1
|
Ahmed A, Liu Y, Khan R, He P, He P, Wu Y, Munir S, He Y. Molecular insights from integrated metabolome-transcriptome into endophyte Bacillus subtilis L1-21 surfactin against citrus Huanglongbing. Microbiol Res 2025; 290:127942. [PMID: 39549644 DOI: 10.1016/j.micres.2024.127942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024]
Abstract
Metabolites of plant and microbial origin have a great influence on plant-microbe interactions. Members from Bacillus subtilis are known to produce a plethora of metabolites that shape plant responses towards biotic and abiotic stresses. Similarly, endophyte B. subtilis L1-21 efficiently controls the Huanglongbing (HLB) causing pathogen: Candidatus Liberibacter asiaticus (CLas). However, the molecular mechanisms are highly elusive. Herein, our study highlights the critical role of endophyte L1-21 in planta-produced surfactin in its colonization in citrus plants and regulation of plant-microbe interactions by comparing three gene knockout mutants △srfAA-L1-21, △sfp-L1-21, and △pel-L1-21. All three mutants exhibited reduced pathogen control and colonization efficiency compared to wild-type (WT) L1-21, but knockout mutant deficient of surfactin △srfAA-L1-21 was significantly impaired in the abovementioned functions as compared to △sfp-L1-21 and △pel-L1-21. Further, △srfAA-L1-21 could not activate various metabolic pathways in citrus as WT-L1-21. Integrated metabolomic-transcriptomic analysis reveals that important secondary metabolites such as flavonoids, volatile organic compounds, and lignins were highly accumulated in citrus plants treated with WT-L1-21 as compared to △srfAA-L1-21, highlighting the role of surfactin as an elicitor of the defense system in citrus-HLB pathosystem. Interestingly, auxin-related metabolites and transcripts were also downregulated in △srfAA-L1-21 compared to WT-L1-21 showing that surfactin might also influence plant-microbe interactions through metabolic reprogramming. Further, higher enrichment of Bacilli with WT-L1-21 might corresponds to surfactin-mediated regulation of community-related behavior in Bacilli. To the best of our knowledge, this is the first study reporting the role of surfactin from Bacillus endophyte in metabolic reprogramming in citrus-HLB pathosystem and mounting defense response against CLas pathogen.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yinglong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Rizwan Khan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
2
|
Chu L, Lao G, Fang Y, Gao X, Liu W, Xie Q, Miao W, Jin P. Effect of mutation of secG gene in drug resistance and physiological and biochemical activities of Xanthomonas oryzae pv. oryzae. PEST MANAGEMENT SCIENCE 2024. [PMID: 39614623 DOI: 10.1002/ps.8578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Bacterial leaf blight caused by the bacterium Xanthomonas oryzae pv. oryzae has a substantial effect on the yield of rice crops. The secretory (Sec) pathway, essential for efflux transport in bacteria, remains insufficiently studied in X. oryzae pv. oryzae, especially regarding its roles in drug resistance and physiology. RESULTS This study involved transcriptome analysis on two X. oryzae pv. oryzae strains: a secG deletion strain (∆secG) and its complemented strain (C: ∆secG). In comparison to the parental strain PXO99A, ∆secG exhibited slower growth, with reductions in swimming (20.67%) and swarming (12.59%), while maintaining 76.7% of its biofilm formation capacity and 63.6% of exopolysaccharide production. The minimum inhibitory concentration (MIC50) values for an n-butanol extract of Bacillus velezensis HN-2 (HN-2E) and bacitracin against ∆secG were 0.426 μg/mL (5.3% lower than that of PXO99A) and 10.905 μg/mL, respectively. Notably, ∆secG exhibited increased susceptibility to hydrogen peroxide (H2O2), being inhibited at 0.25 mm compared to 0.3 mm for PXO99A and C: ∆secG. In the presence of 0.2 mM H2O2, the susceptibility of ∆secG to HN-2E increased by 31.22% (MIC50 = 0.159 μg/mL), while PXO99A and C: ∆secG exhibited MIC50 values of 0.280 and 0.291 μg/mL, respectively. CONCLUSION Our findings demonstrate that Bacillus-induced H2O2 production enhances the sensitivity of X. oryzae pv. oryzae to biocontrol agents, providing valuable insights for the prevention of bacterial leaf blight. These results highlight the significance of the Sec pathway in the behavior and resistance of X. oryzae pv. oryzae, as well as potential areas for further research on plant diseases. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linglong Chu
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Guangshu Lao
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Yukai Fang
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Xue Gao
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Wenbo Liu
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Qingbiao Xie
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Weiguo Miao
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Pengfei Jin
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| |
Collapse
|
3
|
Galelli ME, Cristóbal-Miguez JAE, Cárdenas-Aguiar E, García AR, Paz-González A, Sarti GC. The Effects of Seed Inoculation with Bacterial Biofilm on the Growth and Elemental Composition of Tomato ( Solanum lycopersicum L.) Cultivated on a Zinc-Contaminated Substrate. Microorganisms 2024; 12:2237. [PMID: 39597626 PMCID: PMC11596727 DOI: 10.3390/microorganisms12112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Biofilm obtained from Bacillus subtilis subsp. spizizenii inoculated on vegetable seeds has been shown to have plant growth-promoting capacity. Seed inoculation with biofilm produced by this strain could also reduce the adverse effects on plant growth caused by soil or substrate heavy metal overabundance. Therefore, the objective of this work was to evaluate the impact of biofilm inoculated on tomato (Solanum lycopersicum L.) seeds, which were planted on a substrate with artificially added zinc. First, seeds of the Río Grande tomato variety were exposed to increasing zinc concentrations, namely: 50, 100, 200, and 400 ppm, with and without bacterial biofilm inoculation. Zinc addition and seed inoculation affected germination parameters. For example, an extra 200 and 400 ppm of zinc led to high toxicity. Biofilm inoculation, however, reduced the noxious effects of excess zinc, bringing acute toxicity down to moderate. Then, tomato plants growing from inoculated and non-inoculated seeds were cropped for 4 months in both substrates with 400 ppm zinc and without added zinc. Extra zinc addition significantly (p < 0.05) reduced tomato root and shoot biomass, plant height, and fruit number at harvest time. However, seed biofilm inoculation avoided the harmful effect of zinc on plant growth parameters, fruit yield, and fruit quality. The roots and shoots of plants growing on contaminated substrates showed very noticeable increases in zinc levels compared to the control, while fruits only showed a much weaker zinc gain, even if this was significant (p < 0.05). Moreover, root shoot and fruit concentrations of elements other than zinc, (nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, lead, and cadmium) were not or only weakly affected by the addition of this metal to the substrate. In summary, the biofilm of B. subtilis proved to be effective as a bioinoculant to alleviate negative effects on tomatoes cropped in a substrate with excess zinc.
