1
|
Cirat R, Benmechernene Z, Cunedioğlu H, Rutigliano M, Scauro A, Abderrahmani K, Mebrouk K, Capozzi V, Spano G, la Gatta B, Rocchetti MT, Fiocco D, Fragasso M. Cross-Over Application of Algerian Dairy Lactic Acid Bacteria for the Design of Plant-Based Products: Characterization of Weissella cibaria and Lactiplantibacillus plantarum for the Formulation of Quinoa-Based Beverage. Microorganisms 2024; 12:2042. [PMID: 39458351 PMCID: PMC11510054 DOI: 10.3390/microorganisms12102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The food industry constantly seeks new starter cultures with superior characteristics to enhance the sensory and overall quality of final products. Starting from a collection of Algerian dairy (goat and camel) lactic acid bacteria, this work focused on the exploration of the technological and probiotic potential of Weissella cibaria (VR81 and LVT1) and Lactiplantibacillus plantarum R12 strains isolated from raw camel milk and fermented milk, respectively. These bioactive strains were selected for their high performance among ten other LAB strains and were used as starter cultures to develop a novel and nutritionally enhanced dairy-like plant-based yogurt using quinoa (Chenopodium quinoa Willd) as a raw matrix. The strains were evaluated for their antagonistic effects against Listeria innocua, Listeria ivanovii, Staphylococcus aureus, Escherichia coli, Salmonella enterica, and Pseudomonas aeruginosa, resilience to acidic and osmotic challenges, and tolerance to gastrointestinal mimicking conditions (i.e., pepsin and bile salt). Their aggregation and adhesion profiles were also analyzed. Furthermore, L. plantarum and W. cibaria were tested in single and co-culture for the fermentation and biocontrol of quinoa. The strains exhibited probiotic properties, including a high potential for biocontrol applications, specifically against L. innocua and P. aeruginosa (20 mm diameter zone with the neutralized cell-free supernatant), which disappeared after protease treatment, suggesting that bioactive peptides might be responsible for the observed antimicrobial effect. Additionally, they demonstrated resilience to acidic (pH 2) and osmotic challenges (1M sucrose), tolerance to gastro-intestinal conditions, as well as good aggregation and adhesion profile. Furthermore, the strains were able to produce metabolites of interest, such as exopolysaccharide (yielding up to 4.7 mg/mL) and riboflavin, reaching considerable production levels of 2.5 mg/L upon roseoflavin selection. The application of W. cibaria and L. plantarum as primary starters (both in single and co-culture) for fermenting quinoa resulted in effective acidification of the matrix (ΔpH of 2.03 units) and high-quality beverage production. in vivo challenge tests against L. innocua showed the complete inhibition of this pathogen when L. plantarum was included in the starter, either alone or in combination with W. cibaria. Both species also inhibited Staphylococcus and filamentous fungi. Moreover, the co-culture of mutant strains of L. plantarum R12d and W. cibaria VR81d produced riboflavin levels of 175.41 µg/100 g in fermented quinoa, underscoring their potential as starters for the fermentation, biopreservation, and biofortification of quinoa while also displaying promising probiotic characteristics.
Collapse
Affiliation(s)
- Radjaa Cirat
- Laboratory of Applied Microbiology, Department of Biology, Faculty of Natural Sciences and Life, University of Oran, 1 Ahmed Ben Bella, Oran 31100, Algeria; (R.C.); (Z.B.); (K.M.)
| | - Zineb Benmechernene
- Laboratory of Applied Microbiology, Department of Biology, Faculty of Natural Sciences and Life, University of Oran, 1 Ahmed Ben Bella, Oran 31100, Algeria; (R.C.); (Z.B.); (K.M.)
| | - Hülya Cunedioğlu
- Department of Agricultural Sciences, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (H.C.); (M.R.); (A.S.); (G.S.); (B.l.G.); (M.F.)
