1
|
Verbuyst BR, Pakostova E, Paktunc D, Bain JG, Finfrock YZ, Saurette EM, Ptacek CJ, Blowes DW. Microbiological and geochemical characterization of As-bearing tailings and underlying sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133554. [PMID: 38246057 DOI: 10.1016/j.jhazmat.2024.133554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Over the past 100 years, extensive oxidation of As-bearing sulfide-rich tailings from the abandoned Long Lake Gold Mine (Canada) has resulted in the formation of acid mine drainage (pH 2.0-3.9) containing high concentrations of dissolved As (∼400 mg L-1), SO42-, Fe and other metals. Dissolved As is predominantly present as As(III), with increased As(V) near the tailings surface. Pore-gas O2 is depleted to < 1 vol% in the upper 30-80 cm of the tailings profile. The primary sulfides, pyrite and arsenopyrite, are highly oxidized in the upper portions of the tailings. Elevated proportions of sulfide-oxidizing prokaryotes are present in this zone (mean 32.3% of total reads). The tailings are underlain by sediments rich in organic C. Enrichment in δ34S-SO4 in pore-water samples in the organic C-rich zone is consistent with dissimilatory sulfate reduction. Synchrotron-based spectroscopy indicates an abundance of ferric arsenate phases near the impoundment surface and the presence of secondary arsenic sulfides in the organic-C beneath the tailings. The persistence of elevated As concentrations beneath the tailings indicates precipitation of secondary As sulfides is not sufficient to completely remove dissolved As. The oxidation of sulfides and release of As is expected to continue for decades. The findings will inform future remediation efforts and provide a foundation for the long-term monitoring of the effectiveness of the remediation program.
Collapse
Affiliation(s)
- Brent R Verbuyst
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Eva Pakostova
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada; Centre for Manufacturing and Materials, Coventry University, Priory Street, Coventry CV1 5FB, UK.
| | - Dogan Paktunc
- Canmet, Mining and Mineral Sciences Laboratories, 555 Booth Street, Ottawa, ON K1A 0G1, Canada
| | - Jeff G Bain
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Y Zou Finfrock
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Emily M Saurette
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Pakostova E, Hilger DM, Blowes DW, Ptacek CJ. Microbial processes with the potential to mobilize As from a circumneutral-pH mixture of flotation and roaster tailings. Sci Rep 2023; 13:23048. [PMID: 38155250 PMCID: PMC10754864 DOI: 10.1038/s41598-023-50435-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
The Northwest Tailings Containment Area at the inactive Giant Mine (Canada) contains a complex mixture of arsenic-containing substances, including flotation tailings (84.8 wt%; with 0.4 wt% residual S), roaster calcine wastes (14.4 wt% Fe oxides), and arsenic trioxide (0.8 wt%) derived from an electrostatic precipitator as well as As-containing water (21.3 ± 4.1 mg L-1 As) derived from the underground mine workings. In the vadose zone the tailings pore water has a pH of 7.6 and contains elevated metal(loid)s (2.37 ± 5.90 mg L-1 As); mineral oxidizers account for 2.5% of total 16S rRNA reads in solid samples. In the underlying saturated tailings, dissolved Fe and As concentrations increase with depth (up to 72 and 20 mg L-1, respectively), and the mean relative abundance of Fe(III)-reducers is 0.54% of total reads. The potential for As mobilization via both reductive and oxidative (bio)processes should be considered in Giant Mine remediation activities. The current remediation plan includes installation of an engineered cover that incorporates a geosynthetic barrier layer.
Collapse
Affiliation(s)
- Eva Pakostova
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada.
- Centre for Manufacturing and Materials, Coventry University, Coventry, UK.