Collapse
Affiliation(s)
- Mirta Esther Galelli
- Agrofood Area, Department of Applied Biology and Food, Faculty of Agronomy, University of Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina;
| | - Josefina Ana Eva Cristóbal-Miguez
- Inorganic and Analytic Chemistry Cathedra, Department of Natural Resources and Environment, Faculty of Agronomy, University of Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina; (J.A.E.C.-M.); (A.R.G.); or (G.C.S.)
| | - Eliana Cárdenas-Aguiar
- AQUATERRA Reseach Group, Interdisciplinary Center for Chemistry and Biology, CICA, University of A Coruna, As Carballeiras, s/n Campus de Elviña, 15008 Coruna, Spain;
| | - Ana Rosa García
- Inorganic and Analytic Chemistry Cathedra, Department of Natural Resources and Environment, Faculty of Agronomy, University of Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina; (J.A.E.C.-M.); (A.R.G.); or (G.C.S.)
| | - Antonio Paz-González
- AQUATERRA Reseach Group, Interdisciplinary Center for Chemistry and Biology, CICA, University of A Coruna, As Carballeiras, s/n Campus de Elviña, 15008 Coruna, Spain;
| | - Gabriela Cristina Sarti
- Inorganic and Analytic Chemistry Cathedra, Department of Natural Resources and Environment, Faculty of Agronomy, University of Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina; (J.A.E.C.-M.); (A.R.G.); or (G.C.S.)
- AQUATERRA Reseach Group, Interdisciplinary Center for Chemistry and Biology, CICA, University of A Coruna, As Carballeiras, s/n Campus de Elviña, 15008 Coruna, Spain;
| |
Collapse
|
4
|
Anckaert A, Declerck S, Poussart LA, Lambert S, Helmus C, Boubsi F, Steels S, Argüelles-Arias A, Calonne-Salmon M, Ongena M. The biology and chemistry of a mutualism between a soil bacterium and a mycorrhizal fungus. Curr Biol 2024; 34:4934-4950.e8. [PMID: 39378881 DOI: 10.1016/j.cub.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi (e.g., Rhizophagus species) recruit specific bacterial species in their hyphosphere. However, the chemical interplay and the mutual benefit of this intricate partnership have not been investigated yet, especially as it involves bacteria known as strong producers of antifungal compounds such as Bacillus velezensis. Here, we show that the soil-dwelling B. velezensis migrates along the hyphal network of the AM fungus R. irregularis, forming biofilms and inducing cytoplasmic flow in the AM fungus that contributes to host plant root colonization by the bacterium. During hyphosphere colonization, R. irregularis modulates the biosynthesis of specialized metabolites in B. velezensis to ensure stable coexistence and as a mechanism to ward off mycoparasitic fungi and bacteria. These mutual benefits are extended into a tripartite context via the provision of enhanced protection to the host plant through the induction of systemic resistance.
Collapse
Affiliation(s)
- Adrien Anckaert
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique.
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
| | - Laure-Anne Poussart
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Stéphanie Lambert
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Catherine Helmus
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Farah Boubsi
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Sébastien Steels
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Anthony Argüelles-Arias
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique.
| |
Collapse
|
5
|
Zhang B, Hu X, Zhao D, Wang Y, Qu J, Tao Y, Kang Z, Yu H, Zhang J, Zhang Y. Harnessing microbial biofilms in soil ecosystems: Enhancing nutrient cycling, stress resilience, and sustainable agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122973. [PMID: 39437688 DOI: 10.1016/j.jenvman.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Soil ecosystems are complex networks of microorganisms that play pivotal roles in nutrient cycling, stress resilience, and the provision of ecosystem services. Among these microbial communities, soil biofilms, and complex aggregations of microorganisms embedded within extracellular polymeric substances (EPS) exert significant influence on soil health and function. This review delves into the dynamics of soil biofilms, highlighting their structural intricacies and the mechanisms by which they facilitate nutrient cycling, and discusses how biofilms enhance the degradation of pollutants through the action of extracellular enzymes and horizontal gene transfer, contributing to soil detoxification and fertility. Furthermore, the role of soil biofilms in stress resilience is underscored, as they form symbiotic relationships with plants, bolstering their growth and resistance to environmental stressors. The review also explores the ecological functions of biofilms in enhancing soil structure stability by promoting aggregate formation, which is crucial for water retention and aeration. By integrating these insights, we aim to provide a comprehensive understanding of the multifaceted benefits of biofilms in soil ecosystems. This knowledge is essential for developing strategies to manipulate soil biofilms to improve agricultural productivity and ecological sustainability. This review also identifies research gaps and emphasizes the need for practical applications of biofilms in sustainable agriculture.
Collapse
Affiliation(s)
- Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaoying Hu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Donglin Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuping Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhonghui Kang
- Longjiang Environmental Protection Group Co.,Ltd., Harbin, 150050, PR China
| | - Hongqi Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingyi Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
6
|
Thomas BO, Lechner SL, Ross HC, Joris BR, Glick BR, Stegelmeier AA. Friends and Foes: Bacteria of the Hydroponic Plant Microbiome. PLANTS (BASEL, SWITZERLAND) 2024; 13:3069. [PMID: 39519984 PMCID: PMC11548230 DOI: 10.3390/plants13213069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Hydroponic greenhouses and vertical farms provide an alternative crop production strategy in regions that experience low temperatures, suboptimal sunlight, or inadequate soil quality. However, hydroponic systems are soilless and, therefore, have vastly different bacterial microbiota than plants grown in soil. This review highlights some of the most prevalent plant growth-promoting bacteria (PGPB) and destructive phytopathogenic bacteria that dominate hydroponic systems. A complete understanding of which bacteria increase hydroponic crop yields and ways to mitigate crop loss from disease are critical to advancing microbiome research. The section focussing on plant growth-promoting bacteria highlights putative biological pathways for growth promotion and evidence of increased crop productivity in hydroponic systems by these organisms. Seven genera are examined in detail, including Pseudomonas, Bacillus, Azospirillum, Azotobacter, Rhizobium, Paenibacillus, and Paraburkholderia. In contrast, the review of hydroponic phytopathogens explores the mechanisms of disease, studies of disease incidence in greenhouse crops, and disease control strategies. Economically relevant diseases caused by Xanthomonas, Erwinia, Agrobacterium, Ralstonia, Clavibacter, Pectobacterium, and Pseudomonas are discussed. The conditions that make Pseudomonas both a friend and a foe, depending on the species, environment, and gene expression, provide insights into the complexity of plant-bacterial interactions. By amalgamating information on both beneficial and pathogenic bacteria in hydroponics, researchers and greenhouse growers can be better informed on how bacteria impact modern crop production systems.
