1
|
Maynez-Perez A, Jahuey-Martínez FJ, Martínez-Quintana JA, Hume ME, Anderson RC, Corral-Luna A, Rodríguez-Almeida FA, Castillo-Castillo Y, Felix-Portillo M. The Rumen Microbiome Composition of Raramuri Criollo and European Cattle in an Extensive System. Microorganisms 2024; 12:2203. [PMID: 39597592 PMCID: PMC11596369 DOI: 10.3390/microorganisms12112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Understanding the relationship between Raramuri Criollo cattle (RC) and their microbial ruminal ecosystem will help identify advantageous characteristics of adapted cattle as alternatives to achieve sustainable beef production systems. Our objective was to characterize the rumen microbiome of RC in comparison to Angus and Hereford breeds (European, E) and the cross between them (E × RC). Ruminal fluid was collected from 63 cows in their second productive cycle after grazing in the same paddock for 45 d, in the dry (n = 28) and rain (n = 35) seasons. DNA from ruminal fluid was isolated for 16s rRNA gene next-generation sequencing. The data were analyzed with QIIME2 and compared against the SILVA 16s rRNA database. Beta diversity was different (p < 0.05) between RC and E in both seasons. A microbial core was represented by the most abundant phyla. Planctomycetes and Spirochaetes represented above 1% in the rain season and below 1% in the dry one, whereas Euryarchaeota was below 1% and around 3%, respectively. LEfSe analysis identified differentiated (p < 0.05) key microbial groups that explain the differences between lineages at different taxonomic levels, reflecting the ability of the rumen ecosystem of RC cattle to adapt to hostile environmental conditions by having microbial groups specialized in the degradation of highly fibrous content.
Collapse
Affiliation(s)
- Adrian Maynez-Perez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Francisco J. Jahuey-Martínez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - José A. Martínez-Quintana
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Michael E. Hume
- Food and Feed Safety Research Unit, Southern Plains Area Research Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA; (M.E.H.); (R.C.A.)
| | - Robin C. Anderson
- Food and Feed Safety Research Unit, Southern Plains Area Research Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA; (M.E.H.); (R.C.A.)
| | - Agustín Corral-Luna
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Felipe A. Rodríguez-Almeida
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Yamicela Castillo-Castillo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Monserrath Felix-Portillo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| |
Collapse
|
2
|
Vadroňová M, Šťovíček A, Výborná A, Tyrolová Y, Tichá D, Joch M. Insights into Effects of Combined Capric and Lauric Acid on Rumen Bacterial Composition. Microorganisms 2024; 12:1085. [PMID: 38930467 PMCID: PMC11206137 DOI: 10.3390/microorganisms12061085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
This study used next-generation sequencing to assess the impact of combined capric acid (C10) and lauric acid (C12) on the ruminal bacterial composition. Eight Holstein cows were randomly assigned to two groups using a cross-over design. The cows were fed two silage-based diets with the addition of either 100 g of stearic acid per cow per day (control), or 50 g of capric acid and 50 g of lauric acid per cow per day (C10 + C12). On day 18, 250 mL of rumen fluid was collected from each cow, and DNA was isolated, amplified, and sequenced. Treatment did not alter bacterial diversity indices, the relative abundance of archaea, nor the fiber-degrading microorganisms, except for a decrease in Fibrobacter (from 2.9% to 0.7%; p = 0.04). The relative abundance of Prevotellaceae decreased (from 39.9% to 29.6%; p = 0.009), which is notable because some members help to efficiently utilize ammonia by releasing it slowly into the rumen. Furthermore, the relative abundance of Clostridia increased (from 28.4% to 41.5%; p = 0.008), which may have aided the increased ammonia-nitrogen levels in the rumen, as this class contains hyperammonia-producing members. Our study reveals alterations in bacterial abundances with implications for rumen ammonia levels, offering insights into potential strategies for modulating rumen fermentation processes and methane production in ruminant livestock.
Collapse
Affiliation(s)
- Mariana Vadroňová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (M.V.); (A.Š.); (D.T.)
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic; (A.V.); (Y.T.)
| | - Adam Šťovíček
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (M.V.); (A.Š.); (D.T.)
| | - Alena Výborná
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic; (A.V.); (Y.T.)
| | - Yvona Tyrolová
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic; (A.V.); (Y.T.)
| | - Denisa Tichá
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (M.V.); (A.Š.); (D.T.)
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic; (A.V.); (Y.T.)
| | - Miroslav Joch
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (M.V.); (A.Š.); (D.T.)
