1
|
Uwaezuoke O, Kumar P, du Toit LC, Ally N, Choonara YE. Design Characteristics of a Neoteric, Superhydrophilic, Mechanically Robust Hydrogel Engineered To Limit Fouling in the Ocular Environment. ACS OMEGA 2024; 9:31410-31426. [PMID: 39072132 PMCID: PMC11270697 DOI: 10.1021/acsomega.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 07/30/2024]
Abstract
Current challenges with ocular drug delivery and the chronic nature of many ocular ailments render the use of traditional ocular devices for additional drug delivery purposes very attractive. To achieve this feat, there is the need to develop biomaterials that are biocompatible, mechanically robust for ocular applications, highly transparent (depending on the targeted ocular device), and with ultralow protein adhesion potential (the primary step in processes that lead to fouling and potential device failure). Herein is reported the facile synthesis of a novel, highly transparent, mechanically robust, nontoxic, bulk functionalized hydrogel with characteristics suited to scalable fabrication of ocular implantable and nonimplantable devices. Synergistic superhydrophilicity between methacrylated poly(vinyl alcohol) (PVAGMA) and zwitterionic sulfobetaine methacrylate was exploited to obtain a superhydrophilic polymer conjugate through facile photoinitiated cross-linking polymerization. Proton nuclear magnetic resonance (1H NMR), attenuated total reflectance-Fourier transform infrared spectroscopy (ATF-FTIR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) were used to confirm the synthesis and establish the physicochemical parameters for both the starting materials, the conjugated polymer, and the hydrogels. Cytotoxicity and cell adhesion potential evaluated in primary human retinal epithelial cells showed no toxicity or adhesion of the ocular cells. Biofilm adhesion studies in Escherichia coli and Staphylococcus aureus showed over 85% reduction in biofilm adhesion for the best-modified polymer compared to the unconjugated PVAGMA, highlighting its antifouling potential.
Collapse
Affiliation(s)
- Onyinye
J. Uwaezuoke
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C. du Toit
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Naseer Ally
- Department
of Neurosciences, Division of Ophthalmology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
2
|
Corwin-Buell J, Callahan D, McGrath D, Millard K, Mosehauer G, Phatak NR. Biocidal Efficacies of Contact Lens Disinfecting Solutions Against International Organization for Standardization (ISO) Compendial Organisms. Clin Ophthalmol 2024; 18:337-345. [PMID: 38332902 PMCID: PMC10849899 DOI: 10.2147/opth.s445870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Purpose This study was conducted to evaluate and compare the in vitro disinfection efficacies of six commercial lens cleaning and disinfecting products for planned replacement soft contact lenses. Methods Disinfection efficacies of five multi-purpose solutions (MPSs) and one hydrogen peroxide solution (HPS) as control were evaluated in the presence of organic soil according to the International Organization for Standardization (ISO, Geneva, Switzerland) ISO 14729 stand-alone test protocol. The five specified compendial organisms, three bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Serratia marcescens) and two fungi (Candida albicans and Fusarium solani) were incubated with each solution under standard conditions, after which microbes were recovered and quantified. Results Each of the solutions evaluated met or exceeded the standard's primary criteria (3-log reduction of bacteria and 1-log reduction of fungi) after incubation for the manufacturer-recommended soaking time, except for COMPLETE MPS, which achieved only 0.4 ± 0.1 average log reduction for C. albicans. However, differences in efficacy between the solutions were noted. Average log reduction across all microbes for Biotrue Hydration Plus (4.6 ± 0.1) was comparable to that for CLEAR CARE PLUS HPS (4.3 ± 0.1) and greater than those for OPTI-FREE puremoist (3.6 ± 0.1), OPTI-FREE Replenish (4.0 ± 0.2), ACUVUE RevitaLens (3.9 ± 0.03), and COMPLETE MPS (3.6 ± 0.1). Biotrue Hydration Plus was especially effective at reducing the population of C. albicans (4.2 ± 0.7-log reduction). Conclusion Products marketed for planned replacement soft CL disinfection generally meet the ISO 14729 standard's primary criteria for reducing populations of compendial organisms, with larger differences between solutions noted with C. albicans.