Collapse
Affiliation(s)
- Brianna O. Thomas
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | - Shelby L. Lechner
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | - Hannah C. Ross
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada (B.R.J.)
| | - Benjamin R. Joris
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada (B.R.J.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | | |
Collapse
|
7
|
Li X, Wang J, Shen H, Xing C, Kong L, Song Y, Hou W, Gao J, Jiang Y, Chen C. Biocontrol and growth promotion potential of Bacillus velezensis NT35 on Panax ginseng based on the multifunctional effect. Front Microbiol 2024; 15:1447488. [PMID: 39139378 PMCID: PMC11319169 DOI: 10.3389/fmicb.2024.1447488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
The Bacillus velezensis strain NT35, which has strong biocontrol ability, was isolated from the rhizosphere soil of Panax ginseng. The antifungal effects of the NT35 strain against the mycelium and spore growth of Ilyonectria robusta, which causes ginseng rusty root rot, were determined. The inhibitory rate of I. robusta mycelial growth was 94.12% when the concentration of the NT35 strain was 107 CFU·mL-1, and the inhibitory rates of I. robusta sporulation and spore germination reached 100 and 90.31%, respectively, when the concentration of the NT35 strain was 104 and 108 CFU·mL-1, respectively. Strain NT35 had good prevention effects against ginseng rust rot indoors and in the field with the control effect 51.99%, which was similar to that of commercial chemical and biocontrol agents. The labeled strain NT35-Rif160-Stre400 was obtained and colonized ginseng roots, leaves, stems and rhizosphere soil after 90 days. Bacillus velezensis NT35 can induce a significant increase in the expression of five defensive enzyme-encoding genes and ginsenoside biosynthesis-related genes in ginseng. In the rhizosphere soil, the four soil enzymes and the microbial community improved during different periods of ginseng growth in response to the biocontrol strain NT35. The NT35 strain can recruit several beneficial bacteria, such as Luteimonas, Nocardioides, Sphingomonas, and Gemmatimonas, from the rhizosphere soil and reduce the relative abundance of Ilyonectria, Fusarium, Neonectria and Dactylonectria, which cause root rot and rusty root rot in ginseng plants. The disease indices were significantly negatively correlated with the abundances of Sphingomonas and Trichoderma. Additionally, Sphingomonadales, Sphingomonadaceae and actinomycetes were significantly enriched under the NT35 treatment according to LEfSe analysis. These results lay the foundation for the development of a biological agent based on strain NT35.
Collapse
Affiliation(s)
- Xueqing Li
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Jiarui Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Hang Shen
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Chenxi Xing
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Lingxin Kong
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yu Song
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Wanpeng Hou
- Jilin Shenwang Plant Protection Co., Ltd., Fusong, China
| | - Jie Gao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yun Jiang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Changqing Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Miljaković D, Marinković J, Tamindžić G, Milošević D, Ignjatov M, Karačić V, Jakšić S. Bio-Priming with Bacillus Isolates Suppresses Seed Infection and Improves the Germination of Garden Peas in the Presence of Fusarium Strains. J Fungi (Basel) 2024; 10:358. [PMID: 38786713 PMCID: PMC11122518 DOI: 10.3390/jof10050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Seed infection caused by Fusarium spp. is one of the major threats to the seed quality and yield of agricultural crops, including garden peas. The use of Bacillus spp. with multiple antagonistic and plant growth-promoting (PGP) abilities represents a potential disease control strategy. This study was performed to evaluate the biocontrol potential of new Bacillus spp. rhizosphere isolates against two Fusarium strains affecting garden peas. Six Bacillus isolates identified by 16S rDNA sequencing as B. velezensis (B42), B. subtilis (B43), B. mojavensis (B44, B46), B. amyloliquefaciens (B50), and B. halotolerans (B66) showed the highest in vitro inhibition of F. proliferatum PS1 and F. equiseti PS18 growth (over 40%). The selected Bacillus isolates possessed biosynthetic genes for endoglucanase (B42, B43, B50), surfactin (B43, B44, B46), fengycin (B44, B46), bacillomycin D (B42, B50), and iturin (B42), and were able to produce indole-3-acetic acid (IAA), siderophores, and cellulase. Two isolates, B. subtilis B43 and B. amyloliquefaciens B50, had the highest effect on final germination, shoot length, root length, shoot dry weight, root dry weight, and seedling vigor index of garden peas as compared to the control. Their individual or combined application reduced seed infection and increased seed germination in the presence of F. proliferatum PS1 and F. equiseti PS18, both after seed inoculation and seed bio-priming. The most promising results were obtained in the cases of the bacterial consortium, seed bio-priming, and the more pathogenic strain PS18. The novel Bacillus isolates may be potential biocontrol agents intended for the management of Fusarium seed-borne diseases.
Collapse
Affiliation(s)
- Dragana Miljaković
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Jelena Marinković
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Gordana Tamindžić
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Dragana Milošević
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Maja Ignjatov
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Vasiljka Karačić
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia;
| | - Snežana Jakšić
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| |
Collapse
|
9
|
Wang Z, Zhang W, Wang Z, Zhang Z, Liu Y, Liu S, Wu Q, Saiding E, Han J, Zhou J, Xu J, Yi X, Zhang Z, Wang R, Su X. Analysis of antimicrobial biological activity of a marine Bacillus velezensis NDB. Arch Microbiol 2024; 206:131. [PMID: 38421449 DOI: 10.1007/s00203-024-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
A new strain of Bacillus velezensis NDB was isolated from Xiangshan Harbor and antibacterial test revealed antibacterial activity of this strain against 12 major pathogenic bacteria. The whole genome of the bacterium was sequenced and found to consist of a 4,214,838 bp circular chromosome and a 7410 bp circular plasmid. Furthermore, it was predicted by AntiSMASH and BAGEL4 to have 12 clusters of secondary metabolism genes for the synthesis of the inhibitors, fengycin, bacillomycin, macrolactin H, bacillaene, and difficidin, and there were also five clusters encoding potentially novel antimicrobial substances, as well as three bacteriocin biosynthesis gene clusters of amylocyclicin, ComX1, and LCI. qRT-PCR revealed significant up-regulation of antimicrobial secondary metabolite synthesis genes after 24 h of antagonism with pathogenic bacteria. Furthermore, MALDI-TOF mass spectrometry revealed that it can secrete surfactin non-ribosomal peptide synthase and polyketide synthase to exert antibacterial effects. GC-MS was used to analyze methanol extract of B. velezensis NDB, a total of 68 compounds were identified and these metabolites include 16 amino acids, 17 acids, 3 amines, 11 sugars, 11 alcohols, 1 ester, and 9 other compounds which can inhibit pathogenic bacteria by initiating the antibiotic secretion pathway. A comparative genomic analysis of gene families showed that the specificity of B. velezensis NDB was mainly reflected in environmental adaptability. Overall, this research on B. velezensis NDB provides the basis for elucidating its biocontrol effect and promotes its future application as a probiotic.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Wenwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Zhixuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Yan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Songyi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Qiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Emilaguli Saiding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jiajie Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Xianghua Yi
- Xiangshan Lanshang Marine Technology Co., Ltd, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| | - Rixin Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| |
Collapse
|
10
|
Li Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Biofilms formation in plant growth-promoting bacteria for alleviating agro-environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167774. [PMID: 37848152 DOI: 10.1016/j.scitotenv.2023.167774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Biofilm formation represents a pivotal and adaptable trait among microorganisms within natural environments. This attribute plays a multifaceted role across diverse contexts, including environmental, aquatic, industrial, and medical systems. While previous research has primarily focused on the adverse impacts of biofilms, harnessing their potential effectively could confer substantial advantages to humanity. In the face of escalating environmental pressures (e.g., drought, salinity, extreme temperatures, and heavy metal pollution), which jeopardize global crop yields, enhancing crop stress tolerance becomes a paramount endeavor for restoring sufficient food production. Recently, biofilm-forming plant growth-promoting bacteria (PGPB) have emerged as promising candidates for agricultural application. These biofilms are evidence of microorganism colonization on plant roots. Their remarkable stress resilience empowers crops to thrive and yield even in harsh conditions. This is accomplished through increased root colonization, improved soil properties, and the synthesis of valuable secondary metabolites (e.g., ACC deaminase, acetin, 2,3-butanediol, proline, etc.). This article elucidates the mechanisms underpinning the role of biofilm-forming PGPB in bolstering plant growth amidst environmental challenges. Furthermore, it explores the tangible applications of these biofilms in agriculture and delves into strategies for manipulating biofilm formation to extract maximal benefits in practical crop production scenarios.
