on the DNA level for vanA (vancomycin resistance), hyl (hyaluronidase), esp (enterococcal surface protein), ace (adhesion of collagen) and cilA (cytolisin) and a high virulence profile when examined for the presence of virulence factors. It is important to underline that cytolysis has been described as a virulence and antibacterial factor.
Collapse
Affiliation(s)
- Tatiana Alexandrovna Lipilkina
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Gagarina Sq., 1, Rostov-on-Don 344002, Russia
| | - Cristhian Xu
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Matheus de Souza Barbosa
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Valentina Nikolaevna Khramova
- Department of Food Production Technology, Volgograd State Technical University, V.I. Lenin Avenue, 28, Volgograd 400005, Russia
| | - Sergei K Shebeko
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Gagarina Sq., 1, Rostov-on-Don 344002, Russia
| | - Alexey M Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Gagarina Sq., 1, Rostov-on-Don 344002, Russia
| | - Iskra Vitanova Ivanova
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
| |
Collapse
|
2
|
Borgonovi TF, Fugaban JII, Bucheli JEV, Casarotti SN, Holzapfel WH, Todorov SD, Penna ALB. Dual Role of Probiotic Lactic Acid Bacteria Cultures for Fermentation and Control Pathogenic Bacteria in Fruit-Enriched Fermented Milk. Probiotics Antimicrob Proteins 2024; 16:1801-1816. [PMID: 37572214 DOI: 10.1007/s12602-023-10135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
The food industry has been developing new products with health benefits, extended shelf life, and without chemical preservation. Bacteriocin-producing lactic acid bacteria (LAB) strains have been evaluated for food fermentation to prevent contamination and increase shelf life. In this study, potentially probiotic LAB strains, Lactiplantibacillus (Lb.) plantarum ST8Sh, Lacticaseibacillus (Lb.) casei SJRP38, and commercial starter Streptococcus (St.) thermophilus ST080, were evaluated for their production of antimicrobial compounds, lactic acid and enzyme production, carbohydrate assimilation, and susceptibility to antibiotics. The characterization of antimicrobial compounds, the proteolytic activity, and its inhibitory property against Listeria (List.) monocytogenes and Staphylococcus (Staph.) spp. was evaluated in buriti and passion fruit-supplemented fermented milk formulations (FMF) produced with LAB strains. Lb. plantarum ST8Sh was found to inhibit List. monocytogenes through bacteriocin production and produced both L(+) and D(-) lactic acid isomers, while Lb. casei SJRP38 mainly produced L(+) lactic acid. The carbohydrate assimilation profiles were compatible with those usually found in LAB. The potentially probiotic strains were susceptible to streptomycin and tobramycin, while Lb. plantarum ST8Sh was also susceptible to ciprofloxacin. All FMF produced high amounts of L(+) lactic acid and the viability of total lactobacilli remained higher than 8.5 log CFU/mL during monitored storage period. Staph. aureus ATCC 43300 in fermented milk with passion fruit pulp (FMFP) and fermented milk with buriti pulp (FMB), and Staph. epidermidis KACC 13234 in all formulations were completely inhibited after 14 days of storage. The combination of Lb. plantarum ST8Sh and Lb. casei SJRP38 and fruit pulps can provide increased safety and shelf-life for fermented products, and natural food preservation meets the trends of the food market.
