1
|
Neher DA, Brown AR, Andrews TD, Weicht TR. Anaerobic Soil Disinfestation and Vermicompost to Manage Bottom Rot in Organic Lettuce. PLANT DISEASE 2024; 108:1833-1841. [PMID: 38277652 DOI: 10.1094/pdis-12-23-2569-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Rhizoctonia solani Kühn (teleomorph: Thanatephorus cucumeris [Frank] Donk) is an aggressive soilborne pathogen with a wide host range that survives saprophytically between crops, presenting a challenge for organic vegetable farmers who lack effective management tools. A 2-year field experiment was conducted at two organic farms to compare anaerobic soil disinfestation (ASD) and worm-cured compost (vermicompost) to manage bottom rot caused by R. solani subspecies AG1-IB in field-grown organic lettuce (Lactuca sativa). At each farm, four replicate plots of seven treatments were arranged in a randomized complete block design. Randomization was restricted by grouping treatments to evaluate ASD, and treatments to evaluate vermicompost in starter plugs. ASD experiment treatments were three different ASD carbon sources that are commonly used and widely available to local farmers in Vermont: compost, cover crop residues, and poultry manure fertilizer, as well as a tarped control. Vermicompost experimental treatments were vermicompost compared with two types of controls: a commercial biocontrol product (RootShield PLUS + G), and unamended (untarped control). This study demonstrated that the ASD method is achievable in a field setting on Vermont farms. However, neither ASD nor vermicompost produced significant disease suppression or resulted in higher marketable yields than standard growing practices. Given the laborious nature of ASD, it is likely more appropriate in a greenhouse setting with high-value crops that could especially benefit from being grown in plastic tarped beds (e.g., tomatoes and strawberries). This study is the first known attempt of field-implemented ASD for soil pathogen control in the northeastern United States.
Collapse
Affiliation(s)
- Deborah A Neher
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405
| | - Anna R Brown
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405
| | - Tucker D Andrews
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405
| | - Thomas R Weicht
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405
| |
Collapse
|
2
|
Le Q, Price GW. A review of the influence of heat drying, alkaline treatment, and composting on biosolids characteristics and their impacts on nitrogen dynamics in biosolids-amended soils. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:85-104. [PMID: 38266478 DOI: 10.1016/j.wasman.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Application of biosolids to agricultural land has gained increasing attention due to their rich nutrient content. There are a variety of treatment processes for converting sewage sludge to biosolids. Different treatment processes can change the physicochemical properties of the raw sewage sludge and affect the dynamics of nutrient release in biosolids-amended soils. This paper reviews heat drying, alkaline treatment, and composting as biosolids treatment processes and discusses the effects of these treatments on biosolid nitrogen (N) content and availability. Most N in the biosolids remain in organic forms, regardless of biosolids treatment type but considerable variation exists in the mean values of total N and mineralizable N across different types of biosolids. The highest mean total N content was recorded in heat-dried biosolids (HDB) (4.92%), followed by composted biosolids (CB) (2.25%) and alkaline-treated biosolids (ATB) (2.14%). The mean mineralizable N value was similar between HDB and ATB, with a broader range of mineralizable N in ATB. The lowest N availability was observed in CB. Although many models have been extensively studied for predicting potential N mineralization in soils amended with organic amendments, limited research has attempted to model soil N mineralization following biosolids application. With biosolids being a popular, economical, and eco-friendly alternative to chemical N-fertilizers, understanding biosolids treatment effects on biosolids properties is important for developing a sound biosolids management system. Moreover, modeling N mineralization in biosolids-amended soils is essential for the adoption of sustainable farming practices that maximize the agronomic value of all types of biosolids.