Collapse
Affiliation(s)
- Yujia Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai 602105, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
11
|
Yang F, Jiang H, Ma K, Wang X, Liang S, Cai Y, Jing Y, Tian B, Shi X. Genome sequencing and analysis of Bacillus velezensis VJH504 reveal biocontrol mechanism against cucumber Fusarium wilt. Front Microbiol 2023; 14:1279695. [PMID: 37901818 PMCID: PMC10602789 DOI: 10.3389/fmicb.2023.1279695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
One major issue in reducing cucumber yield is the destructive disease Cucumber (Cucumis sativus L.) wilt disease caused by Fusarium oxysporum f. sp. cucumerinum (Foc). When using the isolate VJH504 isolated from cucumber rhizosphere soil and identified as Bacillus velezensis, the growth of Foc in the double culture experiment was effectively inhibited. Phenotypic, phylogenetic, and genomic analyses were conducted to enhance understanding of its biocontrol mechanism. According to the result of the phenotype analysis, B. velezensis VJH504 could inhibit cucumber fusarium wilt disease both in vitro and in vivo, and significantly promote cucumber seed germination and seedling growth. Additionally, the tests of growth-promoting and biocontrol characteristics revealed the secretion of proteases, amylases, β-1,3-glucanases, cellulases, as well as siderophores and indole-3-acetic acid by B. velezensis VJH504. Using the PacBio Sequel II system, we applied the complete genome sequencing for B. velezensis VJH504 and obtained a single circular chromosome with a size of 3.79 Mb. A phylogenetic tree was constructed based on the 16S rRNA gene sequences of B. velezensis VJH504 and 13 other Bacillus species, and Average Nucleotide Identity (ANI) analysis was performed using their whole-genome sequences, confirming isolateVJH504 as B. velezensis. Following this, based on the complete genome sequence od B. velezensis VJH504, specific functional analysis, Carbohydrate-Active Enzymes (CAZymes) analysis, and secondary metabolite analysis were carried out, predicting organism's abilities for biofilm formation, production of antifungal CAZymes, and synthesis of antagonistic secondary metabolites against pathogens. Afterwards, a comparative genomic analysis was performed between B. velezensis VJH504 and three other B. velezensis strains, revealing subtle differences in their genomic sequences and suggesting the potential for the discovery of novel antimicrobial substances in B. velezensis VJH504. In conclusion, the mechanism of B. velezensis VJH504 in controlling cucumber fusarium wilt was predicted to appear that B. velezensis VJH504is a promising biocontrol agent, showcasing excellent application potential in agricultural production.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Huayan Jiang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Kai Ma
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shen Liang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuxin Cai
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Yancai Jing
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Baoming Tian
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanjie Shi
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Cao Y, Wang Y, Gui C, Nguvo KJ, Ma L, Wang Q, Shen Q, Zhang R, Gao X. Beneficial Rhizobacterium Triggers Induced Systemic Resistance of Maize to Gibberella Stalk Rot via Calcium Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:516-528. [PMID: 37188493 DOI: 10.1094/mpmi-08-22-0173-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Gibberella stalk rot (GSR) caused by the fungus Fusarium graminearum is a devastating disease of maize (Zea mays L.), but we lack efficient methods to control this disease. Biological control agents, including beneficial microorganisms, can be used as an effective and eco-friendly approach to manage crop diseases. For example, Bacillus velezensis SQR9, a bacterial strain isolated from the rhizosphere of cucumber plants, promotes growth and suppresses diseases in several plant species. However, it is not known whether and how SQR9 affects maize resistance to GSR. In this study, we found that treatment with SQR9 increased maize resistance to GSR by activating maize induced systemic resistance (ISR). RNA-seq and quantitative reverse transcription-PCR analysis showed that phenylpropanoid biosynthesis, amino acid metabolism, and plant-pathogen interaction pathways were enriched in the root upon colonization by SQR9. Also, several genes associated with calcium signaling pathways were up-regulated by SQR9 treatment. However, the calcium signaling inhibitor LaCl3 weakened the SQR9-activated ISR. Our data suggest that the calcium signaling pathway contributes to maize GSR resistance via the activation of ISR induced by SQR9. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Yinying Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Cuilin Gui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Kilemi Jessee Nguvo
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Liang Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Qing Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Qirong Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Ruifu Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, Jiangsu Province, 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, P.R. China
| |
Collapse
|
13
|
Sifton MA, Smith SM, Thomas SC. Biochar-biofertilizer combinations enhance growth and nutrient uptake in silver maple grown in an urban soil. PLoS One 2023; 18:e0288291. [PMID: 37463169 PMCID: PMC10353828 DOI: 10.1371/journal.pone.0288291] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
Declining tree health status due to pollutant impacts and nutrient imbalance is widespread in urban forests; however, chemical fertilizer use is increasingly avoided to reduce eutrophication impacts. Biochar (pyrolyzed organic waste) has been advocated as an alternative soil amendment, but biochar alone generally reduces plant N availability. The combination of biochar and either organic forms of N or Plant Growth Promoting Microbes (PGPMs) as biofertilizers may address these challenges. We examined the effects of two wood biochar types with Bacillus velezensis and an inactivated yeast (IY) biofertilizer in a three-month factorial greenhouse experiment with Acer saccharinum L. (silver maple) saplings grown in a representative urban soil. All treatments combining biochars with biofertilizers significantly increased sapling growth, with up to a 91% increase in biomass relative to controls. Growth and physiological responses were closely related to nutrient uptake patterns, with nutrient vector analyses indicating that combined biochar and biofertilizer treatments effectively addressed nutrient limitations of both macronutrients (N, P, K, Mg, Ca), and micronutrients (B, Fe, Mn, Mo, Na, S, and Zn). Biochar-biofertilizer treatments also reduced foliar concentrations of Cu, suggesting potential to mitigate toxic metal impacts common in urban forestry. We conclude that selected combinations of biochar and biofertilizers have substantial promise to address common soil limitations to tree performance in urban settings.