Collapse
Affiliation(s)
- Taís Fernanda Borgonovi
- Department of Food Engineering and Technology, São Paulo State University (UNESP), São José Do Rio Preto, SP, 15054-000, Brazil
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Joanna Ivy Irorita Fugaban
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jorge Enrique Vazquez Bucheli
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Sabrina Neves Casarotti
- Faculty of Health Sciences, Federal University of Rondonópolis (UFR), Rondonópolis, MT, 78736-900, Brazil
| | - Wilhelm Heinrich Holzapfel
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Ana Lucia Barretto Penna
- Department of Food Engineering and Technology, São Paulo State University (UNESP), São José Do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
3
|
Lima JMS, Carneiro KO, Pinto UM, Todorov SD. Bacteriocinogenic anti-listerial properties and safety assessment of Enterococcus faecium and Lactococcus garvieae strains isolated from Brazilian artisanal cheesemaking environment. J Appl Microbiol 2024; 135:lxae159. [PMID: 38925659 DOI: 10.1093/jambio/lxae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIMS This study aimed to prospect and isolate lactic acid bacteria (LAB) from an artisanal cheese production environment, to assess their safety, and to explore their bacteriocinogenic potential against Listeria monocytogenes. METHODS AND RESULTS Samples were collected from surfaces of an artisanal-cheese production facility and after rep-PCR and 16S rRNA sequencing analysis, selected strains were identified as to be belonging to Lactococcus garvieae (1 strain) and Enterococcus faecium (14 isolates, grouped into three clusters) associated with different environments (worktables, cheese mold, ripening wooden shelves). All of them presented bacteriocinogenic potential against L. monocytogenes ATCC 7644 and were confirmed as safe (γ-hemolytic, not presenting antibiotic resistance, no mucus degradation properties, and no proteolytic or gelatinase enzyme activity). Additionally, cell growth, acidification and bacteriocins production kinetics, bacteriocin stability in relation to different temperatures, pH, and chemicals were evaluated. According to performed PCR analysis all studied strains generated positive evidence for the presence of entA and entP genes (for production of enterocins A and enterocins P, respectively). However, pediocin PA-1 associated gene was recorded only in DNA obtained from E. faecium ST02JL and Lc. garvieae ST04JL. CONCLUSIONS It is worth considering the application of these safe LAB or their bacteriocins in situ as an alternative means of controlling L. monocytogenes in cheese production environments, either alone or in combination with other antimicrobials.
Collapse
Affiliation(s)
- João Marcos Scafuro Lima
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Kayque Ordonho Carneiro
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Uelinton Manoel Pinto
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| |
Collapse
|
4
|
Elnar AG, Kim GB. In Vitro and In Silico Characterization of N-Formylated Two-Peptide Bacteriocin from Enterococcus faecalis CAUM157 with Anti-Listeria Activity. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10265-9. [PMID: 38743207 DOI: 10.1007/s12602-024-10265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Enterococcus faecalis CAUM157 (KACC 81148BP), a Gram-positive bacteria isolated from raw cow's milk, was studied for its bacteriocin production. The antimicrobial activity of CAUM157 was attributed to a two-peptide class IIb bacteriocin with potent activity against food-borne pathogen Listeria monocytogenes and periodontal disease-causing pathogens (Prevotella intermedia KCTC 15693 T and Fusobacterium nucleatum KCTC 2488 T). M157 bacteriocins exhibit high temperature and pH stability and resist hydrolytic enzyme degradation and detergent denaturation, potentially due to their structural conformation. Based on amino acid sequence, M157A and M157B were predicted to be 5.176 kDa and 5.182 kDa in size, respectively. However, purified bacteriocins and chemically synthesized N-formylated M157 peptides both showed 5.204 kDa (M157A) and 5.209 kDa (M157B) molecular mass, confirming the formylation of the N-terminal methionine of both peptides produced by strain CAUM157. Furthermore, the strain demonstrated favorable growth and fermentation with minimal bacteriocin production when cultured in whey-based media, whereas a 1.0% tryptone or soytone supplementation resulted in higher bacteriocin production. Although Ent. faecalis CAUM157 innately harbors genes for virulence factors and antimicrobial resistance (e.g., tetracycline and erythromycin), its bacteriocin production is valuable in circumventing the need for live microorganisms, particularly in food applications for pathogen control.
