1
|
Moussa C, Savard G, Estrade L, Bourgi R, Kharouf N, Denis F, Daou MH. Dental Health in Children with Congenital Heart Defects: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:7022. [PMID: 39685481 DOI: 10.3390/jcm13237022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Oral health outcomes in children with Congenital Heart Defects (CHD) have significant implications. The aim of this systematic review and meta-analysis is to update the current understanding of oral health outcomes in children with CHD and compare caries prevalence between CHD children and healthy controls. Methods: All studies between 2014 and 2024 comparing oral health status between children with and without CHD were considered for inclusion. Studies had to use the DMF/dmf index (Decayed, Missing, Filled Teeth or Surface index), in permanent and deciduous teeth. Two separate meta-analyses were conducted: one analyzing DMFS scores and another focusing on dmft scores. Medline, Central, and Embase databases were screened. Twelve articles were included in the qualitative synthesis, and two studies were finally included in each quantitative synthesis. Results: Several studies identified significant differences in oral health outcomes, suggesting that children with CHD are at a higher risk of dental caries compared with healthy controls, particularly as they become older. However, the differences were not uniformly observed across all studies and age groups. Based on the meta-analysis, there was no statistically significant difference in either DMFS scores (MD: 0.07 [95% CI: -0.13, 0.27]; p = 0.48) or in dmft scores (MD: 1.39 [95% CI: -1.05, 3.83]; p = 0.26). Conclusions: This systematic review and meta-analysis highlight a possible increased risk of dental caries in children with CHD, although results were not statistically significant and varied across studies. More standardized and rigorous studies are required to provide clearer insights into oral health outcomes for this population.
Collapse
Affiliation(s)
- Carol Moussa
- Faculty of Dentistry, University of Tours, 37032 Tours, France
- Division of Education, Ethics, Health, Faculty of Medicine, University of Tours, 37044 Tours, France
| | - Guillaume Savard
- Faculty of Dentistry, University of Tours, 37032 Tours, France
- Division of Education, Ethics, Health, Faculty of Medicine, University of Tours, 37044 Tours, France
- Department of Medicine and Bucco-Dental Surgery, Tours University Hospital, 37044 Tours, France
| | - Laurent Estrade
- Department of Medicine and Bucco-Dental Surgery, Tours University Hospital, 37044 Tours, France
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Frédéric Denis
- Faculty of Dentistry, University of Tours, 37032 Tours, France
- Division of Education, Ethics, Health, Faculty of Medicine, University of Tours, 37044 Tours, France
- Department of Medicine and Bucco-Dental Surgery, Tours University Hospital, 37044 Tours, France
| | - Maha H Daou
- Faculty of Dentistry, University of Tours, 37032 Tours, France
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Saint Joseph University, Beirut 1107 2180, Lebanon
- Craniofacial Research Laboratory, Division of Biomaterials, Saint Joseph University, Beirut 1107 2180, Lebanon
| |
Collapse
|
2
|
Yan J, Wang Z, Bao G, Xue C, Zheng W, Fu R, Zhang M, Ding J, Yang F, Sun B. Causal effect between gut microbiota and metabolic syndrome in European population: a bidirectional mendelian randomization study. Cell Biosci 2024; 14:67. [PMID: 38807189 PMCID: PMC11134679 DOI: 10.1186/s13578-024-01232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/07/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Observational studies have reported that gut microbiota composition is associated with metabolic syndrome. However, the causal effect of gut microbiota on metabolic syndrome has yet to be confirmed. METHODS We performed a bidirectional Mendelian randomization study to investigate the causal effect between gut microbiota and metabolic syndrome in European population. Summary statistics of gut microbiota were from the largest available genome-wide association study meta-analysis (n = 13,266) conducted by the MiBioGen consortium. The summary statistics of outcome were obtained from the most comprehensive genome-wide association studies of metabolic syndrome (n = 291,107). The inverse-variance weighted method was applied as the primary method, and the robustness of the results was assessed by a series of sensitivity analyses. RESULTS In the primary causal estimates, Actinobacteria (OR = 0.935, 95% CI = 0.878-0.996, P = 0.037), Bifidobacteriales (OR = 0.928, 95% CI = 0.868-0.992, P = 0.028), Bifidobacteriaceae (OR = 0.928, 95% CI = 0.868-0.992, P = 0.028), Desulfovibrio (OR = 0.920, 95% CI = 0.869-0.975, P = 0.005), and RuminococcaceaeUCG010 (OR = 0.882, 95% CI = 0.803-0.969, P = 0.009) may be associated with a lower risk of metabolic syndrome, while Lachnospiraceae (OR = 1.130, 95% CI = 1.016-1.257, P = 0.025), Veillonellaceae (OR = 1.055, 95% CI = 1.004-1.108, P = 0.034) and Olsenella (OR = 1.046, 95% CI = 1.009-1.085, P = 0.015) may be linked to a higher risk for metabolic syndrome. Reverse MR analysis demonstrated that abundance of RuminococcaceaeUCG010 (OR = 0.938, 95% CI = 0.886-0.994, P = 0.030) may be downregulated by metabolic syndrome. Sensitivity analyses indicated no heterogeneity or horizontal pleiotropy. CONCLUSIONS Our Mendelian randomization study provided causal relationship between specific gut microbiota and metabolic syndrome, which might provide new insights into the potential pathogenic mechanisms of gut microbiota in metabolic syndrome and the assignment of effective therapeutic strategies.