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic; (A.V.); (Y.T.)
| |
Collapse
|
3
|
Huaiquipán R, Quiñones J, Díaz R, Velásquez C, Sepúlveda G, Velázquez L, Paz EA, Tapia D, Cancino D, Sepúlveda N. Review: Effect of Experimental Diets on the Microbiome of Productive Animals. Microorganisms 2023; 11:2219. [PMID: 37764062 PMCID: PMC10536378 DOI: 10.3390/microorganisms11092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
The microorganisms that inhabit the gastrointestinal tract are responsible for multiple chains of reactions that affect their environment and modify the internal metabolism, their study receives the name of microbiome, which has become more relevant in recent years. In the near future, the challenges related to feeding are anticipated to escalate, encompassing the nutritional needs to sustain an overpopulated world. Therefore, it is expected that a better understanding of the interactions between microorganisms within the digestive tract will allow their modulation in order to provide an improvement in the immune system, feed efficiency or the promotion of nutritional characteristics in production animals, among others. In the present study, the main effects of experimental diets in production animals were described, emphasizing the diversity of the bacterial populations found in response to the diets, ordering them between polygastric and monogastric animals, and then describing the experimental diets used and their effect on the microorganisms. It is hoped that this study will help as a first general approach to the study of the role of the microbiome in production animals under different diets.
Collapse
Affiliation(s)
- Rodrigo Huaiquipán
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - John Quiñones
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Rommy Díaz
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Carla Velásquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Gastón Sepúlveda
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Lidiana Velázquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Erwin A. Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - Daniela Tapia
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - David Cancino
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
4
|
Xie K, Chang S, Ning J, Guo Y, Zhang C, Yan T, Hou F. Dietary supplementation of Allium mongolicum modulates rumen-hindgut microbial community structure in Simmental calves. Front Microbiol 2023; 14:1174740. [PMID: 37350783 PMCID: PMC10284144 DOI: 10.3389/fmicb.2023.1174740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Compared to traditional herbage, functional native herbage is playing more important role in ruminant agriculture through improving digestion, metabolism and health of livestock; however, their effects on rumen microbial communities and hindgut fermentation are still not well understood. The objective of present study was to evaluate the effects of dietary addition of Allium mongolicum on bacterial communities in rumen and feces of claves. Sixteen 7-month-old male calves were randomly divided into four groups (n = 4). All calves were fed a basal ration containing roughage (alfalfa and oats) and mixed concentrate in a ratio of 60:40 on dry matter basis. In each group, the basal ration was supplemented with Allium mongolicum 0 (SL0), 200 (SL200), 400 (SL400), and 800 (SL800) mg/kg BW. The experiment lasted for 58 days. Rumen fluid and feces in rectum were collected, Rumen fluid and hindgut fecal were collected for analyzing bacterial community. In the rumen, Compared with SL0, there was a greater relative abundance of phylum Proteobacteria (p < 0.05) and genera Rikenellaceae_RC9_gut_group (p < 0.01) in SL800 treatment. In hindgut, compared with SL0, supplementation of A. mongolicum (SL200, SL400, or SL800) decreased in the relative abundances of Ruminococcaceae_UCG-014 (p < 0.01), Ruminiclostridium_5 (p < 0.01), Eubacterium_coprostanoligenes_group (p < 0.05), and Alistipes (p < 0.05) in feces; Whereas, the relative abundances of Christensenellaceae_R-7_group (p < 0.05), and Prevotella_1 (p < 0.01) in SL800 were higher in feces, to maintain hindgut stability. This study provided evidence that A. mongolicum affects the gastrointestinal of calves, by influencing microbiota in their rumen and feces.
Collapse
Affiliation(s)
- Kaili Xie
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Shenghua Chang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Jiao Ning
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yarong Guo
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Cheng Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Tianhai Yan
- Agri-Food and Biosciences Institute, Hillsborough, United Kingdom
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
St-Pierre B. Special Issue “Rumen Microbial Communities”: Editorial. Microorganisms 2023; 11:microorganisms11040919. [PMID: 37110342 PMCID: PMC10143405 DOI: 10.3390/microorganisms11040919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 04/05/2023] Open
Abstract
Ruminants represent a highly successful group of herbivores that have not only evolved to thrive across a wide range of habitats, but have also played a central role throughout human history [...]