Collapse
Affiliation(s)
- Melanie A Sifton
- Institute of Forestry and Conservation, University of Toronto, Toronto, ON, Canada
| | - Sandy M Smith
- Institute of Forestry and Conservation, University of Toronto, Toronto, ON, Canada
| | - Sean C Thomas
- Institute of Forestry and Conservation, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Thanh Tam LT, Jähne J, Luong PT, Phuong Thao LT, Nhat LM, Blumenscheit C, Schneider A, Blom J, Kim Chung LT, Anh Minh PL, Thanh HM, Hoat TX, Hoat PC, Son TC, Weinmann M, Herfort S, Vater J, Van Liem N, Schweder T, Lasch P, Borriss R. Two plant-associated Bacillus velezensis strains selected after genome analysis, metabolite profiling, and with proved biocontrol potential, were enhancing harvest yield of coffee and black pepper in large field trials. FRONTIERS IN PLANT SCIENCE 2023; 14:1194887. [PMID: 37426979 PMCID: PMC10327441 DOI: 10.3389/fpls.2023.1194887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Elimination of chemically synthesized pesticides, such as fungicides and nematicides, in agricultural products is a key to successful practice of the Vietnamese agriculture. We describe here the route for developing successful biostimulants based on members of the Bacillus subtilis species complex. A number of endospore-forming Gram-positive bacterial strains with antagonistic action against plant pathogens were isolated from Vietnamese crop plants. Based on their draft genome sequence, thirty of them were assigned to the Bacillus subtilis species complex. Most of them were assigned to the species Bacillus velezensis. Whole genome sequencing of strains BT2.4 and BP1.2A corroborated their close relatedness to B. velezensis FZB42, the model strain for Gram-positive plant growth-promoting bacteria. Genome mining revealed that at least 15 natural product biosynthesis gene clusters (BGCs) are well conserved in all B. velezensis strains. In total, 36 different BGCs were identified in the genomes of the strains representing B. velezensis, B. subtilis, Bacillus tequilensis, and Bacillus. altitudinis. In vitro and in vivo assays demonstrated the potential of the B. velezensis strains to enhance plant growth and to suppress phytopathogenic fungi and nematodes. Due to their promising potential to stimulate plant growth and to support plant health, the B. velezensis strains TL7 and S1 were selected as starting material for the development of novel biostimulants, and biocontrol agents efficient in protecting the important Vietnamese crop plants black pepper and coffee against phytopathogens. The results of the large-scale field trials performed in the Central Highlands in Vietnam corroborated that TL7 and S1 are efficient in stimulating plant growth and protecting plant health in large-scale applications. It was shown that treatment with both bioformulations resulted in prevention of the pathogenic pressure exerted by nematodes, fungi, and oomycetes, and increased harvest yield in coffee, and pepper.
Collapse
Affiliation(s)
- Le Thi Thanh Tam
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Jennifer Jähne
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Pham Thi Luong
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Le Thi Phuong Thao
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Le Mai Nhat
- Science and International Co-operation Department, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Christian Blumenscheit
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andy Schneider
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Le Thi Kim Chung
- Institute for Preventive Medicine and Public Health, Hanoi Medical University, Ha Noi, Vietnam
| | - Pham Le Anh Minh
- Department of Biotechnology, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Ha Minh Thanh
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Trinh Xuan Hoat
- Science and International Co-operation Department, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Pham Cong Hoat
- Department of Science and Technology for Economic Technical Branches, Ministry of Science and Technology (MOST), Hanoi, Vietnam
| | - Tran Cao Son
- Laboratory of Food Toxicology and Allergens, National Institute for Food Control (NIFC), Ha Noi, Vietnam
| | - Markus Weinmann
- Ernährungsphysiologie Der Kulturpflanzen, University of Hohenheim, Stuttgart, Germany
| | - Stefanie Herfort
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Joachim Vater
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Nguyen Van Liem
- Science and International Co-operation Department, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany
| | - Peter Lasch
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Rainer Borriss
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| |
Collapse
|
15
|
De la Cruz-Rodríguez Y, Adrián-López J, Martínez-López J, Neri-Márquez BI, García-Pineda E, Alvarado-Gutiérrez A, Fraire-Velázquez S. Biosynthetic Gene Clusters in Sequenced Genomes of Four Contrasting Rhizobacteria in Phytopathogen Inhibition and Interaction with Capsicum annuum Roots. Microbiol Spectr 2023; 11:e0307222. [PMID: 37222590 PMCID: PMC10269915 DOI: 10.1128/spectrum.03072-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Through screening of rhizobacteria, species that effectively suppress phytopathogens and/or promote plant growth are found. Genome sequencing is a crucial step in obtaining a complete characterization of microorganisms for biotechnological applications. This study aimed to sequence the genomes of four rhizobacteria that differ in their inhibition of four root pathogens and in their interaction with chili pepper roots to identify the species and analyze differences in the biosynthetic gene clusters (BGCs) for antibiotic metabolites and to determine possible phenotype-genotype correlations. Results from sequencing and genome alignment identified two bacteria as Paenibacillus polymyxa, one as Kocuria polaris, and one that was previously sequenced as Bacillus velezensis. Analysis with antiSMASH and PRISM tools showed that B. velezensis 2A-2B, the strain with the best performance of referred characteristics, had 13 BGCs, including those related to surfactin, fengycin, and macrolactin, not shared with the other bacteria, whereas P. polymyxa 2A-2A and 3A-25AI, with up to 31 BGCs, showed lower pathogen inhibition and plant hostility; K. polaris showed the least antifungal capacity. P. polymyxa and B. velezensis had the highest number of BGCs for nonribosomal peptides and polyketides. In conclusion, the 13 BGCs in the genome of B. velezensis 2A-2B that were not present in the other bacteria could explain its effective antifungal capacity and could also contribute to its friendly interaction with chili pepper roots. The high number of other BGCs for nonribosomal peptides and polyketide shared by the four bacteria contributed much less to phenotypic differences. IMPORTANCE To advance the characterization of a microorganism as a biocontrol agent against phytopathogens, it is highly recommended to analyze the potential of the profile of secondary metabolites as antibiotics that it produces to counteract pathogens. Some specific metabolites have positive impacts in plants. By analyzing sequenced genomes with bioinformatic tools, such as antiSMASH and PRISM, outstanding bacterial strains with high potential to inhibit phytopathogens and/or promote plant growth can be quickly selected to confirm and expand our knowledge of BGCs of great value in phytopathology.