Collapse
Affiliation(s)
- Arxel G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
5
|
Wagner TM, Pöntinen AK, Fenzel CK, Engi D, Janice J, Almeida-Santos AC, Tedim AP, Freitas AR, Peixe L, van Schaik W, Johannessen M, Hegstad K. Interactions between commensal Enterococcus faecium and Enterococcus lactis and clinical isolates of Enterococcus faecium. FEMS MICROBES 2024; 5:xtae009. [PMID: 38606354 PMCID: PMC11008740 DOI: 10.1093/femsmc/xtae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and virulomes. These features only partially explain the predominance of clade A1 strains in nosocomial infections. We investigated in vitro interaction of 50 clinical isolates (clade A1 Efm) against 75 commensal faecal isolates from healthy humans (25 clade A2 Efm and 50 Ela). Only 36% of the commensal isolates inhibited clinical isolates, while 76% of the clinical isolates inhibited commensal isolates. The most apparent overall differences in inhibition patterns were presented between clades. The inhibitory activity was mainly mediated by secreted, proteinaceous, heat-stable compounds, likely indicating an involvement of bacteriocins. A custom-made database targeting 76 Bacillota bacteriocins was used to reveal bacteriocins in the genomes. Our systematic screening of the interactions between nosocomial and commensal Efm and Ela on a large scale suggests that, in a clinical setting, nosocomial strains not only have an advantage over commensal strains due to their possession of AMR genes, virulence factors, and resilience but also inhibit the growth of commensal strains.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Anna Kaarina Pöntinen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Biostatistics, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Carolin Kornelia Fenzel
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Daniel Engi
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Jessin Janice
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Ana C Almeida-Santos
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana P Tedim
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CiberES CB22/06/00035), 28029 Madrid, Spain
| | - Ana R Freitas
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- 1H- TOXRUN – One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, 4584-116 Gandra, Portugal
| | - Luísa Peixe
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mona Johannessen
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| |
Collapse
|
6
|
Amenu D, Bacha K. Antagonistic Effects of Lactic Acid Bacteria Isolated from Ethiopian Traditional Fermented Foods and Beverages Against Foodborne Pathogens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10231-5. [PMID: 38381263 DOI: 10.1007/s12602-024-10231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Lactic acid bacteria (LAB) found in Ethiopian traditional fermented foods and beverages have potential antagonistic effects against foodborne pathogens due to their capacity to produce various antimicrobial metabolites. This study evaluated the antagonistic activity of LAB isolated from Ethiopian traditional fermented foods and beverages against foodborne pathogens and characterized their antimicrobial substances. A total of 180 traditional fermented foods and beverages were collected, and the antagonistic activities of LAB were evaluated against selected foodborne pathogens. The effects of pH, temperature, enzymes, and food additives on the antagonistic effects of cell-free supernatant produced by LAB were investigated. LAB identification and characterization were conducted using an integrated phenotypic approach and MALDI TOF MS spectrum analysis, and data were analyzed using one-way ANOVA and Tukey post hoc analysis. A total of 956 LAB were isolated, of which seventeen (17 LAB) isolates of Pediococcus pentosaceus (Pc. pentosaceus (n = 7)), Pediococcus acidilactici (Pc. acidilactici (n = 2)), Enterococcus faecium (Ec. faecium (n = 6)), and Lactococcus lactis (Lc. lactis (n = 2)) were screened for antagonistic activity based on their ability to produce bacteriocins, probiotic activity, and preservative potential. Pc. pentosaceus JULABB16, Pc. pentosaceus JULABB01, and Ec. faecium JULABBr39 showed strong antagonistic activity against all pathogens, with mean inhibition zone diameters ranging from 23.50 to 35.50 mm. Lc. lactis, Pc. pentosaceus, Pc. acidilactici, and Ec. faecium produced bioactive metabolites that were sensitive to proteolytic enzymes and capable of withstanding high temperatures (80-100 °C) and acid concentrations (pH 2-10). The CFS produced by Lc. lactis, Pc. pentosaceus, Pc. acidilactici, and Ec. faecium showed the most impending antagonistic activity against all pathogens. The bioactive substances produced by LAB isolates had promising effects against food spoilage and pathogenic bacteria, making them potential natural food preservatives.
Collapse
Affiliation(s)
- Desalegn Amenu
- Department of Biology, College of Natural Sciences, Jimma University, P.O. Box: 378, Jimma, Ethiopia.
- Department of Biology, College of Natural and Computational Sciences, Wollega University, P.O Box: 395, Nekemte, Oromia, Ethiopia.