Collapse
Affiliation(s)
| | | | | | | | - Gary Mosehauer
- Vision Care, Bausch & Lomb Incorporated, Rochester, NY, USA
| | | |
Collapse
|
3
|
Weawsiangsang S, Rattanachak N, Ross S, Ross GM, Baldock RA, Jongjitvimol T, Jongjitwimol J. Hydroquinine Enhances the Efficacy of Contact Lens Solutions for Inhibiting Pseudomonas aeruginosa Adhesion and Biofilm Formation. Antibiotics (Basel) 2024; 13:56. [PMID: 38247615 PMCID: PMC10812619 DOI: 10.3390/antibiotics13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
P. aeruginosa is one of the most common bacteria causing contact lens-related microbial keratitis (CLMK). Previous studies report that disinfecting solutions were ineffective in preventing biofilm formation. Solutions containing novel natural agents may be an excellent alternative for reducing the risk of CLMK. Here, we investigate the disinfecting properties of hydroquinine in combination with multipurpose solutions (MPSs) to prevent P. aeruginosa adhesion and biofilm formation. We examined the antibacterial, anti-adhesion, and anti-biofilm properties of hydroquinine-formulated MPSs compared to MPSs alone. Using RT-qPCR, hydroquinine directly affected the expression levels of adhesion-related genes, namely, cgrC, cheY, cheZ, fimU, and pilV, resulting in reduced adhesion and anti-biofilm formation. Using ISO 14729 stand-alone testing, hydroquinine met the criteria (>99.9% killing at disinfection time) against both P. aeruginosa reference and clinical strains. Using the crystal violet retention assay and FE-SEM, MPSs combined with hydroquinine were effective in inhibiting P. aeruginosa adhesion and destroying preexisting biofilms. This report is the first to highlight the potential utility of hydroquinine-containing formulations as a disinfecting solution for contact lenses, specifically for inhibiting adhesion and destroying biofilm. These findings may aid in the development of novel disinfectants aimed at combating P. aeruginosa, thereby potentially reducing the incidence of CLMK.
Collapse
Affiliation(s)
- Sattaporn Weawsiangsang
- Biomedical Sciences Program, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
| | - Nontaporn Rattanachak
- Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (N.R.); (T.J.)
| | - Sukunya Ross
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (S.R.); (G.M.R.)
- Centre of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth M. Ross
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (S.R.); (G.M.R.)
- Centre of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Robert A. Baldock
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, UK;
| | - Touchkanin Jongjitvimol
- Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (N.R.); (T.J.)
| | - Jirapas Jongjitwimol
- Biomedical Sciences Program, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
- Centre of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
4
|
Yi J, Sun Y, Zeng C, Kostoulias X, Qu Y. The Role of Biofilms in Contact Lens Associated Fungal Keratitis. Antibiotics (Basel) 2023; 12:1533. [PMID: 37887234 PMCID: PMC10604847 DOI: 10.3390/antibiotics12101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Biofilm formation is an important microbial strategy for fungal pathogens, such as Fusarium, Aspergillus, and Candida, to establish keratitis in patients wearing soft contact lenses. Despite the well-documented 2006 outbreak of Fusarium keratitis that eventually led to the withdrawal of the Bausch & Lomb multipurpose lens care solution ReNu with MoistureLoc ("MoistureLoc") from the global market, contact lens care systems and solutions currently available on the market do not specifically target fungal biofilms. This is partially due to the lack of recognition and understanding of important roles that fungal biofilms play in contact lens associated fungal keratitis (CLAFK). This review aims to reemphasize the link between fungal biofilms and CLAFK, and deepen our comprehension of its importance in pathogenesis and persistence of this medical device-related infection.
Collapse
Affiliation(s)
- Jipan Yi
- Department of Optometry, Zhejiang Industry & Trade Vocational College, Wenzhou 325000, China; (J.Y.); (C.Z.)
| | - Yao Sun
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (Y.S.); (X.K.)
| | - Chenghong Zeng
- Department of Optometry, Zhejiang Industry & Trade Vocational College, Wenzhou 325000, China; (J.Y.); (C.Z.)
| | - Xenia Kostoulias
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (Y.S.); (X.K.)
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Clayton, VIC 3000, Australia
| | - Yue Qu
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (Y.S.); (X.K.)