Collapse
Affiliation(s)
- Qianhan Le
- Department of Engineering, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada
| | - G W Price
- Department of Engineering, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
3
|
Resendiz-Nava CN, Alonso-Onofre F, Silva-Rojas HV, Rebollar-Alviter A, Rivera-Pastrana DM, Stasiewicz MJ, Nava GM, Mercado-Silva EM. Tomato Plant Microbiota under Conventional and Organic Fertilization Regimes in a Soilless Culture System. Microorganisms 2023; 11:1633. [PMID: 37512805 PMCID: PMC10383152 DOI: 10.3390/microorganisms11071633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Tomato is the main vegetable cultivated under soilless culture systems (SCSs); production of organic tomato under SCSs has increased due to consumer demands for healthier and environmentally friendly vegetables. However, organic tomato production under SCSs has been associated with low crop performance and fruit quality defects. These agricultural deficiencies could be linked to alterations in tomato plant microbiota; nonetheless, this issue has not been sufficiently addressed. Thus, the main goal of the present study was to characterize the rhizosphere and phyllosphere of tomato plants cultivated under conventional and organic SCSs. To accomplish this goal, tomato plants grown in commercial greenhouses under conventional or organic SCSs were tested at 8, 26, and 44 weeks after seedling transplantation. Substrate (n = 24), root (n = 24), and fruit (n = 24) composite samples were subjected to DNA extraction and high-throughput 16S rRNA gene sequencing. The present study revealed that the tomato core microbiota was predominantly constituted by Proteobacteria, Actinobacteria, and Firmicutes. Remarkably, six bacterial families, Bacillaceae, Microbacteriaceae, Nocardioidaceae, Pseudomonadaceae, Rhodobacteraceae, and Sphingomonadaceae, were shared among all substrate, rhizosphere, and fruit samples. Importantly, it was shown that plants under organic SCSs undergo a dysbiosis characterized by significant changes in the relative abundance of Bradyrhizobiaceae, Caulobacteraceae, Chitinophagaceae, Enterobacteriaceae, Erythrobacteraceae, Flavobacteriaceae, Nocardioidaceae, Rhodobacteraceae, and Streptomycetaceae. These results suggest that microbial alterations in substrates, roots, and fruits could be potential factors in contributing to the crop performance and fruit quality deficiencies observed in organic SCSs.
Collapse
Affiliation(s)
- Carolina N Resendiz-Nava
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| | | | - Hilda V Silva-Rojas
- Posgrado en Recursos Geneticos y Productividad, Produccion de Semillas, Colegio de Postgraduados, Km 36.5 Carretera Mexico-Texcoco, Texcoco 56264, Mexico
| | - Angel Rebollar-Alviter
- Centro Regional Morelia, Universidad Autonoma de Chapingo, Morelia 58170, Michoacan, Mexico
| | - Dulce M Rivera-Pastrana
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| | - Matthew J Stasiewicz
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1302W Pennsylvania Ave, Urbana, IL 61801, USA
| | - Gerardo M Nava
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| | - Edmundo M Mercado-Silva
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| |
Collapse
|
4
|
Zakrzewska M, Rzepa G, Musialowski M, Goszcz A, Stasiuk R, Debiec-Andrzejewska K. Reduction of bioavailability and phytotoxicity effect of cadmium in soil by microbial-induced carbonate precipitation using metabolites of ureolytic bacterium Ochrobactrum sp. POC9. FRONTIERS IN PLANT SCIENCE 2023; 14:1109467. [PMID: 37416890 PMCID: PMC10321601 DOI: 10.3389/fpls.2023.1109467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
The application of ureolytic bacteria for bioremediation of soil contaminated with heavy metals, including cadmium (Cd), allows for the efficient immobilization of heavy metals by precipitation or coprecipitation with carbonates. Microbially-induced carbonate precipitation process may be useful also in the case of the cultivation of crop plants in various agricultural soils with trace but legally permissible Cd concentrations, which may be still uptaken by plants. This study aimed to investigate the influence of soil supplementation with metabolites containing carbonates (MCC) produced by the ureolytic bacterium Ochrobactrum sp. POC9 on the Cd mobility in the soil as well as on the Cd uptake efficiency and general condition of crop plants (Petroselinum crispum). In the frame of the conducted studies (i) carbonate productivity of the POC9 strain, (ii) the efficiency of Cd immobilization in soil supplemented with MCC, (iii) crystallization of cadmium carbonate in the soil enriched with MCC, (iv) the effect of MCC on the physico-chemical and microbiological properties of soil, and (v) the effect of changes in soil properties on the morphology, growth rate, and Cd-uptake efficiency of crop plants were investigated. The experiments were conducted in soil contaminated with a low concentration of Cd to simulate the natural environmental conditions. Soil supplementation with MCC significantly reduced the bioavailability of Cd in soil with regard to control variants by about 27-65% (depending on the volume of MCC) and reduced the Cd uptake by plants by about 86% and 74% in shoots and roots, respectively. Furthermore, due to the decrease in soil toxicity and improvement of soil nutrition with other metabolites produced during the urea degradation (MCC), some microbiological properties of soil (quantity and activity of soil microorganisms), as well as the general condition of plants, were also significantly improved. Soil supplementation with MCC enabled efficient Cd stabilization and significantly reduced its toxicity for soil microbiota and plants. Thus, MCC produced by POC9 strain may be used not only as an effective Cd immobilizer in soil but also as a microbe and plant stimulators.