Collapse
Affiliation(s)
- Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
6
|
Wang Z, Liang Y, Lu J, Wei Z, Bao Y, Yao X, Fan Y, Wang F, Wang D, Zhang Y. Dietary spirulina supplementation modifies rumen development, fermentation and bacteria composition in Hu sheep when consuming high-fat dietary. Front Vet Sci 2023; 10:1001621. [PMID: 36798143 PMCID: PMC9926970 DOI: 10.3389/fvets.2023.1001621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/05/2023] [Indexed: 02/01/2023] Open
Abstract
Introduction This study aims to investigate the long-term effects of spirulina supplementation in a high-fat diet (HFD) on rumen morphology, rumen fermentation, and the composition of rumen microbiota in lambs. Spirulina is a blue-green microalgae that has been shown to have high nutritional value for livestock. Methods Fifty-four lambs were randomly divided into three groups: a normal chow diet (NCD) group, a high-fat diet (HFD) group, and a high-fat diet supplemented with 3% spirulina (HFD+S) group. Rumen morphology, rumen fermentation, and rumen microbiota were analyzed at the end of the study. Results Spirulina supplementation improved the concentration of volatile fatty acids and rumen papilla length. Additionally, there was a tendency for an increase in rumen weight and an upregulation of the genes Claudin-1, Claudin-4, and Occludin in the HFD+S group. Pyrosequencing of the 16S ribosomal RNA gene also showed that spirulina supplementation significantly changed the rumen microbiota composition in the HFD group, with a decrease in richness and diversity. Specifically, the relative abundance of Prevotella 9 and Megasphaera was significantly increased in the HFD group compared to the NCD group, while spirulina supplementation reversed these changes. Discussion This study suggests that 3% spirulina supplementation can improve rumen development and fermentation, and effectively relieve rumen microbe disorders in lambs caused by a high-fat diet. However, further research is needed to confirm the findings and to examine the long-term effects of spirulina supplementation in different types of livestock and under different dietary conditions.
Collapse
Affiliation(s)
- Zhibo Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yaxu Liang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiawei Lu
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zongyou Wei
- Agricultural and Rural Science & Technology Service Center, and Enterprise Graduate Workstation, Taicang, China
| | - Yongjin Bao
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaolei Yao
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yixuan Fan
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feng Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Daxiang Wang
- Jiangsu Qianbao Animal Husbandry Co., Ltd, Yancheng, Jiangsu, China
| | - Yanli Zhang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China,*Correspondence: Yanli Zhang ✉
| |
Collapse
|
7
|
El-Sherbiny M, Khattab MSA, Abd El Tawab AM, Elnahr M, Cieślak A, Szumacher-Strabel M. Oil-in-Water Nanoemulsion Can Modulate the Fermentation, Fatty Acid Accumulation, and the Microbial Population in Rumen Batch Cultures. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010358. [PMID: 36615551 PMCID: PMC9822118 DOI: 10.3390/molecules28010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
In this study, three oil-in-water nanoemulsions were tested in two stages: In the first stage, three levels (on the substrate dry matter (DM)), namely 3%, 6%, and 9%, of three different oils, olive oil (OO), corn oil (CO), and linseed oil (LO), in raw and nanoemulsified (N) forms were used separately in three consecutive rumen batch cultures trials. The second stage, which was based on the first stage's results, consisted of a batch culture trial that compared the raw and nanoemulsified (N) forms of all three oils together, provided at 3% of the DM. In the first stage, NOO, NCO, and NLO preserved higher unsaturated fatty acid (UFA) and less saturated fatty acid (SFA) compared to OO, CO, and LO, respectively; noticeably, NCO had UFA:SFA = 1.01, 1.16, and 1.34 compared to CO, which had UFA:SFA = 0.66, 0.69, and 0.72 when supplemented at 3%, 6%, 9% of DM, respectively. In the second stage, UFA:SFA = 1.04, 1.12, and 1.07 for NOO, NCO, NLO, as compared to UFA:SFA = 0.69, 0.68, and 0.72 for OO, CO, and LO supplemented at 3% of DM. In conclusion, oil-in-water nanoemulsions showed an ability to decrease the transformation of UFA to SFA in the biohydrogenation environment without affecting the rumen microorganisms.
Collapse
Affiliation(s)
- Mohamed El-Sherbiny
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
- Correspondence: (M.E.-S.); (M.S.-S.)
| | - Mostafa S. A. Khattab
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Ahmed M. Abd El Tawab
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Mostafa Elnahr
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Adam Cieślak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 28, 60-637 Poznań, Poland
| | - Małgorzata Szumacher-Strabel
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 28, 60-637 Poznań, Poland
- Correspondence: (M.E.-S.); (M.S.-S.)