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Clayton, VIC 3000, Australia
| |
Collapse
|
5
|
Harris V, Pifer R, Shannon P, Crary M. Comparative Evaluation of Pseudomonas aeruginosa Adhesion to a Poly-(2-Methacryloyloxyethyl Phosphorylcholine)-Modified Silicone Hydrogel Contact Lens. Vision (Basel) 2023; 7:vision7010027. [PMID: 36977307 PMCID: PMC10056565 DOI: 10.3390/vision7010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Pseudomonas aeruginosa is the most common causative agent associated with microbial keratitis. During contact lens wear, pathogens may be introduced into the ocular environment, which might cause adverse events. Lehfilcon A is a recently developed contact lens with a water gradient surface composed of polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC). MPC is re-ported to impart anti-biofouling properties onto modified substrates. Therefore, in this in vitro experimental study, we tested the capability of lehfilcon A to resist adhesion by P. aeruginosa. Quantitative bacterial adhesion assays using five strains of P. aeruginosa were conducted to compare the adherence properties of lehfilcon A to five currently marketed silicone hydrogel (SiHy) contact lenses (comfilcon A, fanfilcon A, senofilcon A, senofilcon C, and samfilcon A). Compared to lehfilcon A, we observed 26.7 ± 8.8 times (p = 0.0028) more P. aeruginosa binding to comfilcon A, 30.0 ± 10.8 times (p = 0.0038) more binding to fanfilcon A, 18.2 ± 6.2 times (p = 0.0034) more binding to senofilcon A, 13.6 ± 3.9 times (p = 0.0019) more binding to senofilcon C, and 29.5 ± 11.8 times (p = 0.0057) more binding to samfilcon A. These results demonstrate that, for various strains of P. aeruginosa, lehfilcon A reduces bacterial adhesion compared to other contact lens materials.
Collapse
Affiliation(s)
| | - Reed Pifer
- Alcon Research, LLC, Fort Worth, TX 76134, USA
| | | | | |
Collapse
|
6
|
Walters R, Campolo A, Miller E, Gabriel MM, Crary M, McAnally C, Shannon P. Reduction of disinfection efficacy of contact lens care products on the global market in the presence of contact lenses and cases. BMJ Open Ophthalmol 2022; 7:bmjophth-2021-000955. [PMID: 36161836 PMCID: PMC9226912 DOI: 10.1136/bmjophth-2021-000955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/08/2022] [Indexed: 11/04/2022] Open
Abstract
ObjectiveSight-threatening infections can be caused by pathogenic micro-organisms colonising the cornea, leading to microbial keratitis (MK). These micro-organisms can be introduced to the eye via improper contact lens use and care. MK can also result from ineffective contact lens care solutions (CLCs), even if the patient is following best practice guidelines. Therefore, it is critical to understand the differences between the effectiveness of popular CLCs on the global market.Methods and analysisFollowing the International Standards Organisation standards 14 729 and 18259, bacteria (Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus), fungi (Candida albicans, Fusarium strains) and Acanthamoeba strains were inoculated into each CLC with and without contact lenses, and held for the manufacturer’s stated disinfection time. Plate counts were conducted to determine the number of surviving micro-organisms.ResultsAll CLCs examined met the primary log reduction criteria during stand-alone testing for Pseudomonas, Staphylococcus, Candida and Fusarium. renu Multiplus, All Clean Soft, and Kombilösung Super did not meet the primary criteria when challenged with Serratia. Only OPTI-FREE Express exceeded 4 log reduction for both strains of Acanthamoeba tested. We noted a substantial reduction in disinfection efficacy when CLCs were challenged with Fusarium in the presence of lenses and cases versus stand-alone testing. OPTI-FREE Express demonstrated significantly less net log reduction loss than the other four CLCs tested.ConclusionOf the popular CLCs on the global market, the product which relies on dual biocides polyquaternium-1 and myristamidopropyl dimethylamine demonstrated the highest disinfection efficacy in microbial disinfection challenges in the absence and presence of contact lenses.
Collapse
Affiliation(s)
- Rhonda Walters
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| | - Allison Campolo
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| | - Elise Miller
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| | - Manal M Gabriel
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| | - Monica Crary
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| | - Cindy McAnally
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| | - Paul Shannon
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| |
Collapse
|