Collapse
Affiliation(s)
- Jiawu Yan
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Zhongyuan Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guojian Bao
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Cailin Xue
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wenxuan Zheng
- Division of Gastric Surgery, Department of General Surgery, the Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Rao Fu
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Minglu Zhang
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jialu Ding
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Yang
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China.
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China.
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
3
|
Manzoor M, Leskelä J, Pietiäinen M, Martinez-Majander N, Ylikotila P, Könönen E, Niiranen T, Lahti L, Sinisalo J, Putaala J, Pussinen PJ, Paju S. Multikingdom oral microbiome interactions in early-onset cryptogenic ischemic stroke. ISME COMMUNICATIONS 2024; 4:ycae088. [PMID: 38988699 PMCID: PMC11235082 DOI: 10.1093/ismeco/ycae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/15/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
Although knowledge of the role of the oral microbiome in ischemic stroke is steadily increasing, little is known about the multikingdom microbiota interactions and their consequences. We enrolled participants from a prospective multicentre case-control study and investigated multikingdom microbiome differences using saliva metagenomic datasets (n = 308) from young patients diagnosed with cryptogenic ischemic stroke (CIS) and age- and sex-matched stroke-free controls. Differentially abundant taxa were identified using Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC2). Functional potential was inferred using HUMANn3. Our findings revealed significant differences in the composition and functional capacity of the oral microbiota associated with CIS. We identified 51 microbial species, including 47 bacterial, 3 viral, and one fungal species associated with CIS in the adjusted model. Co-abundance network analysis highlighted a more intricate microbial network in CIS patients, indicating potential interactions and co-occurrence patterns among microbial species across kingdoms. The results of our metagenomic analysis reflect the complexity of the oral microbiome, with high diversity and multikingdom interactions, which may play a role in health and disease.
Collapse
Affiliation(s)
- Muhammed Manzoor
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00014 Helsinki, Finland
| | - Jaakko Leskelä
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00014 Helsinki, Finland
| | - Milla Pietiäinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00014 Helsinki, Finland
- Industrial Biotechnology and Food Protein Production, VTT Technical Research Centre of Finland, 02044 Espoo, Finland
| | - Nicolas Martinez-Majander
- Department of Neurology, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Pauli Ylikotila
- Neurocenter, Turku University Hospital, University of Turku, 20521 Turku, Finland
| | - Eija Könönen
- Institute of Dentistry, University of Turku, 20500 Turku, Finland
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
- Department of Internal Medicine, Turku University Hospital and University of Turku, 20521 Turku, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, 20500 Turku, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Central Hospital, and Helsinki University, 00260 Helsinki, Finland
| | - Jukka Putaala
- Department of Neurology, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Pirkko J Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00014 Helsinki, Finland
- School of Medicine, Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland
| | - Susanna Paju
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Liu Y, Huang Y, He Q, Dou Z, Zeng M, Wang X, Li S. From heart to gut: Exploring the gut microbiome in congenital heart disease. IMETA 2023; 2:e144. [PMID: 38868221 PMCID: PMC10989834 DOI: 10.1002/imt2.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 06/14/2024]
Abstract
Congenital heart disease (CHD) is a prevalent birth defect and a significant contributor to childhood mortality. The major characteristics of CHD include cardiovascular malformations and hemodynamical disorders. However, the impact of CHD extends beyond the circulatory system. Evidence has identified dysbiosis of the gut microbiome in patients with CHD. Chronic hypoxia and inflammation associated with CHD affect the gut microbiome, leading to alterations in its number, abundance, and composition. The gut microbiome, aside from providing essential nutrients, engages in direct interactions with the host immune system and indirect interactions via metabolites. The abnormal gut microbiome or its products can translocate into the bloodstream through an impaired gut barrier, leading to an inflammatory state. Metabolites of the gut microbiome, such as short-chain fatty acids and trimethylamine N-oxide, also play important roles in the development, treatment, and prognosis of CHD. This review discusses the role of the gut microbiome in immunity, gut barrier, neurodevelopment, and perioperative period in CHD. By fostering a better understanding of the cross-talk between CHD and the gut microbiome, this review aims to contribute to improve clinical management and outcomes for CHD patients.