| | - David M Hilger
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada
| |
Collapse
|
3
|
Liu X, Ren W, Lin M, Tan X, Wan C. Biomineralization behavior and mechanism of microbial-mediated removal of arsenate from water. ENVIRONMENTAL RESEARCH 2023; 231:116183. [PMID: 37201703 DOI: 10.1016/j.envres.2023.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The microbial-mediated removal of arsenate by biomineralization received much attention, but the molecular mechanism of Arsenic (As) removal by mixed microbial populations remains to be elucidated. In this study, a process for the arsenate treatment using sulfate-reducing bacteria (SRB) containing sludge was constructed, and the performance of As removal was investigated at different molar ratios of AsO43- to SO42-. It was found that biomineralization mediated by SRB could achieve the simultaneous removal of arsenate and sulfate from wastewater but only occurred when microbial metabolic processes were involved. The reducing ability of the microorganisms for the sulfate and arsenate was equivalent, so the precipitates produced at the molar ratio of AsO43- to SO42-of 2:3 were most significant. X-ray absorption fine structure (XAFS) spectroscopy was the first time used to determine the molecular structure of the precipitates which were confirmed to be orpiment (As2S3). Combined with the metagenomics analysis, the microbial metabolism mechanism of simultaneous removal of sulfate and arsenate by the mixed microbial population containing SRB was revealed, that is, the sulfate and As(V) were reduced by microbial enzymes to produce S2- and As(III) to further form As2S3 precipitates. This research provided a reference and theoretical foundation for the simultaneous removal of sulfate and arsenic mediated by SRB-containing sludge in wastewater treatment.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Wanqing Ren
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Miao Lin
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Xuejun Tan
- Shanghai Municipal Engineering Design Institute Group Co Ltd, Shanghai, 200092, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
4
|
Origin of Critical Metals in Fe–Ni Laterites from the Balkan Peninsula: Opportunities and Environmental Risk. MINERALS 2021. [DOI: 10.3390/min11091009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As the global energy sector is expected to experience a gradual shift towards renewable energy sources, access to special metals in known resources is of growing concern within the EU and at a worldwide scale. This is a review on the Fe–Ni ± Co-laterite deposits in the Balkan Peninsula, which are characterized by multistage weathering/redeposition and intense tectonic activities. The ICP-MS analyses of those laterites indicated that they are major natural sources of Ni and Co, with ore grading from 0.21 to 3.5 wt% Ni and 0.03 to 0.31 wt% Co, as well as a significant Sc content (average 55 mg/kg). The SEM-EDS analyses revealed that fine Fe-, Ni-, Co-, and Mn-(hydr)oxides are dominant host minerals and that the enrichment in these elements is probably controlled by the post-formation evolution of initial ore redeposition. The paucity of rare earth element (REE) within the typical Fe–Ni laterite ore and the preferential occurrence of Co (up to 0.31 wt%), REE content (up to 6000 mg/kg ΣREE), and REE-minerals along with Ni, Co, and Mn (asbolane and silicates) towards the lowermost part of the Lokris (C. Greece) laterite ore suggest that their deposition is controlled by epigenetic processes. The platinum-group element (PGE) content in those Fe–Ni laterites, reaching up to 88 μg/kg Pt and 26 μg/kg Pd (up to 186 μg/kg Pd in one sample), which is higher than those in the majority of chromite deposits associated with ophiolites, may indicate important weathering and PGE supergene accumulation. Therefore, the mineralogical and geochemical features of Fe–Ni laterites from the Balkan Peninsula provide evidence for potential sources of certain critical metals and insights to suitable processing and metallurgical methods. In addition, the contamination of soil by heavy metals and irrigation groundwater by toxic Cr(VI), coupled with relatively high Cr(VI) concentrations in water leachates for laterite samples, altered ultramafic rocks and soils neighboring the mining areas and point to a potential human health risk and call for integrated water–soil–plant investigations in the basins surrounding laterite mines.
Collapse
|
5
|
Li Q, Zhang M, Yang J, Liu Q, Zhang G, Liao Q, Liu H, Wang Q. Formation and stability of biogenic tooeleite during Fe(II) oxidation by Acidithiobacillus ferrooxidans. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110755. [PMID: 32279796 DOI: 10.1016/j.msec.2020.110755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/06/2020] [Accepted: 02/15/2020] [Indexed: 11/16/2022]
Abstract
Tooeleite is the only known ferric arsenite sulfate mineral and has environmental significance for arsenic remediation. This study investigated the formation and stability of biogenic tooeleite in Fe(II)-As(III)-SO42- environment using Acidithiobacillus ferrooxidans under the ambient conditions. The results show that bacteria facilitated the formation and crystallization of tooeleite owing to the microbial oxidation of Fe(II) to Fe(III). Due to the better growth of bacteria, the higher removal of As(III) by tooeleite formation was achieved under 8.978-10.806 g/L initial Fe(II) concentration and 2.00-3.00 initial pH, and the highest efficiency was ~95%. Fe(III) and As(III) precipitated simultaneously into two types of tooeleite. The relatively stable tooeleite is featured by the developed (020) crystal face and the bulk-like structure with thick flakes. This study yields a better understanding of biogenic tooeleite, and the importance of tooeleite formation in As(III)-rich environment for arsenic remediation.