Collapse
Affiliation(s)
- Yumiko De la Cruz-Rodríguez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Jesús Adrián-López
- Lab. MicroRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Jazmín Martínez-López
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Bibiana Itzel Neri-Márquez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | | | - Alejandro Alvarado-Gutiérrez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Saúl Fraire-Velázquez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
16
|
Exploring the Role of Salicylic Acid in Regulating the Colonization Ability of Bacillus subtilis 26D in Potato Plants and Defense against Phytophthora infestans. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Plant colonization by endophytic bacteria is mediated by different biomolecules that cause dynamic changes in gene expression of both bacteria and plant. Phytohormones, in particular, salicylic acid, play a key role in the regulation of endophytic colonization and diversity of bacteria in methaphytobiome. For the first time it was found that salicylic acid influenced motility in biofilms and transcription of the surfactin synthetase gene of the endophytic strain Bacillus subtilis 26D in vitro. Treatment of Solanum tuberosum plants with salicylic acid, along with B. subtilis 26D, increased the number of endophytic cells of bacteria in potato internal tissues and level of transcripts of bacterial surfactin synthetase gene and decreased transcription of plant PR genes on the stage of colonisation with endophytes. Thus, the production of surfactin plays an important role in endophytic colonization of plants, and salicylic acid has an ability to influence this mechanism. Here we firstly show that plants treated with salicylic acid and B. subtilis 26D showed enhanced resistance to the late blight pathogen Phytophthora infestans, which was accompanied by increase in transcriptional activity of plant PR-genes and bacterial surfactin synthetase gene after pathogen inoculation. Therefore, it is suggested that salicylic acid can modulate physiological status of the whole plant–endophyte system and improve biocontrol potential of endophytic strains.
Collapse
|
17
|
Zhang J, Huang X, Hou Y, Xia X, Zhu Z, Huang A, Feng S, Li P, Shi L, Dong P. Isolation and Screening of Antagonistic Endophytes against Phytophthora infestans and Preliminary Exploration on Anti-oomycete Mechanism of Bacillus velezensis 6-5. PLANTS (BASEL, SWITZERLAND) 2023; 12:909. [PMID: 36840257 PMCID: PMC9962363 DOI: 10.3390/plants12040909] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Phytophthora infestans, the notorious pathogen of potato late blight, leads to a severe decline in potato yields and even harvest failure. We isolated 201 endophytic isolates from healthy root tissues of potatoes, among which 41 showed strong antagonistic activity against P. infestans. Further, the tolerance to stress and the potential application against potato late blight of these antagonistic isolates were tested. Most of them were extremely tolerant to stresses such as acid-alkali, temperature, UV, salt, and heavy metal stress. However, some antagonistic isolates with excellent stress tolerance might be pathogenic to potatoes. Combining the screening results, a total of 14 endophytes had excellent comprehensive performance in all the tests. In this paper, the endophyte 6-5 was selected among them for the preliminary exploration of the anti-oomycete mechanism. Analysis of the 16S rDNA sequence revealed that 6-5 had a high homology to the corresponding sequence of Bacillus velezensis (99.72%) from the NCBI database. Endophyte 6-5 significantly inhibited the mycelial growth of P. infestans, with an inhibition rate of over 90% in vitro assays, and deformed the hyphal phenotype of P. infestans. In addition, endophyte 6-5 could secrete protease and cellulase, and produce antagonistic substances with high thermal stability, which might be helpful to its antagonistic activity against P. infestans. Furthermore, it was demonstrated that 6-5 had the ability to improve the resistance of potato tubers to late blight. In short, our study described the process of isolating and screening endophytes with antagonistic activity against P. infestans from potato roots, and further explored the potential of biocontrol candidate strain 6-5 in potato late blight control.
Collapse
Affiliation(s)
- Jiaomei Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| | - Xiaoqing Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuqin Hou
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiangning Xia
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhiming Zhu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Airong Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| | - Shun Feng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Peihua Li
- College of Agronomy, Xichang University, Xichang 615013, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| |
Collapse
|
18
|
Plant Growth-Promoting Bacteria (PGPB) with Biofilm-Forming Ability: A Multifaceted Agent for Sustainable Agriculture. DIVERSITY 2023. [DOI: 10.3390/d15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Plant growth-promoting bacteria (PGPB) enhance plant growth, as well as protect plants from several biotic and abiotic stresses through a variety of mechanisms. Therefore, the exploitation of PGPB in agriculture is feasible as it offers sustainable and eco-friendly approaches to maintaining soil health while increasing crop productivity. The vital key of PGPB application in agriculture is its effectiveness in colonizing plant roots and the phyllosphere, and in developing a protective umbrella through the formation of microcolonies and biofilms. Biofilms offer several benefits to PGPB, such as enhancing resistance to adverse environmental conditions, protecting against pathogens, improving the acquisition of nutrients released in the plant environment, and facilitating beneficial bacteria–plant interactions. Therefore, bacterial biofilms can successfully compete with other microorganisms found on plant surfaces. In addition, plant-associated PGPB biofilms are capable of protecting colonization sites, cycling nutrients, enhancing pathogen defenses, and increasing tolerance to abiotic stresses, thereby increasing agricultural productivity and crop yields. This review highlights the role of biofilms in bacterial colonization of plant surfaces and the strategies used by biofilm-forming PGPB. Moreover, the factors influencing PGPB biofilm formation at plant root and shoot interfaces are critically discussed. This will pave the role of PGPB biofilms in developing bacterial formulations and addressing the challenges related to their efficacy and competence in agriculture for sustainability.
Collapse
|
19
|
Dmitrović S, Pajčin I, Vlajkov V, Grahovac M, Jokić A, Grahovac J. Dairy and Wine Industry Effluents as Alternative Media for the Production of Bacillus-Based Biocontrol Agents. Bioengineering (Basel) 2022; 9:663. [PMID: 36354577 PMCID: PMC9687624 DOI: 10.3390/bioengineering9110663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 01/07/2024] Open
Abstract
Food industry effluents represent one of the major concerns when it comes to environmental impact; hence, their valorization through different chemical and biological routes has been suggested as a possible solution. The vast amount of organic and inorganic nutrients present in food industry effluents makes them suitable substrates for microbial growth. This study suggests two valorization routes for whey as dairy industry effluent and flotation wastewater from the wine industry through microbial conversion to biocontrol agents as value-added products. Cultivations of the biocontrol strain Bacillus sp. BioSol021 were performed in a 16 L bioreactor to monitor the bioprocess course and investigate bioprocess kinetics in terms of microbial growth, sugar substrate consumption and surfactin synthesis, as an antimicrobial lipopeptide. The produced biocontrol agents showed high levels of biocontrol activity against mycotoxigenic strains of Aspergillus flavus, followed by a significant reduction of sugar load of the investigated effluents by the producing microorganisms. With proven high potential of whey and winery flotation wastewater to be used as substrates for microbial growth, this study provides grounds for further optimization of the suggested valorization routes, mostly in terms of bioprocess conditions to achieve maximal techno-economical feasibility, energy saving and maximal reduction of effluents' organic and inorganic burden.