- Scienzanova S.r.l., Via Enrico Mattei 85-87, 86039 Termoli, Italy
| | - Mariacinzia Rutigliano
- Department of Agricultural Sciences, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (H.C.); (M.R.); (A.S.); (G.S.); (B.l.G.); (M.F.)
| | - Angela Scauro
- Department of Agricultural Sciences, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (H.C.); (M.R.); (A.S.); (G.S.); (B.l.G.); (M.F.)
| | - Khaled Abderrahmani
- Centre National de Recherche et de Développement de la Pêche et D’aquaculture (CNRDPA), 11, Boulevard Colonel Amirouche, Tipaza 42415, Algeria;
| | - Kihal Mebrouk
- Laboratory of Applied Microbiology, Department of Biology, Faculty of Natural Sciences and Life, University of Oran, 1 Ahmed Ben Bella, Oran 31100, Algeria; (R.C.); (Z.B.); (K.M.)
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), C/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Giuseppe Spano
- Department of Agricultural Sciences, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (H.C.); (M.R.); (A.S.); (G.S.); (B.l.G.); (M.F.)
| | - Barbara la Gatta
- Department of Agricultural Sciences, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (H.C.); (M.R.); (A.S.); (G.S.); (B.l.G.); (M.F.)
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Mariagiovanna Fragasso
- Department of Agricultural Sciences, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (H.C.); (M.R.); (A.S.); (G.S.); (B.l.G.); (M.F.)
| |
Collapse
|
2
|
Lee J, Jo J, Wan J, Seo H, Han SW, Shin YJ, Kim DH. In Vitro Evaluation of Probiotic Properties and Anti-Pathogenic Effects of Lactobacillus and Bifidobacterium Strains as Potential Probiotics. Foods 2024; 13:2301. [PMID: 39063385 PMCID: PMC11276478 DOI: 10.3390/foods13142301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Probiotics restore gut microbial balance, thereby providing health-promoting effects to the host. They have long been suggested for managing intestinal disorders caused by pathogens and for improving gut health. This study evaluated the probiotic properties and anti-pathogenic effects of specific probiotic strains against the intestinal pathogens Staphylococcus aureus and Escherichia coli. The tested strains-Lactiplantibacillus plantarum LC27, Limosilactobacillus reuteri NK33, Lacticaseibacillus rhamnosus NK210, Bifidobacterium longum NK46, and Bifidobacterium bifidum NK175-were able to survive harsh conditions simulating gastric and intestinal fluids. These strains exhibited good auto-aggregation abilities (41.8-92.3%) and ideal hydrophobicity (30.9-85.6% and 38.3-96.1% for xylene and chloroform, respectively), along with the ability to co-aggregate with S. aureus (40.6-68.2%) and E. coli (38.6-75.2%), indicating significant adhesion levels to Caco-2 cells. Furthermore, these strains' cell-free supernatants (CFSs) demonstrated antimicrobial and antibiofilm activity against S. aureus and E. coli. Additionally, these strains inhibited gas production by E. coli through fermentative activity. These findings suggest that the strains tested in this study have potential as novel probiotics to enhance gut health.
Collapse
Affiliation(s)
- Jaekoo Lee
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
- Department of Food Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Jaehyun Jo
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Jungho Wan
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Hanseul Seo
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Seung-Won Han
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
3
|
Ortiz Moyano R, Dentice Maidana S, Imamura Y, Elean M, Namai F, Suda Y, Nishiyama K, Melnikov V, Kitazawa H, Villena J. Antagonistic Effects of Corynebacterium pseudodiphtheriticum 090104 on Respiratory Pathogens. Microorganisms 2024; 12:1295. [PMID: 39065064 PMCID: PMC11278748 DOI: 10.3390/microorganisms12071295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
In previous studies, it was demonstrated that Corynebacterium pseudodiphtheriticum 090104, isolated from the human nasopharynx, modulates respiratory immunity, improving protection against infections. Here, the antagonistic effect of the 090104 strain on respiratory pathogens, including Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, was explored. In a series of in vitro studies, the capacity of C. pseudodiphtheriticum 090104, its bacterium-like particles, and its culture supernatants to coaggregate, inhibit the growth, and change the virulent phenotype of pathogenic bacteria was evaluated. The results showed that the 090104 strain was able to exert a bacteriostatic effect on K. pneumoniae and S. pneumoniae growth. In addition, C. pseudodiphtheriticum 090104 coaggregated, inhibited biofilm formation, and induced phenotypic changes in all the respiratory pathogens evaluated. In conclusion, this work demonstrated that, in addition to its beneficial effects exerted by host-microbe interactions, C. pseudodiphtheriticum 090104 can enhance protection against respiratory pathogens through its microbe-microbe interactions. The mechanisms involved in such interactions should be evaluated in future research.