Collapse
Affiliation(s)
- Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Mengxue Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Jinqin Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Qianwen Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Guanshi Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China; Shandong Humon Smelting Co., Ltd., Yantai, 264109, China.
| |
Collapse
|
6
|
Barral-Fraga L, Barral MT, MacNeill KL, Martiñá-Prieto D, Morin S, Rodríguez-Castro MC, Tuulaikhuu BA, Guasch H. Biotic and Abiotic Factors Influencing Arsenic Biogeochemistry and Toxicity in Fluvial Ecosystems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072331. [PMID: 32235625 PMCID: PMC7177459 DOI: 10.3390/ijerph17072331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/20/2023]
Abstract
This review is focused on the biogeochemistry of arsenic in freshwaters and, especially, on the key role that benthic microalgae and prokaryotic communities from biofilms play together in through speciation, distribution, and cycling. These microorganisms incorporate the dominant iAs (inorganic arsenic) form and may transform it to other arsenic forms through metabolic or detoxifying processes. These transformations have a big impact on the environmental behavior of arsenic because different chemical forms exhibit differences in mobility and toxicity. Moreover, exposure to toxicants may alter the physiology and structure of biofilms, leading to changes in ecosystem function and trophic relations. In this review we also explain how microorganisms (i.e., biofilms) can influence the effects of arsenic exposure on other key constituents of aquatic ecosystems such as fish. At the end, we present two real cases of fluvial systems with different origins of arsenic exposure (natural vs. anthropogenic) that have improved our comprehension of arsenic biogeochemistry and toxicity in freshwaters, the Pampean streams (Argentina) and the Anllóns River (Galicia, Spain). We finish with a briefly discussion of what we consider as future research needs on this topic. This work especially contributes to the general understanding of biofilms influencing arsenic biogeochemistry and highlights the strong impact of nutrient availability on arsenic toxicity for freshwater (micro) organisms.
Collapse
Affiliation(s)
- Laura Barral-Fraga
- Grup de recerca en Ecologia aquàtica continental (GRECO), Departament de Ciències Ambientals, Universitat de Girona, 17071 Girona, Spain;
- LDAR24—Laboratoire Départemental d’Analyse et de Recherche du Département de la Dordogne, 24660 Coulounieix-Chamiers, Périgueux, France
- Correspondence:
| | - María Teresa Barral
- Instituto CRETUS, Departmento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.T.B.); (D.M.-P.)
| | - Keeley L. MacNeill
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA;
| | - Diego Martiñá-Prieto
- Instituto CRETUS, Departmento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.T.B.); (D.M.-P.)
| | - Soizic Morin
- INRAE—Institut National de Recherche en Agriculture, Alimentation et Environnement, UR EABX—Equipe ECOVEA, 33612 Cestas Cedex, France;
| | - María Carolina Rodríguez-Castro
- INEDES—Instituto de Ecología y Desarrollo Sustentable (UNLu-CONICET), Universidad Nacional de Luján, 6700 Buenos Aires, Argentina;
- CONICET—Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1425FQB CABA, Argentina
| | - Baigal-Amar Tuulaikhuu
- School of Agroecology, Mongolian University of Life Sciences, Khoroo 11, Ulaanbaatar 17024, Mongolia;
| | - Helena Guasch
- Grup de recerca en Ecologia aquàtica continental (GRECO), Departament de Ciències Ambientals, Universitat de Girona, 17071 Girona, Spain;
- CEAB—Centre d’Estudis Avançats de Blanes, CSIC, Blanes, 17300 Girona, Spain
| |
Collapse
|
7
|
Sun X, Li B, Han F, Xiao E, Xiao T, Sun W. Impacts of Arsenic and Antimony Co-Contamination on Sedimentary Microbial Communities in Rivers with Different Pollution Gradients. MICROBIAL ECOLOGY 2019; 78:589-602. [PMID: 30725170 DOI: 10.1007/s00248-019-01327-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) and antimony (Sb) are both toxic metalloids that are of primary concern for human health. Mining activity has introduced elevated levels of arsenic and antimony into the rivers and has increased the risks of drinking water contamination in China. Due to their mobility, the majority of the metalloids originating from mining activities are deposited in the river sediments. Thus, depending on various geochemical conditions, sediment could either be a sink or source for As and Sb in the water column. Microbes are key mediators for biogeochemical transformation and can both mobilize or precipitate As and Sb. To further understand the microbial community responses to As and Sb contamination, sediment samples with different contamination levels were collected from three rivers. The result of the study suggested that the major portions of As and Sb were in strong association with the sediment matrix and considered nonbioavailable. These fractions, however, were also suggested to have profound influences on the microbial community composition. As and Sb contamination caused strong reductions in microbial diversity in the heavily contaminated river sediments. Microorganisms were more sensitive to As comparing to Sb, as revealed by the co-occurrence network and random forest predictions. Operational taxonomic units (OTUs) that were potentially involved in As and Sb metabolism, such as Anaerolinea, Sphingomonas, and Opitutus, were enriched in the heavily contaminated samples. In contrast, many keystone taxa, including members of the Hyphomicrobiaceae and Bradyrhizobiaceae families, were inhibited by metalloid contamination, which could further impair crucial environmental services provided by these members.