Collapse
Affiliation(s)
- Selena Dmitrović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ivana Pajčin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Aleksandar Jokić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
20
|
Raouani NEH, Claverie E, Randoux B, Chaveriat L, Yaseen Y, Yada B, Martin P, Cabrera JC, Jacques P, Reignault P, Magnin-Robert M, Lounès-Hadj Sahraoui A. Bio-Inspired Rhamnolipids, Cyclic Lipopeptides and a Chito-Oligosaccharide Confer Protection against Wheat Powdery Mildew and Inhibit Conidia Germination. Molecules 2022; 27:molecules27196672. [PMID: 36235207 PMCID: PMC9571057 DOI: 10.3390/molecules27196672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Plant protection is mainly based on the application of synthetic pesticides to limit yield losses resulting from diseases. However, the use of more eco-friendly strategies for sustainable plant protection has become a necessity that could contribute to controlling pathogens through a direct antimicrobial effect and/or an induction of plant resistance. Three different families of natural or bioinspired compounds originated from bacterial or fungal strains have been evaluated to protect wheat against powdery mildew, caused by the biotrophic Blumeria graminis f.sp. tritici (Bgt). Thus, three bio-inspired mono-rhamnolipids (smRLs), three cyclic lipopeptides (CLPs, mycosubtilin (M), fengycin (F), surfactin (S)) applied individually and in mixtures (M + F and M + F + S), as well as a chitosan oligosaccharide (COS) BioA187 were tested against Bgt, in planta and in vitro. Only the three smRLs (Rh-Eth-C12, Rh-Est-C12 and Rh-Succ-C12), the two CLP mixtures and the BioA187 led to a partial protection of wheat against Bgt. The higher inhibitor effects on the germination of Bgt spores in vitro were observed from smRLs Rh-Eth-C12 and Rh-Succ-C12, mycosubtilin and the two CLP mixtures. Taking together, these results revealed that such molecules could constitute promising tools for a more eco-friendly agriculture.
Collapse
Affiliation(s)
- Nour El Houda Raouani
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
| | - Elodie Claverie
- Materia Nova ASBL, Avenue du Champ de Mars 6, 7000 Mons, Belgium
| | - Béatrice Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
| | - Ludovic Chaveriat
- ULR 7519—Unité Transformations & Agroressources, Université d’Artois, UnilaSalle, CEDEX CS 20819, 62408 Béthune, France
| | - Yazen Yaseen
- Lipofabrik, Parc d’Activités du Mélantois, 917 Rue des Saules, 59810 Lesquin, France
| | - Bopha Yada
- Materia Nova ASBL, Avenue du Champ de Mars 6, 7000 Mons, Belgium
| | - Patrick Martin
- ULR 7519—Unité Transformations & Agroressources, Université d’Artois, UnilaSalle, CEDEX CS 20819, 62408 Béthune, France
| | | | - Philippe Jacques
- JUNIA, Joint Research Unit UMRt 1158-INRAE, BioEcoAgro, Équipe Métabolites Spécialisés d’Origine Végétale, University Lille, INRAE, University Liège, UPJV, University Artois, ULCO, 48, Boulevard Vauban, CEDEX BP 41290, 59014 Lille, France
- Joint Research Unit 1158 BioEcoAgro, Équipe Métabolites Spécialisés d’Origine Végétale, Microbial Processes and Interactions, TERRA Research Centre, Gembloux Agro-Bio Tech, Université de Liège, 5030 Gembloux, Belgium
| | - Philippe Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
| | - Maryline Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
- Correspondence: (M.M.-R.); (A.L.-H.S.)
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
- Correspondence: (M.M.-R.); (A.L.-H.S.)
| |
Collapse
|
21
|
Alfiky A, L'Haridon F, Abou-Mansour E, Weisskopf L. Disease Inhibiting Effect of Strain Bacillus subtilis EG21 and Its Metabolites Against Potato Pathogens Phytophthora infestans and Rhizoctonia solani. PHYTOPATHOLOGY 2022; 112:2099-2109. [PMID: 35536116 DOI: 10.1094/phyto-12-21-0530-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Potato production worldwide is plagued by several disease-causing pathogens that result in crop and economic losses estimated to billions of dollars each year. To this day, synthetic chemical applications remain the most widespread control strategy despite their negative effects on human and environmental health. Therefore, obtainment of superior biocontrol agents or their naturally produced metabolites to replace fungicides or to be integrated into practical pest management strategies has become one of the main targets in modern agriculture. Our main focus in the present study was to elucidate the antagonistic potential of a new strain identified as Bacillus subtilis EG21 against potato pathogens Phytophthora infestans and Rhizoctonia solani using several in vitro screening assays. Microscopic examination of the interaction between EG21 and R. solani showed extended damage in fungal mycelium, while EG21 metabolites displayed strong anti-oomycete and zoosporecidal effect on P. infestans. Mass spectrometry (MS) analysis revealed that EG21 produced antifungal and anti-oomycete cyclic lipopeptides surfactins (C12 to C19). Further characterization of EG21 confirmed its ability to produce siderophores and the extracellular lytic enzymes cellulase, pectinase and chitinase. The antifungal activity of EG21 cell-free culture filtrate (CF) was found to be stable at high-temperature/pressure treatment and extreme pH values and was not affected by proteinase K treatment. Disease-inhibiting effect of EG21 CF against P. infestans and R. solani infection was confirmed using potato leaves and tubers, respectively. Biotechnological applications of using microbial agents and their bioproducts for crop protection hold great promise to develop into effective, environment-friendly and sustainable biocontrol strategies. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alsayed Alfiky
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, CH-1700 Fribourg, Switzerland
- Genetics Department, Faculty of Agriculture, Tanta University, Tanta, 31527 Egypt
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, CH-1700 Fribourg, Switzerland
| | - Eliane Abou-Mansour
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, CH-1700 Fribourg, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, CH-1700 Fribourg, Switzerland
| |
Collapse
|
22
|
Chen Q, Qiu Y, Yuan Y, Wang K, Wang H. Biocontrol activity and action mechanism of Bacillus velezensis strain SDTB038 against Fusarium crown and root rot of tomato. Front Microbiol 2022; 13:994716. [PMID: 36118232 PMCID: PMC9479544 DOI: 10.3389/fmicb.2022.994716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium crown and root rot of tomato is a soilborne diseases that has brought serious harm and economic losses to tomato production in facilities in recent years. The disease has been reported in more than 30 countries worldwide, but there are few reports on its biological control. A Bacillus velezensis strain SDTB038 with biocontrol effects was isolated and identified in a previous study and is considered one of the most important PGPRs. Seven secondary metabolite biosynthesis gene clusters were found in strain SDTB038 by whole genome sequencing, explaining its biocontrol effects. Results indicated that different concentrations of SDTB038 fermentation broth inhibited the mycelial growth of Fusarium crown and root rot of tomato. Strain SDTB038 could generate indole acetic acid and promote healthy growth of tomatoes, while the effect of 108 CFU/ml SDTB038 concentration on promoting tomato growth was the most obvious. B. velezensis SDTB038 significantly reduced the accumulation of ROS in tomato plants, induced the up-regulation of antifreeze genes, and promoted the rapid recovery of tomato plants at low temperatures in a pot experiment. At the same time, SDTB038 had good control effect on Fusarium crown and root rot of tomato, and 108 CFU/ml SDTB038 fermentation broth had the best control effect, which was 42.98%. In summary, the strain B. velezensis SDTB038 may be a promising bacterial agent for biological control of Fusarium crown and root rot of tomato, and an important source of potential antimicrobial compounds.