Collapse
Affiliation(s)
- Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (R.O.M.); (S.D.M.); (M.E.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (F.N.); (K.N.)
| |
Collapse
|
4
|
Park MJ, Park SY, Kim KJ, Oh B, Kim JY. Effect of the probiotic Weissella cibaria CMS1 on the immune response and the oral microbiome: a randomized, double-blind, placebo-controlled, parallel study. Food Funct 2024; 15:4409-4420. [PMID: 38563257 DOI: 10.1039/d4fo00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The oral cavity connects the external environment and the respiratory and digestive systems, and the oral microbial ecosystem is complex and plays a crucial role in overall health and immune defense against external threats. Recently, the potential use of probiotics for disease prevention and treatment has gained attention. This study aimed to assess the effect of Weissella cibaria CMS1 (W. cibaria CMS1) consumption on the oral microbiome and immune function in healthy individuals through a 12-week clinical trial. This randomized, double-blind, placebo-controlled, parallel trial enrolled 90 healthy subjects. The consumption of W. cibaria CMS1 significantly increased salivary immunoglobulin A (p = 0.046) and decreased tumor necrosis factor-α (TNF-α) levels (p = 0.008). Analysis of the oral microbiota revealed changes in beta diversity, increased abundance of Firmicutes and Actinobacteria, and decreased abundance of Bacteroidetes and Fusobacteria after 12 weeks of consuming W. cibaria CMS1. Significant increases in various strains, including Lactobacillales, Bacilli, Streptococcaceae, Streptococcus, and Firmicutes, were observed in the W. cibaria CMS1 group after 12 weeks of intake. Additionally, Fusobacteriia Fusobacteriales Fusobacteriaceae and Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium exhibited a positive correlation with TNF-α. These findings demonstrate the positive effect of W. cibaria CMS1 on the oral environment and immune function.
Collapse
Affiliation(s)
- Min Ju Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Soo-Yeon Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering. Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Bumjo Oh
- Department of Family Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
- Department of Nano Bio Engineering. Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
5
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
6
|
Joglekar A, Nimonkar Y, Bajaj A, Prakash O. Resolution of inter/intraspecies variation in Weissella group requires multigene analysis and functional characterization. J Basic Microbiol 2023; 63:140-155. [PMID: 36328735 DOI: 10.1002/jobm.202200357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022]
Abstract
Weissella confusa and Weissella cibaria strains isolated from the human- gut are considered as potential probiotics, but remain under-explored owing to their ambiguous taxonomic assignment. The present study assesses the taxonomic resolution of 11 strains belonging to W. confusa and W. cibaria species and highlights the inter- and intraspecies variations using an array of phenetic and molecular methods. Remarkable genomic variability among the strains was observed by phylogenetic analysis using concatenated housekeeping genes (pheS, gyrB, and dnaA) along with 16S rRNA gene sequence, suggesting intraspecies variations; which is also supported by the phenetic data. Analysis showed that 16S rRNA gene sequence alone could not resolve the variation, and among the tested marker genes, signals from pheS gene provide better taxonomic resolution. The biochemical and antibiotic susceptibility tests also showed considerable variations among the isolates. Additionally, 'quick' identification using mass spectroscopy-based matrix-assisted laser desorption/ionization-time of flight mass spectra was accurate up to genus only, and not species level, for the Weissella group. The study highlights need for inclusion of functional, phenetic, and multigene phylogenetic analysis in addition to 16S rRNA gene-based identification for the Weissella group, to provide better resolution in taxonomic assignments, which is often a prerequisite for the selection of potential strains with biotechnological applications.