Collapse
Affiliation(s)
- Yuze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yuan Huang
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Qiyu He
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Zheng Dou
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Min Zeng
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Xu Wang
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Shoujun Li
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Hofmann M, Schulz-Weidner N, Krämer N, Hain T. The Bacterial Oral Microbiome in Children with Congenital Heart Disease: An Extensive Review. Pathogens 2023; 12:1269. [PMID: 37887785 PMCID: PMC10610089 DOI: 10.3390/pathogens12101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Children with congenital heart disease have poorer oral health compared with healthy children. Oral diseases, such as dental caries and gingivitis, are associated with the oral microbiome. The objective of this review was to find evidence of differences in the bacterial colonization of the oral cavity of children with congenital heart disease (CHD) versus healthy children. A literature review was conducted according to predetermined criteria, including the need for controlled clinical trials. Half of the 14 studies that met the inclusion criteria reported significant differences in bacterial colonization in children with congenital heart disease. A variety of influencing factors were discussed. There is some evidence for alterations in the oral microflora as a result of physiopathological and treatment-related factors in children with CHD, but additional research is required to validate these findings.
Collapse
Affiliation(s)
- Maria Hofmann
- Dental Clinic—Department of Paediatric Dentistry, Justus Liebig University, Schlangenzahl 14, 35392 Giessen, Germany; (N.S.-W.); (N.K.)
| | - Nelly Schulz-Weidner
- Dental Clinic—Department of Paediatric Dentistry, Justus Liebig University, Schlangenzahl 14, 35392 Giessen, Germany; (N.S.-W.); (N.K.)
| | - Norbert Krämer
- Dental Clinic—Department of Paediatric Dentistry, Justus Liebig University, Schlangenzahl 14, 35392 Giessen, Germany; (N.S.-W.); (N.K.)
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany;
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
6
|
Cheng Q, Fan C, Liu F, Li Y, Hou H, Ma Y, Tan Y, Li Y, Hai Y, Wu T, Zhang L, Zhang Y. Structural and functional dysbiosis of gut microbiota in Tibetan subjects with coronary heart disease. Genomics 2022; 114:110483. [PMID: 36115504 DOI: 10.1016/j.ygeno.2022.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 01/14/2023]
Abstract
The gut microbiota plays a crucial role in coronary heart disease (CHD). However, only a few studies focusing on the relationship between gut microbiota and CHD in ethnic populations are available. Here, we employed shotgun sequencing of the gut metagenome to analyze the taxonomic composition and functional annotation of the gut microbiota of 14 CHD patients, 13 patients with non-stenosis coronary heart disease (NCHD), and 18 healthy controls (HT) in Tibetan subjects. We found that the α-diversity of the gut microbiota was not significantly different among the three groups., whereas β-diversity was significantly altered in the CHD group compared with HT. Based on the receiver operating characteristic curve (ROC) analysis, the relative abundance of Proteobacteria species effectively distinguished patients with CHD from the control group. Most of the enriched species belonged to Proteobacteria. The pathways that contributed the most to the differences between groups were amino acid metabolism-related pathways, especially lysine biosynthesis. The enzymes of the lysine biosynthesis pathway, including K01714 and K00821, were significantly decreased in the CHD group. Our findings increase the understanding of the association between CHD pathogenesis and gut microbiota in the Tibetan population, thus paving the way for the development of improved diagnostic methods and treatments for Tibetan patients with CHD.
