1
|
Gao Y, Licup GL, Bigham NP, Cantu DC, Wilson JJ. Chelator-Assisted Precipitation-Based Separation of the Rare Earth Elements Neodymium and Dysprosium from Aqueous Solutions. Angew Chem Int Ed Engl 2024; 63:e202410233. [PMID: 39030817 DOI: 10.1002/anie.202410233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The rare earth elements (REEs) are critical resources for many clean energy technologies, but are difficult to obtain in their elementally pure forms because of their nearly identical chemical properties. Here, an analogue of macropa, G-macropa, was synthesized and employed for an aqueous precipitation-based separation of Nd3+ and Dy3+. G-macropa maintains the same thermodynamic preference for the large REEs as macropa, but shows smaller thermodynamic stability constants. Molecular dynamics studies demonstrate that the binding affinity differences of these chelators for Nd3+ and Dy3+ is a consequence of the presence or absence of an inner-sphere water molecule, which alters the donor strength of the macrocyclic ethers. Leveraging the small REE affinity of G-macropa, we demonstrate that within aqueous solutions of Nd3+, Dy3+, and G-macropa, the addition of HCO3 - selectively precipitates Dy2(CO3)3, leaving the Nd3+-G-macropa complex in solution. With this method, remarkably high separation factors of 841 and 741 are achieved for 50 : 50 and 75 : 25 mixtures. Further studies involving Nd3+:Dy3+ ratios of 95 : 5 in authentic magnet waste also afford an efficient separation as well. Lastly, G-macropa is recovered via crystallization with HCl and used for subsequent extractions, demonstrating its good recyclability.
Collapse
Affiliation(s)
- Yangyang Gao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, United States
| | - Gerra L Licup
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, 89557, United States
| | - Nicholas P Bigham
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, 89557, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, United States
| |
Collapse
|
2
|
Mondal S, Chauhan D, Guizouarn T, Pointillart F, Rajaraman G, Steiner A, Baskar V. Self-Assembled Lanthanide Phosphinate Square Grids (Ln = Er, Dy, and Tb): Dy 4 Shows SMM/SMT and Tb 4 SMT Behavior. Inorg Chem 2024. [PMID: 39264390 DOI: 10.1021/acs.inorgchem.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Tetranuclear [2 × 2] square-grid-like LnIII clusters have been synthesized by reacting LnCl3·6H2O salts with bis[α-hydroxy(p-bromophenyl)methyl]phosphinic acid [R2PO2H, where R = CH(OH)PhBr] and pivalic acid. Single-crystal X-ray diffraction studies show the formation of [Me4N]2[Ln4(μ2-η1:η1-PO2R2)8(η2-CO2But)4(μ4-CO3)] [Ln = Er (1), Dy (2), and Tb (3)]. Direct-current studies reveal significant ferromagnetic interactions between DyIII in 2 and TbIII in 3 and an antiferromagnetic interaction between ErIII in 1. Dynamic magnetic susceptibility measurements confirm a single-molecule magnet (SMM) behavior in both 0 and 1200 Oe applied magnetic fields for 2. Complexes 2 and 3 show single molecular toroic (SMT) behavior with a mixed magnetic moment.
Collapse
Affiliation(s)
- Suman Mondal
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Deepanshu Chauhan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Thierry Guizouarn
- Sciences Chimiques de Rennes, Universite de Rennes 1, UMR 6226, CNRS 263, Avenue du Général Leclerc, Rennes 35042, France
| | - Fabrice Pointillart
- Sciences Chimiques de Rennes, Universite de Rennes 1, UMR 6226, CNRS 263, Avenue du Général Leclerc, Rennes 35042, France
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Alexander Steiner
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD U.K
| | | |
Collapse
|
3
|
Khdary NH, El-Gohary ARM, Galal A, Alhassan AM, Alzahrain SD. Cu-P@silica-CNT-based catalyst for effective electrolytic water splitting in an alkaline medium with hydrazine assistance. RSC Adv 2024; 14:25830-25843. [PMID: 39156752 PMCID: PMC11327855 DOI: 10.1039/d4ra03998j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
In this study, we prepared a potential catalyst as an electrode modifier for electrolytic water splitting. In the preparation step, the amine was decorated with copper-phosphorus. It was immobilized over the silica surface, and the surface was engineered using N-(3-(trimethoxysilyl) propyl)ethylenediamine for the synthesis of the catalysts (AS). The morphological and structural aspects of the catalyst (AFS-Cu-P) were determined using FE-SEM/EDAX, FTIR, elemental analysis, BET, TGA, and XPS. The catalyst's efficacy for the oxygen evolution reaction (OER) was assessed in an alkaline medium with and without hydrazine. The hydrazine oxidation reaction enhanced the sluggish OER and facilitated water splitting. Detailed electrochemical measurements confirmed an increase in the kinetics of the process and a reduction in the activation energy needed to complete the process. The Tafel slopes, charge transfer coefficients, exchange-specific current densities, apparent rate constants, and diffusion coefficients are provided along with their respective values. The results showed that the presence of Cu and CNT is crucial in the conversion process.