Collapse
Affiliation(s)
- Amruta Joglekar
- National Centre for Cell Science, National Centre for Microbial Resource, Pune, Maharashtra, India
| | - Yogesh Nimonkar
- National Centre for Cell Science, National Centre for Microbial Resource, Pune, Maharashtra, India
| | - Abhay Bajaj
- National Centre for Cell Science, National Centre for Microbial Resource, Pune, Maharashtra, India.,CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Om Prakash
- National Centre for Cell Science, National Centre for Microbial Resource, Pune, Maharashtra, India.,Symbiosis Centre for Climate Change and Sustainability, Pune, Maharashtra, India
| |
Collapse
|
7
|
Teixeira CG, da Silva Rodrigues R, Lucau-Danila A, Nero LA, de Carvalho AF, Drider D. Genome analyses of Weissella strains isolated from Campos das Vertentes, Minas Gerais, Brazil revealed new bacteriocins with a large spectrum of activity. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer. Microorganisms 2022; 10:microorganisms10122427. [PMID: 36557680 PMCID: PMC9788376 DOI: 10.3390/microorganisms10122427] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Weissella is a genus earlier considered a member of the family Leuconostocaceae, which was reclassified into the family Lactobacillaceae in 1993. Recently, there have been studies emphasizing the probiotic and anti-inflammatory potential of various species of Weissella, of which W. confusa and W. cibaria are the most representative. Other species within this genus include: W. paramesenteroides, W. viridescens, W. halotolerans, W. minor, W. kandleri, W. soli, W. ghanensis, W. hellenica, W. thailandensis, W. fabalis, W. cryptocerci, W. koreensis, W. beninensis, W. fabaria, W. oryzae, W. ceti, W. uvarum, W. bombi, W. sagaensis, W. kimchi, W. muntiaci, W. jogaejeotgali, W. coleopterorum, W. hanii, W. salipiscis, and W. diestrammenae. Weissella confusa, W. paramesenteroides, W. koreensis, and W. cibaria are among the few species that have been isolated from human samples, although the identification of these and other species is possible using metagenomics, as we have shown for inflammatory bowel disease (IBD) and healthy controls. We were able to isolate Weissella in gut-associated bacteria (post 24 h food deprivation and laxatives). Other sources of isolation include fermented food, soil, and skin/gut/saliva of insects/animals. With the potential for hospital and industrial applications, there is a concern about possible infections. Herein, we present the current applications of Weissella on its antimicrobial and anti-inflammatory mechanistic effects, the predisposing factors (e.g., vancomycin) for pathogenicity in humans, and the antimicrobials used in patients. To address the medical concerns, we examined 28 case reports focused on W. confusa and found that 78.5% of infections were bacteremia (of which 7 were fatal; 1 for lack of treatment), 8 were associated with underlying malignancies, and 8 with gastrointestinal procedures/diseases of which 2 were Crohn’s disease patients. In cases of a successful resolution, commonly administered antibiotics included: cephalosporin, ampicillin, piperacillin-tazobactam, and daptomycin. Despite reports of Weissella-related infections, the evolving mechanistic findings suggest that Weissella are clinically treatable bacteria with emerging antimicrobial and probiotic benefits ranging from oral health, skin care, obesity, and inflammatory diseases to cancer.
Collapse
|
9
|
Protective Effect of [Cu(NN1)2](ClO4) Complex in Rainbow Trout Challenged against Flavobacterium psychrophilum. Microorganisms 2022; 10:microorganisms10112296. [DOI: 10.3390/microorganisms10112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Previously, we reported an in vitro evaluation regarding antibacterial effects against F. psychrophilum by a new Cu (I) complex, [Cu(NN1)2](ClO4). This study presents the results of an in vivo evaluation of [Cu(NN1)2](ClO4) added as a dietary supplement against F. psychrophilum in rainbow trout. The results showed that the administration of [Cu(NN1)2](ClO4) at 29 and 58 µg/g of fish for 15 days does not affect the growth of rainbow trout. On the other hand, the amount of copper present in the liver, intestine, and muscle of rainbow trout was determined. The results showed that the amount of copper in the liver, when compared between treated fish and control fish, does not change. While, in the intestine, an increase in the fish fed at 58 µg/g of fish was observed. In muscle, a slight decrease at 29 µg/g was obtained. Additionally, copper concentrations in the pond water after 15 days of feeding with the [Cu(NN1)2](ClO4) complex showed the highest levels of copper. Finally, the effect of the administration of [Cu(NN1)2](ClO4) for 15 days at 58 µg/g of fish was evaluated against F. psychrophilum, where a 75% survival was obtained during 20 days of challenge.