Collapse
|
23
|
New Insights into Bacillus-Primed Plant Responses to a Necrotrophic Pathogen Derived from the Tomato- Botrytis Pathosystem. Microorganisms 2022; 10:microorganisms10081547. [PMID: 36013965 PMCID: PMC9416759 DOI: 10.3390/microorganisms10081547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Induced systemic resistance (ISR) is one of the most studied mechanisms of plant−microbe interaction and is considered a very promising alternative for integrated pest management programs. In our study, we explored the plant defense response induced by Bacillus velezensis BBC047 in relation to its application before or after Botrytis cinerea infection of tomato plants. The inoculation of BBC047 did not considerably alter the gene expression of the tomato tissues, whereas infection with B. cinerea in BBC047-primed plants induced expression of LRR and NBS-LRR receptors, which are highly related to the ISR response. As expected, B. cinerea infection generated molecular patterns typical of a defense response to pathogen infection as the overexpression of pathogenesis-related proteins (PRs) in leaflets distant to the point of infection. The curative treatment (P + F + B) allowed us to gain insights into plant response to an inverted priming. In this treatment, B. cinerea caused the m tissue damage, extending nearly entirely across the entire infected leaves. Additionally, genes generally associated with early SAR response (<16 h) were overexpressed, and apparently, the beneficial strain was not perceived as such. Therefore, we infer that the plant defense to the curative treatment represents a higher degree of biological stress triggered by the incorporation of strain BBC047 as second arriving microorganism. We highlight the importance the phytosanitary status of plants prior to inoculation of beneficial microorganism for the biocontrol of pathogens.
Collapse
|
24
|
Ali SAM, Sayyed RZ, Mir MI, Khan MY, Hameeda B, Alkhanani MF, Haque S, Mohammad Al Tawaha AR, Poczai P. Induction of Systemic Resistance in Maize and Antibiofilm Activity of Surfactin From Bacillus velezensis MS20. Front Microbiol 2022; 13:879739. [PMID: 35615505 PMCID: PMC9126211 DOI: 10.3389/fmicb.2022.879739] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Surfactin lipopeptide is an eco-friendly microbially synthesized bioproduct that holds considerable potential in therapeutics (antibiofilm) as well as in agriculture (antifungal). In the present study, production of surfactin by a marine strain Bacillus velezensis MS20 was carried out, followed by physico-chemical characterization, anti-biofilm activity, plant growth promotion, and quantitative Reverse Transcriptase-Polymerase Chain Reaction (q RT-PCR) studies. From the results, it was inferred that MS20 was found to produce biosurfactant (3,300 mg L-1) under optimized conditions. From the physicochemical characterization [Thin layer chromatography (TLC), Fourier Transform Infrared (FTIR) Spectroscopy, Liquid Chromatography/Mass Spectroscopy (LC/MS), and Polymerase Chain Reaction (PCR) amplification] it was revealed to be surfactin. From bio-assay and scanning electron microscope (SEM) images, it was observed that surfactin (MIC 50 μg Ml-1) has appreciable bacterial aggregation against clinical pathogens Pseudomonas aeruginosa MTCC424, Escherichia coli MTCC43, Klebsiella pneumoniae MTCC9751, and Methicillin resistant Staphylococcus aureus (MRSA) and mycelial condensation property against a fungal phytopathogen Rhizoctonia solani. In addition, the q-RTPCR studies revealed 8-fold upregulation (9.34 ± 0.11-fold) of srfA-A gene compared to controls. Further, treatment of maize crop (infected with R. solani) with surfactin and MS20 led to the production of defense enzymes. In conclusion, concentration and synergy of a carbon source with inorganic/mineral salts can ameliorate surfactin yield and, application wise, it has antibiofilm and antifungal activities. In addition, it induced systemic resistance in maize crop, which makes it a good candidate to be employed in sustainable agricultural practices.
Collapse
Affiliation(s)
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s Arts, Science, and Commerce College, Shahada, India
| | - Mohammad I. Mir
- Department of Botany, University College of Science, Osmania University, Hyderabad, India
| | - M. Y. Khan
- Kalam Biotech Pvt Ltd., Hyderabad, India
| | - Bee Hameeda
- Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, Al-Maarefa University, Riyadh, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Péter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Fessia A, Barra P, Barros G, Nesci A. Could Bacillus biofilms enhance the effectivity of biocontrol strategies in the phyllosphere? J Appl Microbiol 2022; 133:2148-2166. [PMID: 35476896 DOI: 10.1111/jam.15596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
Maize (Zea mays L.), a major crop in Argentina and a staple food around the world, is affected by the emergence and re-emergence of foliar diseases. Agrochemicals are the main control strategy nowadays, but they can cause resistance in insects and microbial pathogens and have negative effects on the environment and human health. An emerging alternative is the use of living organisms, i.e. microbial biocontrol agents, to suppress plant pathogen populations. This is a risk-free approach when the organisms acting as biocontrol agents come from the same ecosystem as the foliar pathogens they are meant to antagonize. Some epiphytic microorganisms may form biofilm by becoming aggregated and attached to a surface, as is the case of spore-forming bacteria from the genus Bacillus. Their ability to sporulate and their tolerance to long storage periods make them a frequently used biocontrol agent. Moreover, the biofilm that they create protects them against different abiotic and biotic factors and helps them to acquire nutrients, which ensures their survival on the plants they protect. This review analyzes the interactions that the phyllosphere-inhabiting Bacillus genus establishes with its environment through biofilm, and how this lifestyle could serve to design effective biological control strategies.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Paula Barra
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| |
Collapse
|
26
|
Barák I. Special Issue " Bacillus subtilis as a Model Organism to Study Basic Cell Processes". Microorganisms 2021; 9:microorganisms9122459. [PMID: 34946061 PMCID: PMC8708606 DOI: 10.3390/microorganisms9122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|