| | - Ketema Bacha
- Department of Biology, College of Natural Sciences, Jimma University, P.O. Box: 378, Jimma, Ethiopia
| |
Collapse
|
7
|
Popović N, Stevanović D, Radojević D, Veljović K, Đokić J, Golić N, Terzić-Vidojević A. Insight into the Postbiotic Potential of the Autochthonous Bacteriocin-Producing Enterococcus faecium BGZLM1-5 in the Reduction in the Abundance of Listeria monocytogenes ATCC19111 in a Milk Model. Microorganisms 2023; 11:2844. [PMID: 38137988 PMCID: PMC10745621 DOI: 10.3390/microorganisms11122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to explore the probiogenomic characteristics of artisanal bacteriocin-producing Enterococcus faecium BGZLM1-5 and its potential application in reducing Listeria monocytogenes in a milk model. The BGZLM1-5 strain was isolated from raw cow's milk from households in the Zlatar Mountain region. The whole genome sequencing approach and bioinformatics analyses reveal that the strain BGZLM1-5 is non-pathogenic to humans. Bacteriocin-containing supernatant was thermally stable and antimicrobial activity retained 75% of the initial activity compared with that of the control after treatment at 90 °C for 30 min. Antimicrobial activity maintained relative stability at pH 3-11 and retained 62.5% of the initial activity compared with that of the control after treatment at pH 1, 2, and 12. The highest activity of the partially purified bacteriocin was obtained after precipitation at 40% saturation with ammonium sulfate and further purification by mixing with chloroform. Applying 3% and 5% (v/v) of the bacteriocin-containing supernatant and 0.5% (v/v) of the partially purified bacteriocin decreased the viable number of L. monocytogenes ATCC19111 after three days of milk storage by 23.5%, 63.5%, and 58.9%, respectively.
Collapse
Affiliation(s)
- Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (D.S.); (D.R.); (K.V.); (J.Đ.); (N.G.); (A.T.-V.)
| | | | | | | | | | | | | |
Collapse
|
8
|
Buahom J, Siripornadulsil S, Sukon P, Sooksawat T, Siripornadulsil W. Survivability of freeze- and spray-dried probiotics and their effects on the growth and health performance of broilers. Vet World 2023; 16:1849-1865. [PMID: 37859958 PMCID: PMC10583877 DOI: 10.14202/vetworld.2023.1849-1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/09/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Many strains of probiotics have been exploited and used as animal dietary supplements for broiler production. The efficacy and survival of probiotics during production may reflect better activities of the probiotics in the host. This study investigated the effects of freeze- and spray-drying on the survivability and properties of probiotics and their ability to improve the growth and health performance of broilers. Materials and Methods Probiotic powders of four strains of lactic acid bacteria, Enterococcus faecium CA4, Enterococcus durans CH33, Ligilactobacillus salivarius CH24, Pediococcus acidilactici SH8, and Bacillus subtilis KKU213, were prepared using rice bran/chitosan/carboxy methyl cellulose as the carrier. The survival of each probiotic strain was investigated under stress conditions, including freeze-drying, spray-drying, and simulated gastrointestinal conditions. The body weight gain (BWG) and intestinal histomorphology were determined to assess broiler growth performance. Results All dried probiotics yielded a high survival rate during freeze-drying (95.8-98.6%) and spray-drying (94.4-98.2%). In addition, an analysis of the main effect revealed that the effectiveness of freeze-drying was higher than that of spray-drying in minimizing the loss of cell viability. The antimicrobial activity of all immobilized dried probiotic strains against Salmonella was maintained. The immobilized probiotics tolerated a low pH value of 2.0 and 0.5% (w/v) bile salt. Probiotic administration of a mixture of the five dried probiotics to 1-day-old hatched male broilers at early and late ages resulted in potential colonization in the broiler intestine, and enhancements in the BWG, lipid metabolism, and gut health (villus height and cryptal depth) were observed in the probiotic-treated groups. Conclusion The administration of three doses of the spray-dried probiotic mixture at days 15, 17, and 19 after hatching was sufficient to achieve long-term growth and health benefits in broilers. This finding might provide a cost-effective alternative to the administration of commonly used antibiotics in broiler production.