Collapse
Affiliation(s)
- Xiaoxu Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Feng Han
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China.
| |
Collapse
|
8
|
Arsenic contamination in areas surrounding mines and selection of potential As-resistant purple nonsulfur bacteria for use in bioremediation based on their detoxification mechanisms. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1229-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
9
|
Malakar A, Das B, Islam S, Meneghini C, De Giudici G, Merlini M, Kolen'ko YV, Iadecola A, Aquilanti G, Acharya S, Ray S. Efficient artificial mineralization route to decontaminate Arsenic(III) polluted water - the Tooeleite Way. Sci Rep 2016; 6:26031. [PMID: 27189251 PMCID: PMC4870689 DOI: 10.1038/srep26031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/26/2016] [Indexed: 01/22/2023] Open
Abstract
Increasing exposure to arsenic (As) contaminated ground water is a great threat to humanity. Suitable technology for As immobilization and removal from water, especially for As(III) than As(V), is not available yet. However, it is known that As(III) is more toxic than As(V) and most groundwater aquifers, particularly the Gangetic basin in India, is alarmingly contaminated with it. In search of a viable solution here, we took a cue from the natural mineralization of Tooeleite, a mineral containing Fe(III) and As(III)ions, grown under acidic condition, in presence of SO42− ions. Complying to this natural process, we could grow and separate Tooeleite-like templates from Fe(III) and As(III) containing water at overall circumneutral pH and in absence of SO42− ions by using highly polar Zn-only ends of wurtzite ZnS nanorods as insoluble nano-acidic-surfaces. The central idea here is to exploit these insoluble nano-acidic-surfaces (called as INAS in the manuscript) as nucleation centres for Tooeleite growth while keeping the overall pH of the aqueous media neutral. Therefore, we propose a novel method of artificial mineralization of As(III) by mimicking a natural process at nanoscale.
Collapse
Affiliation(s)
- Arindam Malakar
- Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Bidisa Das
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Samirul Islam
- Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Carlo Meneghini
- Dipartimento di Scienze, Universitá Roma Tre, Via della Vasca Navale, 84 I-00146 Roma, Italy
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, University of Cagliari, 09127 Cagliari, Italy
| | - Marco Merlini
- Universita di Milano Dip. di, Scienzedella Terra Ardito Desio, Milano, Italy
| | - Yury V Kolen'ko
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Antonella Iadecola
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza, Trieste, Italy
| | - Giuliana Aquilanti
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, 34149 Basovizza, Trieste, Italy
| | - Somobrata Acharya
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sugata Ray
- Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.,Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
Sun Y, Zhang X, Wu Z, Hu Y, Wu S, Chen B. The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. J Environ Sci (China) 2016; 39:110-118. [PMID: 26899650 DOI: 10.1016/j.jes.2015.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can establish a mutualistic association with most terrestrial plants even in heavy metal contaminated environments. It has been documented that high concentrations of toxic metals, such as arsenic (As) in soil could adversely affect the diversity and function of AMF. However, there are still gaps in understanding the community composition of AMF under long-term As contaminations. In the present study, six sampling sites with different As concentrations were selected in the Realgar mining area in Hunan Province of China. The AMF biodiversity in the rhizosphere soils of the dominant plant species was investigated by sequencing the nuclear small subunit ribosomal RNA (SSU rRNA) gene fragments using 454-pyrosequencing technique. A total of 11 AMF genera were identified, namely Rhizophagus, Glomus, Funneliformis, Acaulospora, Diversispora, Claroideoglomus, Scutellopora, Gigaspora, Ambispora, Praglomus, and Archaeospora, among which Glomus, Rhizophagus, and Claroideoglomus clarodeum were detected in all sampling sites, and Glomus was the dominant AMF genus in the Realgar mining area. Redundancy analysis indicated that soil pH, total As and Cd concentrations were the main factors influencing AMF community structure. There was a negative correlation between the AMF species richness and the total As concentration in the soil, but no significant correlation between the Shannon-Wiener index of the AMF and plants. Our study showed that high As concentrations can exert a selective effect on the AMF populations.