Collapse
Affiliation(s)
- Nezar H Khdary
- King Abdulaziz City for Science and Technology Riyadh 11442 Kingdom of Saudi Arabia
| | | | - Ahmed Galal
- Cairo University, Faculty of Science, Chemistry Department Giza 12613 Egypt
| | - Ahmed M Alhassan
- King Abdulaziz City for Science and Technology Riyadh 11442 Kingdom of Saudi Arabia
| | - Sami D Alzahrain
- King Abdulaziz City for Science and Technology Riyadh 11442 Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Sun M, Liu J, Lin K, Yuan W, Liang X, Wu H, Zhang Y, Dai Q, Yang X, Song G, Wang J. Distribution and migration of rare earth elements in sediment profile near a decommissioned uranium hydrometallurgical site in South China: Environmental implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121832. [PMID: 39038435 DOI: 10.1016/j.jenvman.2024.121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Rare earth elements have garnered increasing attention due to their strategic properties and chronic toxicity to humans. To better understand the content, migration, and ecological risk of rare earth elements in a 180 cm depth sediment profile downstream of a decommissioned uranium hydrometallurgical site in South China, X-ray powder diffraction (XRD) and High-resolution transmission electron microscope (HRTEM) were additionally used to quantify and clarify the mineral composition features. The results showed a high enrichment level of total rare earth elements in the sediment depth profile (range: 129.6-1264.3 mg/kg); the concentration variation of light rare earth elements was more dependent on depth than heavy rare earth elements. Overall, there was an obvious enrichment trend of light rare earth elements relative to heavy rare earth elements and negative anomalies of Ce and Eu. The fractionation and anomaly of rare earth elements in sediments were closely related to the formation and weathering of iron-bearing minerals and clay minerals, as confirmed by the correlation analysis of rare earth elements with Fe (r2 = 0.77-0.90) and Al (r2 = 0.50-0.71). The mineralogical composition of sediments mainly consisted of quartz, feldspar, magnetite, goethite, and hematite. Pollution assessment based on the potential ecological risk index, pollution load index (PLI), enrichment factor, and geological accumulation index (Igeo) showed that almost all the sediments had varying degrees of pollution and a high level of ecological risk. This study implied that continued environmental supervision and management are needed to secure the ecological health in terms of rare earth elements enrichment around a decommissioned uranium hydrometallurgical site. The findings may provide valuable insights for other uranium mining and hydrometallurgical areas globally.
Collapse
Affiliation(s)
- Mengqing Sun
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Juan Liu
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Ke Lin
- Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University, Singapore
| | - Wenhuan Yuan
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Qunwei Dai
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, China
| | - Xiao Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Jin Wang
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
5
|
Barros Ó, Parpot P, Neves IC, Tavares T. Exploring Optimization of Zeolites as Adsorbents for Rare Earth Elements in Continuous Flow by Machine Learning Techniques. Molecules 2023; 28:7964. [PMID: 38138454 PMCID: PMC10746106 DOI: 10.3390/molecules28247964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Unsupervised machine learning (ML) techniques are applied to the characterization of the adsorption of rare earth elements (REEs) by zeolites in continuous flow. The successful application of principal component analysis (PCA) and K-Means algorithms from ML allowed for a wide range assessment of the adsorption results. This global approach permits the evaluation of the different stages of the sorption cycles and their optimization and improvement. The results from ML are also used for the definition of a regression model to estimate other REEs' recoveries based on the known values of the tested REEs. Overall, it was possible to remove more than 70% of all REEs from aqueous solutions during the adsorption assays and to recover over 80% of the REEs entrapped on the zeolites using an optimized desorption cycle.
Collapse
Affiliation(s)
- Óscar Barros
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.P.); (T.T.)
- CQUM, Centre of Chemistry, Chemistry Department, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pier Parpot
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.P.); (T.T.)
- CQUM, Centre of Chemistry, Chemistry Department, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Isabel C. Neves
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.P.); (T.T.)