Collapse
Affiliation(s)
- Marta Zakrzewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grzegorz Rzepa
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Marcin Musialowski
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Goszcz
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Ecotoxicology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Klaudia Debiec-Andrzejewska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Limoges MA, Neher DA, Weicht TR, Millner PD, Sharma M, Donnelly C. Differential Survival of Escherichia coli and Listeria spp. in Northeastern U.S. Soils Amended with Dairy Manure Compost, Poultry Litter Compost, and Heat-Treated Poultry Pellets and Fate in Raw Edible Radish Crops. J Food Prot 2022; 85:1708-1715. [PMID: 34855938 DOI: 10.4315/jfp-21-261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Composted or heat-treated biological soil amendments of animal origin (BSAAOs) can be added to soils to provide nutrients for fresh produce. These products lower the risk of pathogen contamination of fresh produce compared with the use of untreated BSAAOs; however, meteorological conditions, geographic location, and soil properties can influence the presence of pathogenic bacteria or their indicators (e.g., generic Escherichia coli) and allow potential for produce contamination. Replicated field plots of loamy or sandy soils were tilled and amended with dairy manure compost (DMC), poultry litter compost (PLC), or no compost (NoC) over two field seasons and noncomposted heat-treated poultry pellets (HTPPs) during the second field season. Plots were inoculated with a three-strain cocktail of rifampin-resistant E. coli (rE. coli) at levels of 8.7 log CFU/m2. Direct plating and most-probable-number methods measured the persistence of rE. coli and Listeria spp. in plots through 104 days postinoculation. Greater survival of rE. coli was observed in PLC plots in comparison to DMC plots and NoC plots during year 1 (P < 0.05). Similar trends were observed for year 2, when rE. coli survival was also greater in HTPP-amended plots (P < 0.05). Survival of rE. coli depended on soil type, and water potential and temperature were significant covariables. Listeria spp. were found in NoC plots, but not in plots amended with HTPPs, PLC, or DMC. Radish data demonstrate that PLC treatment promoted the greatest level of rE. coli translocation compared with DMC and NoC treatments (P < 0.05). These results are consistent with findings from studies conducted in other regions of the United States, and they inform northeast produce growers that composted and noncomposted poultry-based BSAAOs support greater survival of rE. coli in field soils. This result has the potential to affect the food safety risk of edible produce grown in BSAAO-amended soils as a result of pathogen contamination. HIGHLIGHTS
Collapse
Affiliation(s)
- Marie A Limoges
- Department of Nutrition and Food Science, University of Vermont, Marsh Life Science, 109 Carrigan Drive, Burlington, Vermont 05405
| | - Deborah A Neher
- Department of Plant and Soil Science, University of Vermont, Jeffords Hall, 63 Carrigan Drive, Burlington, Vermont 05405
| | - Thomas R Weicht
- Department of Plant and Soil Science, University of Vermont, Jeffords Hall, 63 Carrigan Drive, Burlington, Vermont 05405
| | - Patricia D Millner
- U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Building 307, Center Drive, Beltsville, Maryland 20705, USA
| | - Manan Sharma
- U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Building 307, Center Drive, Beltsville, Maryland 20705, USA
| | - Catherine Donnelly
- Department of Nutrition and Food Science, University of Vermont, Marsh Life Science, 109 Carrigan Drive, Burlington, Vermont 05405
| |
Collapse
|