Collapse
Affiliation(s)
- Juthamas Buahom
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand
- Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peerapol Sukon
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Treerat Sooksawat
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand
- Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
9
|
Oh SE, Heo S, Lee G, Park HJ, Jeong DW. Novel Starter Strain Enterococcus faecium DMEA09 from Traditional Korean Fermented Meju. Foods 2023; 12:3008. [PMID: 37628007 PMCID: PMC10453556 DOI: 10.3390/foods12163008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The Enterococcus faecium strain DMEA09 was previously isolated from traditional Korean fermented meju. The objective of the current study was to investigate the traits of E. faecium strain DMEA09 as a starter candidate, focusing on its safety and technological properties. Regarding its safety, the DMEA09 strain was found to be sensitive to nine antibiotics (ampicillin, chloramphenicol, erythromycin, gentamicin, kanamycin, streptomycin, tetracycline, tylosin, and vancomycin) by showing lower minimum inhibitory concentrations (MICs) than the cut-off values suggested by the European Union Food Safety Authority for these nine antibiotics. However, its MIC value for clindamycin was twice as high as the cut-off value. A genomic analysis revealed that strain DMEA09 did not encode the acquired antibiotic resistance genes, including those for clindamycin. The DMEA09 strain did not show hemolysis as a result of analyzing α- and β-hemolysis. It did not form biofilm either. A genomic analysis revealed that strain DMEA09 did not encode for any virulence factors including hemolysin. Most importantly, multilocus sequence typing revealed that the clonal group of strain DMEA09 was distinguished from clinical isolates. Regarding its technological properties, strain DMEA09 could grow in the presence of 6% salt. It showed protease activity when the salt concentration was 3%. It did not exhibit lipase activity. Its genome possessed 37 putative protease genes and salt-tolerance genes for survivability under salt conditions. Consequently, strain DMEA09 shows safe and technological properties as a new starter candidate. This was confirmed by genome analysis.
Collapse
Affiliation(s)
- Seung-Eun Oh
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Gawon Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Hee-Jung Park
- Department of Food and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
10
|
Holzapfel WH, Todorov SD. Special Issue: Beneficial Properties and Safety of Lactic Acid Bacteria. Microorganisms 2023; 11:microorganisms11040871. [PMID: 37110294 PMCID: PMC10145511 DOI: 10.3390/microorganisms11040871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The application of LAB in various sectors, including in the biotechnical and food industry, in human and veterinary practice, and in health-promoting practices and cosmetics, has been the subject of intensive research across the globe, with a range of traditional and innovative methods currently being explored [...]
Collapse
Affiliation(s)
- Wilhelm Heinrich Holzapfel
- Human Effective Microbes Laboratory, Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea;
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Sao Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- Correspondence: ; Tel.: +55-11-9-6306-2012
| |
Collapse
|
11
|
Exploring the Inhibitory Activity of Selected Lactic Acid Bacteria against Bread Rope Spoilage Agents. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
In this study, a wide pool of lactic acid bacteria strains deposited in two recognized culture collections was tested against ropy bread spoilage bacteria, specifically belonging to Bacillus spp., Paenibacillus spp., and Lysinibacillus spp. High-throughput and ex vivo screening assays were performed to select the best candidates. They were further investigated to detect the production of active antimicrobial metabolites and bacteriocins. Moreover, technological and safety features were assessed to value their suitability as biocontrol agents for the production of clean-label bakery products. The most prominent inhibitory activities were shown by four strains of Lactiplantibacillus plantarum (NFICC19, NFICC 72, NFICC163, and NFICC 293), two strains of Pediococcus pentosaceus (NFICC10 and NFICC341), and Leuconostoc citreum NFICC28. Moreover, the whole genome sequencing of the selected LAB strains and the in silico analysis showed that some of the strains contain operons for bacteriocins; however, no significant evidence was observed phenotypically.
Collapse
|
12
|
Favaro L, Campanaro S, Fugaban JII, Treu L, Jung ES, d'Ovidio L, de Oliveira DP, Liong MT, Ivanova IV, Todorov SD. Genomic, metabolomic, and functional characterisation of beneficial properties of Pediococcus pentosaceus ST58, isolated from human oral cavity. Benef Microbes 2023; 14:57-72. [PMID: 36815495 DOI: 10.3920/bm2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Bacteriocins produced by lactic acid bacteria are proteinaceous antibacterial metabolites that normally exhibit bactericidal or bacteriostatic activity against genetically closely related bacteria. In this work, the bacteriocinogenic potential of Pediococcus pentosaceus strain ST58, isolated from oral cavity of a healthy volunteer was evaluated. To better understand the biological role of this strain, its technological and safety traits were deeply investigated through a combined approach considering physiological, metabolomic and genomic properties. Three out of 14 colonies generating inhibition zones were confirmed to be bacteriocin producers and, according to repPCR and RAPD-PCR, differentiation assays, and 16S rRNA sequencing it was confirmed to be replicates of the same strain, identified as P. pentosaceus, named ST58. Based on multiple isolation of the same strain (P. pentosaceus ST58) over the 26 weeks in screening process for the potential bacteriocinogenic strains from the oral cavity of the same volunteer, strain ST58 can be considered a persistent component of oral cavity microbiota. Genomic analysis of P. pentosaceus ST58 revealed the presence of operons encoding for bacteriocins pediocin PA-1 and penocin A. The produced bacteriocin(s) inhibited the growth of Listeria monocytogenes, Enterococcus spp. and some Lactobacillus spp. used to determine the activity spectrum. The highest levels of production (6400 AU/ml) were recorded against L. monocytogenes strains after 24 h of incubation and the antimicrobial activity was inhibited after treatment of the cell-free supernatants with proteolytic enzymes. Noteworthy, P. pentosaceus ST58 also presented antifungal activity and key metabolites potentially involved in these properties were identified. Overall, this strain can be of great biotechnological interest towards the development of effective bio-preservation cultures as well as potential health promoting microbes.