Collapse
|
10
|
Do KH, Seo K, Kim S, Kim S, Park GY, Kang MS, Lee WK. Therapeutic Efficacy of Weissella cibaria CMU and CMS1 on Allergic Inflammation Exacerbated by Diesel Exhaust Particulate Matter in a Murine Asthma Model. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091310. [PMID: 36143987 PMCID: PMC9500616 DOI: 10.3390/medicina58091310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Diesel exhaust particulate matter (DEPM) is an air pollutant that is associated with asthma. In this study, the therapeutic efficacy of Weissella cibaria strains CMU (Chonnam Medical University) and CMS (Chonnam Medical School) 1, together with the drug Synatura, an anti-tussive expectorant, was investigated in a murine asthma model exacerbated by DEPM. Materials and Methods: BALB/c mice were sensitized with ovalbumin (OVA) before intranasal challenge with OVA and DEPM. W. cibaria CMU, CMS1, and Synatura were administered orally for 21 days. Results: Neither Synatura nor W. cibaria strains affected spleen, liver, or lung weights. W. cibaria strains CMU and CMS1 significantly reduced the levels of interleukin (IL)-4, OVA-specific immunoglobulin E (IgE), and total lung collagen in bronchoalveolar lavage fluid (BALF), similar to those with Synatura, regardless of the oral dose concentration (p < 0.05). In addition, the W. cibaria CMU strain significantly alleviated IL-1β, IL-6, IL-12, monocyte chemotactic protein-1, and tumor necrosis factor-α in BALF, whereas the CMS1 strain significantly alleviated IL-10 and IL-12 in BALF (p < 0.05); however, Synatura did not show any statistical efficacy against them (p > 0.05). All concentrations of W. cibaria CMU and low concentrations of W. cibaria CMS1 significantly reduced lung bronchiolar changes and inflammatory cell infiltration. Conclusions: In conclusion, W. cibaria CMU in asthmatic mice showed better efficacy than W. cibaria CMS1 in improving asthma exacerbated by DEPM exposure, as well as better results than pharmaceuticals.
Collapse
Affiliation(s)
- Kyung-Hyo Do
- Laboratory of Veterinary Bacteriology and Infectious Diseases, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kwangwon Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | | | - Mi-Sun Kang
- R&D Center, OraPharm, Inc., Seoul 04782, Korea
- Correspondence: (M.-S.K.); (W.-K.L.); Tel.: +82-2-2138-2572 (M.-S.K.); +82-43-261-2960 (W.-K.L.)
| | - Wan-Kyu Lee
- Laboratory of Veterinary Bacteriology and Infectious Diseases, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (M.-S.K.); (W.-K.L.); Tel.: +82-2-2138-2572 (M.-S.K.); +82-43-261-2960 (W.-K.L.)