Collapse
Affiliation(s)
- Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyun Liu
- National Key Laboratory of High Altitude Medicine, Qinghai High Altitude Medical Research Institute, Xining 810012, China; Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining 810012, China
| | - Yuan Li
- National Key Laboratory of High Altitude Medicine, Qinghai High Altitude Medical Research Institute, Xining 810012, China; Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining 810012, China
| | - Haiwen Hou
- National Key Laboratory of High Altitude Medicine, Qinghai High Altitude Medical Research Institute, Xining 810012, China; Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining 810012, China
| | - Yan Ma
- National Key Laboratory of High Altitude Medicine, Qinghai High Altitude Medical Research Institute, Xining 810012, China; Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining 810012, China
| | - Yueqing Tan
- National Key Laboratory of High Altitude Medicine, Qinghai High Altitude Medical Research Institute, Xining 810012, China; Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining 810012, China
| | - Yuxian Li
- National Key Laboratory of High Altitude Medicine, Qinghai High Altitude Medical Research Institute, Xining 810012, China; Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining 810012, China
| | - Yue Hai
- National Key Laboratory of High Altitude Medicine, Qinghai High Altitude Medical Research Institute, Xining 810012, China; Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining 810012, China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine, Qinghai High Altitude Medical Research Institute, Xining 810012, China; Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining 810012, China.
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
7
|
Wang Q, Zhan X, Wang B, Wang F, Zhou Y, Xu S, Li X, Tang L, Jin Q, Li W, Gong L, Fu A. Modified Montmorillonite Improved Growth Performance of Broilers by Modulating Intestinal Microbiota and Enhancing Intestinal Barriers, Anti-Inflammatory Response, and Antioxidative Capacity. Antioxidants (Basel) 2022; 11:antiox11091799. [PMID: 36139873 PMCID: PMC9495330 DOI: 10.3390/antiox11091799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
This study aims to explore the effects of modified montmorillonite (MMT, copper loading) on the growth performance, gut microbiota, intestinal barrier, antioxidative capacity and immune function of broilers. Yellow-feathered broilers were randomly divided into control (CTR), modified montmorillonite (MMT), and antibiotic (ANTI) groups. Results revealed that MMT supplementation increased the BW and ADG and decreased the F/R during the 63-day experiment period. 16S rRNA sequencing showed that MMT modulated the cecal microbiota composition of broilers by increasing the relative abundance of two phyla (Firmicutes and Bacteroidetes) and two genera (Bacteroides and Faecalibacterium) and decreasing the abundance of genus Olsenella. MMT also improved the intestinal epithelial barrier indicated by the up-regulated mRNA expression of claudin-1, occludin, and ZO-1 and the increased length of microvilli in jejunum and the decreased levels of DAO and D-LA in serum. In addition, MMT enhanced the immune function indicated by the increased levels of immunoglobulins, the decreased levels of MPO and NO, the down-regulated mRNA expression of IL-1β, IL-6, and TNF-α, and the up-regulated mRNA expression of IL-4 and IL-10. Moreover, MMT down-regulated the expression of jejunal TLRs/MAPK/NF-κB signaling pathway-related genes (TLR2, TLR4, Myd88, TRAF6, NF-κB, and iNOS) and related proteins (TRAF6, p38, ERK, NF-κB, and iNOS). In addition, MMT increased the antioxidant enzyme activities and the expression of Nrf2/HO-1 signaling pathway-related genes and thereby decreased the apoptosis-related genes expression. Spearman’s correlation analysis revealed that Bacteroides, Faecalibacterium, and Olsenella were related to the inflammatory index (MPO and NO), oxidative stress (T-AOC, T-SOD, and CAT) and intestinal integrity (D-LA and DAO). Taken together, MMT supplementation improved the growth performance of broilers by modulating intestinal microbiota, enhancing the intestinal barrier function, and improving inflammatory response, which might be mediated by inhibiting the TLRs/MAPK/NF-κB signaling pathway, and antioxidative capacity mediated by the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Zhan
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Fenghong Biological Technology Co., Ltd., Huzhou 313000, China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
- Correspondence: (L.G.); (A.F.)
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (L.G.); (A.F.)
| |
Collapse
|