Collapse
Affiliation(s)
- L Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Italy
| | - S Campanaro
- Department of Biology, Università degli Studi di Padova, Via U. Bassi 58/b, 35121 Padova, Italy.,CRIBI Biotechnology Center, Università degli Studi di Padova, 35121 Padova, Italy
| | - J I I Fugaban
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 791-708, South Korea.,National Food Institute, Technical University of Denmark, Building 202, Rm. 3.234, Kemitorvet, 2800 Kongens, Lyngby, Denmark
| | - L Treu
- Department of Biology, Università degli Studi di Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - E S Jung
- HEM Pharma Inc., Suwon, Gyeonggi 16229, Republic of Korea
| | - L d'Ovidio
- Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo (SP), Brazil
| | - D P de Oliveira
- Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo (SP), Brazil
| | - M-T Liong
- School of Industrial Technology, University Sains Malaysia, 11800 Penang, Malaysia
| | - I V Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - S D Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 791-708, South Korea.,Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo (SP), Brazil
| |
Collapse
|
13
|
Bacteriocinogenic Enterococcus casseliflavus Isolated from Fresh Guava Fruit (Psidium guajava): Characterization of Bacteriocin ST192Gu and Some Aspects of Its Mode of Action on Listeria spp. and Enterococcus spp. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Strain ST182Gu, isolated from fresh guava fruit, was identified as Enterococcus casseliflavus on the basis of biochemical tests, sugar fermentation reactions (API20Strip), PCR with genus-specific primers, and 16S rRNA sequencing. This appears to be the first documentation of the presence of this species in guava. E. casseliflavus ST182Gu was shown to produce a 4.8 kDa class IIa bacteriocin, active against various lactic acid bacteria including Enterococcus spp. and Streptococcus spp., and Staphylococcus aureus, and different serotypes of Listeria spp. The activity of the peptide was reduced by treatment with 0.1 mg/mL proteolytic enzymes, but not by α-amylase, catalase, lipase, and 1% (w/v) sodium dodecyl sulphate (SDS), Tween-20, Tween-80, urea, NaCl, and EDTA. No change in activity was recorded after adjustment to pH values of between 2.0 and 12.0 for 2 h, and after treatment at 100 °C for 120 min or 121°C for 20 min, compared with non-treated antimicrobial peptide. The mode of action against representative susceptible bacteria was shown to be bactericidal and associated with cell lysis and enzyme- and DNA-leakage. These susceptible bacteria, Listeria ivanovii subsp. ivanovii ATCC 19119, Listeria monocytogenes ATCC 15313, and Enterococcus faecalis ATCC 19443 differed however in their sensitivity to bacteriocin ST182Gu (6,553,600 AU/mL, 102,400 AU/mL, and 51,200 AU/mL, respectively). No significant differences were detected in cell growth and bacteriocin production when strain ST182Gu was grown in MRS broth at 26 °C, 30 °C, and 37 °C for 24 h. Bacteriocin ST182Gu recovery from the surface of the producer cells showed different activity, dependent of the applied test organisms (3200, 800 and 400 AU/mL, evaluated versus L. ivanovii subsp. ivanovii ATCC 19119, L. monocytogenes ATCC 15313 and E. faecalis ATCC 19443, respectively), however, with proportional values with the activity recorded in cell free supernatant versus same test microorganisms. When bacteriocin ST182Gu was combined with sublethal doses of ciprofloxacin, synergistic inhibition of L. ivanovii subsp. ivanovii ATCC 19119 was demonstrated. This increase in ciprofloxacin sensitivity may be due to the dissipation of the proton gradient in the cell membrane of the target organism associated with exposure to bacteriocin ST182Gu. Apart from reducing the MIC of classical therapeutic antibiotics, bacteriocins such as ST182Gu may also play an important role in the treatment of multidrug resistant strains.