| |
Collapse
|
11
|
Tafroji W, Margyaningsih NI, Khoeri MM, Paramaiswari WT, Winarti Y, Salsabila K, Putri HFM, Siregar NC, Soebandrio A, Safari D. Antibacterial activity of medicinal plants in Indonesia on Streptococcus pneumoniae. PLoS One 2022; 17:e0274174. [PMID: 36099236 PMCID: PMC9469987 DOI: 10.1371/journal.pone.0274174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae is a human pathogenic bacterium able to cause invasive pneumococcal diseases. Some studies have reported medicinal plants having antibacterial activity against pathogenic bacteria. However, antibacterial studies of medicinal plants against S. pneumoniae remains limited. Therefore, this study aims to describe the antibacterial activity of medicinal plants in Indonesia against S. pneumoniae. Medicinal plants were extracted by maceration with n-hexane, ethanol, ethyl acetate and water. Antibacterial activity was defined by inhibition zone and minimum inhibitory concentration (MIC). Bactericidal activity was measured by culture and time-killing measurement. Methods used to describe the mechanism of action of the strongest extract were done by absorbance at 595 nm, broth culture combined with 1% crystal violet, qRT-PCR targeting lytA, peZT and peZA, and transmission electron microscope to measure bacterial lysis, antibiofilm, LytA and peZAT gene expression, and ultrastructure changes respectively. Among 13 medicinal plants, L. inermis Linn. ethyl acetate extract showed the strongest antibacterial activity against S. pneumoniae with an MIC value of 0,16 mg/ml. Bactericidal activity was observed at 0,16 mg/ml for 1 hour incubation. Lawsonia inermis extract showed some mechanism of actions including bacterial lysis, antibiofilm, and ultrastructure changes such as cell wall disruption, decreasing cell membrane integrity and morphological disorder. Increasing of lytA and decreasing of peZA and peZT expression were also observed after incubation with the extract. In addition, liquid chromatography mass spectrophotometer showed phenolic compounds as the commonest compound in L. inermis ethyl acetate extract. This study describes the strong antibacterial activity of L. inermis with various mechanism of action including ultrastructure changes.
Collapse
Affiliation(s)
- Wisnu Tafroji
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- * E-mail:
| | | | - Miftahuddin Majid Khoeri
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Yayah Winarti
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Korrie Salsabila
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Nurjati Chairani Siregar
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Amin Soebandrio
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
12
|
Fanelli F, Montemurro M, Chieffi D, Cho GS, Franz CMAP, Dell'Aquila A, Rizzello CG, Fusco V. Novel Insights Into the Phylogeny and Biotechnological Potential of Weissella Species. Front Microbiol 2022; 13:914036. [PMID: 35814678 PMCID: PMC9257631 DOI: 10.3389/fmicb.2022.914036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, the genomes of the Weissella (W.) beninensis, W. diestrammenae, W. fabalis, W. fabaria, W. ghanensis, and W. uvarum type strains were sequenced and analyzed. Moreover, the ability of these strains to metabolize 95 carbohydrates was investigated, and the genetic determinants of such capability were searched within the sequenced genomes. 16S rRNA gene and genome-based-phylogeny of all the Weissella species described to date allowed a reassessment of the Weissella genus species groups. As a result, six distinct species groups within the genus, namely, W. beninensis, W. kandleri, W. confusa, W. halotolerans, W. oryzae, and W. paramesenteroides species groups, could be described. Phenotypic analyses provided further knowledge about the ability of the W. beninensis, W. ghanensis, W. fabaria, W. fabalis, W. uvarum, and W. diestrammenae type strains to metabolize certain carbohydrates and confirmed the interspecific diversity of the analyzed strains. Moreover, in many cases, the carbohydrate metabolism pathway and phylogenomic species group clustering overlapped. The novel insights provided in our study significantly improved the knowledge about the Weissella genus and allowed us to identify features that define the role of the analyzed type strains in fermentative processes and their biotechnological potential.
Collapse
Affiliation(s)
- Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | | | - Anna Dell'Aquila
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | - Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
- *Correspondence: Vincenzina Fusco
| |
Collapse
|
13
|
Surachat K, Kantachote D, Wonglapsuwan M, Chukamnerd A, Deachamag P, Mittraparp-arthorn P, Jeenkeawpiam K. Complete Genome Sequence of Weissella cibaria NH9449 and Comprehensive Comparative-Genomic Analysis: Genomic Diversity and Versatility Trait Revealed. Front Microbiol 2022; 13:826683. [PMID: 35663880 PMCID: PMC9161744 DOI: 10.3389/fmicb.2022.826683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) in the genus Weissella spp. contain traits in their genome that confer versatility. In particular, Weissella cibaria encodes several beneficial genes that are useful in biotechnological applications. The complete genome of W. cibaria NH9449 was sequenced and an in silico comparative analysis was performed to gain insight into the genomic diversity among members of the genus Weissella. A total of 219 Weissella genomes were used in a bioinformatics analysis of pan-genomes, phylogenetics, self-defense mechanisms, virulence factors, antimicrobial resistance, and carbohydrate-active enzymes. These investigations showed that the strain NH9449 encodes several restriction-modification-related genes and a CRISPR-Cas region in its genome. The identification of carbohydrate-active enzyme-encoding genes indicated that this strain could be beneficial in biotechnological applications. The comparative genomic analysis reveals the very high genomic diversity in this genus, and some marked differences in genetic variation and genes among Weissella species. The calculated average amino acid identity (AAI) and phylogenetic analysis of core and accessory genes shows the possible existence of three new species in this genus. These new genomic insights into Weissella species and their biological functions could be useful in the food industry and other applications.