| |
Collapse
|
8
|
Cancino-Padilla N, Gajardo F, Neves ALA, Kholif AE, Mele M, Huws SA, Loor JJ, Romero J, Vargas-Bello-Pérez E. Influence of dietary oils rich in omega-6 or omega-3 fatty acids on rumen microbiome of dairy cows. Transl Anim Sci 2023; 7:txad074. [PMID: 37483683 PMCID: PMC10362848 DOI: 10.1093/tas/txad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
The objective of this study was to compare the effect of supplementing dairy cow diets with contrasting sources of omega-6 (soybean oil) and omega-3 (fish oil) PUFA on rumen microbiome. For 63 d, 15 mid-lactating cows were fed a control diet (n = 5 cows; no fat supplement) or control diet supplemented with 2.9% dry matter (DM) of either soybean oil (SO; n = 5 cows) or fish oil (FO; n = 5 cows). Ruminal contents were collected on days 0, 21, 42, and 63 for 16S rRNA gene sequencing. Beta diversity and Shannon, Simpson and Chao1 diversity indices were not affected by dietary treatments. In terms of core microbiome, Succiniclasticum, Prevotella, Rikenellaceae_RC9_gut_group, and NK4A214_group were the most prevalent taxa regardless of treatments. Bifidobacterium was absent in SO diet, Acetitomaculum was absent in FO, and Sharpea was only detected in SO. Overall, results showed that at 2.9% DM supplementation of either SO or FO over 63 days in dairy cow diets does not cause major impact on bacterial community composition and thus is recommended as feeding practice.
Collapse
Affiliation(s)
- Nathaly Cancino-Padilla
- Pontificia Universidad Católica de Chile, Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Santiago 4860, Chile
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco, Chile
| | - Felipe Gajardo
- Universidad de Chile, Instituto de Nutrición y Tecnología de los Alimentos (INTA), El Líbano 5524, Macul, Santiago, Chile
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, University of Co-penhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | | | - Marcello Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124 Pisa, Italy
| | - Sharon A Huws
- Queen’s University of Belfast, Institute for Global Food Security, School of Biological Sciences, Belfast, BT9 7BL, UK
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Mammalian NutriPhysioGenomics, Urbana 61801, USA
| | | | | |
Collapse
|
9
|
Vargas-Bello-Pérez E, Pedersen NC, Khushvakov J, Ye Y, Dhakal R, Hansen HH, Ahrné L, Khakimov B. Effect of Supplementing Dairy Goat Diets With Rapeseed Oil or Sunflower Oil on Performance, Milk Composition, Milk Fatty Acid Profile, and in vitro Fermentation Kinetics. Front Vet Sci 2022; 9:899314. [PMID: 35782564 PMCID: PMC9244143 DOI: 10.3389/fvets.2022.899314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to determine the effect of supplementing dairy goat diets with rapeseed oil and sunflower oil on performance, milk composition, milk fatty acid profile, and in vitro fermentation kinetics. Nine Danish Landrace goats with 42 ± 5 days in milk were allocated to three treatment groups for 42 days. Animals received a basal diet, formulated with 85:15 forage:concentrate ratio, and the basal diet was supplemented with either rapeseed oil or sunflower oil at 4% of dry matter. Goat milk was sampled on days 14, 21, and 42. Milk composition was similar between treatments. From day 14 to day 42, milk yield increased (1.03 vs. 1.34 kg/d), while milk fat (2.72 vs. 1.82 g/d) and total solids (11.2 vs. 9.14 %) were reduced. Compared to control and rapeseed oil, sunflower decreased (P < 0.05) C4:0 (1.56, and 1.67 vs. 1.36 g/100 g) and both oils decreased (P < 0.05) C18:3n3 (0.60 vs. 0.20 and 0.10 g/100g). Rapeseed oil increased (P < 0.05) C18:2 cis9, trans11 compared to control and sunflower oil (0.37 vs. 0.13 and 0.19 g/100 g). Untargeted milk foodomics revealed slightly elevated (P < 0.05) gluconic acid and decreased hippuric acid (P < 0.05) in the milk of oil-fed goats compared to control. In vitro dry matter degradation (63.2 ± 0.02 %) was not affected by dietary treatments, while individual volatile fatty acid proportions, total volatile fatty acids (35.7 ± 2.44 mmol/l), CO2 (18.6 ± 1.15 mol), and CH4 (11.6 ± 1.16 mol) were not affected by dietary treatments. Sunflower oil and rapeseed oil decreased (P < 0.05) total gas production at 24 and 48 h compared with control. Overall, the use of sunflower oil or rapeseed oil at 4% DM inclusion did not compromise animal performance and milk composition.
Collapse
Affiliation(s)
- Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Einar Vargas-Bello-Pérez
| | - Nanna Camilla Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jaloliddin Khushvakov
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Yongxin Ye
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Rajan Dhakal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne H. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lilia Ahrné
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bekzod Khakimov
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Bekzod Khakimov
| |
Collapse
|