Collapse
|
14
|
Assessment of Bacteriocin-Antibiotic Synergy for the Inhibition and Disruption of Biofilms of Listeria monocytogenes and Vancomycin-Resistant Enterococcus. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we have evaluated the effects of previously characterized bacteriocins produced by E. faecium strains ST651ea, ST7119ea, and ST7319ea, against biofilm formation and biofilms formed by L. monocytogenes ATCC15313 and vancomycin-resistant E. faecium VRE19. The effects of bacteriocins on the biofilms formed by L. monocytogenes ATCC151313 were evaluated by crystal violet assay and further confirmed by quantifying viable cells and cell metabolic activities through flow cytometry and TTC assay, respectively, indicating that bacteriocin activities required to completely eradicate biofilms are at least 1600 AU mL−1, 3200 AU mL−1, and 6400 AU mL−1, respectively for each bacteriocin evaluated. Furthermore, bacteriocins ST651ea and ST7119ea require at least 6400 AU mL−1 to completely eradicate the viability of cells within the biofilms formed by E. faecium VRE19, while bacteriocin ST7319ea requires at least 12800 AU mL−1 to obtain the same observations. Assessment of synergistic activities between selected conventional antibiotics (ciprofloxacin and vancomycin) with these bacteriocins was carried out to evaluate their effects on biofilm formation and pre-formed biofilms of both test microorganisms. Results showed that higher concentrations are needed to completely eradicate metabolic activities of cells within pre-formed biofilms in contrast with the biofilm formation abilities of the strains. Furthermore, synergistic activities of bacteriocins with both ciprofloxacin and vancomycin are more evident against vancomycin-resistant E. faecium VRE19 rather than L. monocytogenes ATCC15313. These observations can be further explored for possible applications of these combinations of antibiotics as a possible treatment of clinically relevant pathogens.
Collapse
|
15
|
Bucheli JEV, Fugaban JII, Holzapfel WH, Todorov SD. Combined Action of Antibiotics and Bacteriocins against Vancomycin-Resistant Enterococci. Microorganisms 2022; 10:microorganisms10071423. [PMID: 35889141 PMCID: PMC9324536 DOI: 10.3390/microorganisms10071423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotics have been one of the most important discoveries in the area of applied medical microbiology; however, as a result of various factors, we are currently facing a dramatic and relatively dangerous increase in the number of cases of antibiotic resistance, and the need for new types of antimicrobials continues to grow. New approaches are needed to combat antibiotic-resistant pathogens. Bacteriocins, as part of the group of antimicrobial peptides, can be considered as alternatives and/or complements to known antibiotics. Their narrow spectra of activity can be explored for the control of various pathogens, such as vancomycin-resistant enterococci (VRE), as single therapies or in combination with known antibiotics. In the present study, we isolated bacteriocins from different lactic acid bacteria (LAB) strains, including Enterococcus and Pediococcus, and explored the possible synergistic inhibition of growth by bacteriocins and vancomycin. It was observed in the growth dynamics with previously selected VRE strains that the bacteriocins had a high specificity and a promising inhibitory effect against the VRE strains, and these results were validated by a propidium iodide viability test using flow cytometry. The data obtained indicate that the selected bacteriocins can be used to control VRE in the food industry or even as an alternative treatment to combat infections with antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jorge Enrique Vazquez Bucheli
- Human Effective Microbes Laboratory, Department of Advanced Convergence, Handong Global University, Pohang 37554, Korea; (J.E.V.B.); (W.H.H.)
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang 37554, Korea;
| | | | - Wilhelm Heinrich Holzapfel
- Human Effective Microbes Laboratory, Department of Advanced Convergence, Handong Global University, Pohang 37554, Korea; (J.E.V.B.); (W.H.H.)