Collapse
Affiliation(s)
- Komwit Surachat
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- *Correspondence: Komwit Surachat,
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Panchalika Deachamag
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Pimonsri Mittraparp-arthorn
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
14
|
Kang MS, Park GY. In Vitro Inactivation of Respiratory Viruses and Rotavirus by the Oral Probiotic Strain Weissella cibaria CMS1. Probiotics Antimicrob Proteins 2022; 14:760-766. [PMID: 35536505 PMCID: PMC9086127 DOI: 10.1007/s12602-022-09947-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Weissella cibaria CMS1 (oraCMS1) has been commercially used in Korea as an oral care probiotic for several years. Human respiratory syncytial virus (RSV) and the influenza A virus (H1N1) are representative viruses that cause infantile lower respiratory tract infections. Rotavirus A (RVA) is the most common cause of diarrhea in infants and young children. Here, we aimed to evaluate the efficacy of the cell-free supernatant (CFS) of oraCMS1 in inactivating RSV, H1N1, and RVA in suspension as per ASTM (American Society for Testing and Materials) E1052-20. The mixture of oraCMS1 and these viruses was evaluated at contact times of 1, 2, and 4 h. Virucidal activity was measured using a 50% tissue culture infective dose assay (log10TCID50) after infecting the host cells with the viruses. The CFS of oraCMS1 inactivated RSV by up to 99.0% after 1 h and 99.9% after 2 and 4 h, and H1N1 and RVA were inactivated by up to 99.9% and 99.0% at 2 h, respectively. Although these in vitro results cannot be directly interpreted as implying clinical efficacy, our findings suggest that oraCMS1 provides a protective barrier against RSV, H1N1, and RVA, and therefore, it can help decrease the risk of respiratory tract and intestinal infections.
Collapse
Affiliation(s)
- Mi-Sun Kang
- R&D Center, OraPharm Inc, Seoul, 04782, Republic of Korea.
| | | |
Collapse
|
15
|
In Vitro Effect of Copper (I) Complex [Cu(NN 1) 2](ClO 4) on Vibrio harveyi BB170 Biofilm Formation. Microorganisms 2021; 9:microorganisms9112273. [PMID: 34835400 PMCID: PMC8618041 DOI: 10.3390/microorganisms9112273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/02/2022] Open
Abstract
Biofilm formation in pathogenic bacteria is an important factor of resistance to antimicrobial treatments, allowing them to survive for a long time in their hosts. In the search for new antibiofilm agents, in this work we report the activity of a copper (I) complex, [Cu(NN1)2]ClO4, synthesized with Cu (I) and NN1, an imine ligand 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one, a derivate of natural compound coumarin. The antibacterial and antibiofilm capacity was evaluated in Vibrio harveyi BB170 used as model bacteria. Antibacterial activity was measured in vitro by minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and half-maximal inhibitory concentration (IC50) determination. Antibiofilm capacity of copper (I) complex was analyzed by different concentrations of IC50 values. The results showed that the sub-IC50 concentration, 12.6 µg/mL of the copper (I) complex, was able to reduce biofilm formation by more than 75%, and bacterial viability was reduced by 50%. Inverted and confocal laser scanning microscopy showed that the [Cu(NN1)2]ClO4 complex affected the biofilm structure. Therefore, the copper (I) complex is effective as an antibiofilm compound in V. harveyi BB170.
Collapse
|