Collapse
Affiliation(s)
- Yuqing Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhaoxiang Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajun Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songlin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
11
|
Abstract
Arsenic and antimony are toxic metalloids and are considered priority environmental pollutants by the U.S. Environmental Protection Agency. Significant advances have been made in understanding microbe-arsenic interactions and how they influence arsenic redox speciation in the environment. However, even the most basic features of how and why a microorganism detects and reacts to antimony remain poorly understood. Previous work with Agrobacterium tumefaciens strain 5A concluded that oxidation of antimonite [Sb(III)] and arsenite [As(III)] required different biochemical pathways. Here, we show with in vivo experiments that a mutation in aioA [encoding the large subunit of As(III) oxidase] reduces the ability to oxidize Sb(III) by approximately one-third relative to the ability of the wild type. Further, in vitro studies with the purified As(III) oxidase from Rhizobium sp. strain NT-26 (AioA shares 94% amino acid sequence identity with AioA of A. tumefaciens) provide direct evidence of Sb(III) oxidation but also show a significantly decreased Vmax compared to that of As(III) oxidation. The aioBA genes encoding As(III) oxidase are induced by As(III) but not by Sb(III), whereas arsR gene expression is induced by both As(III) and Sb(III), suggesting that detection and transcriptional responses for As(III) and Sb(III) differ. While Sb(III) and As(III) are similar with respect to cellular extrusion (ArsB or Acr3) and interaction with ArsR, they differ in the regulatory mechanisms that control the expression of genes encoding the different Ars or Aio activities. In summary, this study documents an enzymatic basis for microbial Sb(III) oxidation, although additional Sb(III) oxidation activity also is apparent in this bacterium.
Collapse
|
12
|
Ghosh D, Bhadury P, Routh J. Diversity of arsenite oxidizing bacterial communities in arsenic-rich deltaic aquifers in West Bengal, India. Front Microbiol 2014; 5:602. [PMID: 25484877 PMCID: PMC4240177 DOI: 10.3389/fmicb.2014.00602] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/23/2014] [Indexed: 01/01/2023] Open
Abstract
High arsenic (As) concentration in groundwater has affected human health, particularly in South-East Asia putting millions of people at risk. Biogeochemical cycling of As carried out by different bacterial groups are suggested to control the As fluxes in aquifers. A functional diversity approach in link with As precipitation was adopted to study bacterial community structures and their variation within the As contaminated Bengal Delta Plain (BDP) aquifers of India. Groundwater samples collected from two shallow aquifers in Karimpur II (West Bengal, India), during years 2010 and 2011, were investigated to trace the effects immediately after monsoon period (precipitation) on community structure and diversity of bacterial assemblages with a focus on arsenite oxidizing bacterial phyla for two successive years. The study focused on amplification, clone library generation and sequencing of the arsenite oxidase large sub-unit gene aioA and 16S rRNA marker, with respect to changes in elemental concentrations. New set of primers were designed to amplify the aioA gene as a phylogenetic marker to study taxonomically diverse arsenite oxidizing bacterial groups in these aquifers. The overall narrow distribution of bacterial communities based on aioA and 16S rRNA sequences observed was due to poor nutrient status and anoxic conditions in these As contaminated aquifers. Proteobacteria was the dominant phylum detected, within which Acidovorax, Hydrogenophaga, Albidiferax, Bosea, and Polymorphum were the major arsenite oxidizing bacterial genera based on the number of clones sequenced. The structure of bacterial assemblages including those of arsenite oxidizing bacteria seems to have been affected by increase in major elemental concentrations (e.g., As, Fe, S, and Si) within two sampling sessions, which was supported by statistical analyses. One of the significant findings of this study is detection of novel lineages of 16S rRNA-like bacterial sequences indicating presence of indigenous bacterial communities BDP wells that can play important role in biogeochemical cycling of elements including As.
Collapse
Affiliation(s)
- Devanita Ghosh
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata Nadia, India ; Department of Thematic Studies- Environmental Change, Linköping University Linköping, Sweden
| | - Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata Nadia, India
| | - Joyanto Routh
- Department of Thematic Studies- Environmental Change, Linköping University Linköping, Sweden
| |
Collapse
|