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang 37554, Korea;
- Correspondence: ; Tel.: +82-10-3490-3152
| |
Collapse
|
16
|
Probiotic potential and safety assessment of bacteriocinogenic Enterococcus faecium strains with antibacterial activity against Listeria and vancomycin-resistant enterococci. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100070. [PMID: 34841360 PMCID: PMC8610289 DOI: 10.1016/j.crmicr.2021.100070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023] Open
Abstract
Bacteriocinogenic Enterococcus faecium strains were evaluated for their beneficial and safety properties. Safety of the strains were evaluated based on phenotypic and bio-molecular approaches. The beneficial properties of the strains were demonstrated. High survivability under simulated GIT conditions and inhibition of Listeria spp. were demonstrated. The strains were found to carry genes coding for GABA production.
Enterococcus spp., known for their wide ecological distribution, have been associated with various fermented food products of plant and animal origin. The strains used in this study, bacteriocinogenic Enterococcus faecium previously isolated from artisanal soybean paste, have shown strong activity against Listeria spp. and vancomycin-resistant enterococci. Although their antimicrobial activity is considered beneficial, the potential application of enterococci is still under debate due to concerns about their safety for human and other animal consumption. Therefore, this study not only focuses on the screening of potential virulence factors, but also the auxiliary beneficial properties of the strains Ent. faecium ST651ea, ST7119ea, and ST7319ea. Phenotypic screening for gelatinase, hemolysin, and biogenic amine production showed that the strains were all safe. Furthermore, the antibiogram profiling showed that all the strains were susceptible to the panel of antibiotics used in the assessment except for erythromycin. Yet, Ent. faecium ST7319ea was found to carry some of the virulence genes used in the molecular screening for safety including hyl, esp, and IS16. The probiotic potential and other beneficial properties of the strains were also studied, demonstrating high aggregation and co-aggregation levels compared to previously characterized strains, in addition to high survivability under simulated gastrointestinal conditions, and production of numerous desirable enzymes as evaluated by APIZym, indicating diverse possible biotechnological applications of these strains. Additionally, the strains were found to carry genes coding for γ-aminobutyric acid (GABA) production, an auxiliary characteristic for their probiotic potential. Although these tests showed relatively favorable characteristics, it should be considered that these assays were carried out in vitro and should therefore also be assessed under in vivo conditions.
Collapse
|
17
|
Almeida-Santos AC, Novais C, Peixe L, Freitas AR. Enterococcus spp. as a Producer and Target of Bacteriocins: A Double-Edged Sword in the Antimicrobial Resistance Crisis Context. Antibiotics (Basel) 2021; 10:antibiotics10101215. [PMID: 34680796 PMCID: PMC8532689 DOI: 10.3390/antibiotics10101215] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/10/2023] Open
Abstract
Enterococcus spp. are one of the most frequent producers of bacteriocins (enterocins), which provides them with an advantage to compete in their natural environment, which is the gut of humans and many animals. The enterocins’ activity against microorganisms from different phylogenetic groups has raised interest in Enterococcus spp. in different contexts throughout the last decades, especially in the food industry. Nevertheless, some species can also cause opportunistic life-threatening infections and are frequently multidrug-resistant (MDR). Vancomycin-resistant Enterococcus (VRE), in particular, are an ongoing global challenge given the lack of therapeutic options. In this scenario, bacteriocins can offer a potential solution to this persistent threat, either alone or in combination with other antimicrobials. There are a handful of studies that demonstrate the advantages and applications of bacteriocins, especially against VRE. The purpose of this review is to present a current standpoint about the dual role of Enterococcus spp., from important producers to targets needed to be controlled, and the crucial role that enterocins may have in the expansion of enterococcal populations. Classification and distribution of enterocins, the current knowledge about the bacteriocinome of clinical enterococci, and the challenges of bacteriocin use in the fight against VRE infections are particularly detailed.
Collapse
Affiliation(s)
- Ana C. Almeida-Santos
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (C.N.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Carla Novais
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (C.N.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luísa Peixe
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (C.N.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (L.P.); or (A.R.F.); Tel.: +351-220428580 (L.P. & A.R.F.)
| | - Ana R. Freitas
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (C.N.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- TOXRUN–Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- Correspondence: (L.P.); or (A.R.F.); Tel.: +351-220428580 (L.P. & A.R.F.)
| |
Collapse
|