- CQUM, Centre of Chemistry, Chemistry Department, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Teresa Tavares
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.P.); (T.T.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Aso S, Onoda H. Synthesis of Cobalt-Substituted Manganese Phosphate Purple Pigments. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114132. [PMID: 37297265 DOI: 10.3390/ma16114132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Some manganese phosphates are known as violet pigments. In this study, pigments in which manganese was partially replaced with cobalt and aluminum was replaced with lanthanum and cerium were synthesized with a heating method to obtain pigments with a more reddish color. The obtained samples were evaluated in terms of chemical composition, hue, acid and base resistances, and hiding power. Among the samples examined, the samples obtained in the Co/Mn/La/P system were the most vivid. The brighter and redder samples were obtained by prolonged heating. Furthermore, prolonged heating improved the acid and base resistance of the samples. Finally, the substitution of manganese for cobalt improved the hiding power.
Collapse
Affiliation(s)
- Saki Aso
- Department of Informatics and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Nakaragi-cyo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hiroaki Onoda
- Department of Informatics and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamo Nakaragi-cyo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
7
|
He W, Liu Z, Liu Z. Phase and Structure Evolution of Dysprosium Carbonate during Hydrothermal Processes in Dy 3+-NH 4+-CO 32- System. Inorg Chem 2023; 62:7203-7211. [PMID: 37126033 DOI: 10.1021/acs.inorgchem.2c04438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Rare earth carbonates play a significant role in preparing rare earth oxides. This study examines the structure and composition of amorphous dysprosium carbonate (ADC) precursors produced through chemical precipitation. Next, how the amorphous phase changed throughout the hydrothermal process is analyzed. The precursor is identified as the Dy2(CO3)3·xH2O with spherical morphology (40 nm), as characterized by TEM, XRD, TG-MS, and FT-IR. It was found that ADC will undergo numerous morphological and structural transformations with the progress of the hydrothermal treatment. First, a metastable Dy2(CO3)3·xH2O is formed, and then a stable crystalline basic dysprosium carbonate Dy(OH)CO3 is obtained. The self-assembly of amorphous precursor units results in 1D and 3D structures according to the theory of negative ion coordination. The transformation mechanism of dysprosium carbonate follows Ostwald's rule of stages, where the metastable phase dissolves and recrystallizes to form the stable basic dysprosium carbonate phase.
Collapse
Affiliation(s)
- Wenrui He
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhihong Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhiyong Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Chen ZX, Liu W, Guo SP. A review of structures and physical properties of rare earth chalcophosphates. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Porcayo-Calderon J, Canto J, Martinez-de-la-Escalera LM, Neri A. Sweet Corrosion Inhibition by CO 2 Capture. Molecules 2022; 27:5209. [PMID: 36014449 PMCID: PMC9415123 DOI: 10.3390/molecules27165209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The most practical and economical way to combat the problems derived from CO2 corrosion (sweet corrosion) is the use of corrosion inhibitors of organic origin. Its main protection mechanism is based on its ability to adsorb on the metal surface, forming a barrier between the metal surface and the aggressive medium. However, despite its excellent performance, its inhibition efficiency can be compromised with the increase in temperature as well as the shear stresses. In this study, the use of an inorganic inhibitor is proposed that has not been considered as an inhibitor of sweet corrosion. The reported studies are based on using LaCl3 as a corrosion inhibitor. Its behavior was evaluated on 1018 carbon steel using electrochemical measurements, such as potentiodynamic polarization curves, open-circuit potential measurements, linear polarization resistance measurements, and electrochemical impedance. The results showed an inhibition efficiency of the sweet corrosion process greater than 95%, and that the inhibition mechanism was different from the classic corrosion process in CO2-free electrolytes. In this case, it was observed that the inhibitory capacity of the La3+ cations is based on a CO2-capture process and the precipitation of a barrier layer of lanthanum carbonate (La2(CO3)3).
Collapse
Affiliation(s)
- Jesus Porcayo-Calderon
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico
| | - Jorge Canto
- Corrosion y Proteccion (CyP), Buffon 46, Mexico City 11590, Mexico
| | | | - Adrian Neri
- Corrosion y Proteccion (CyP), Buffon 46, Mexico City 11590, Mexico
| |
Collapse
|
10
|
Babu SP, Falch A. Recent developments on Cr‐based electrocatalysts for the oxygen evolution reaction in alkaline media. ChemCatChem 2022. [DOI: 10.1002/cctc.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sreejith P Babu
- North-West University Potchefstroom Campus: North-West University Chemical Resource Beneficiation, School of Physical and Chemical Sciencesi SOUTH AFRICA
| | - Anzel Falch
- North-West University Chemistry 11 Hoffman street 2531 Potchefstroom SOUTH AFRICA
| |
Collapse
|
11
|
Giaremis S, Katsikas G, Sempros G, Gjoka M, Sarafidis C, Kioseoglou J. Ab initio, artificial neural network predictions and experimental synthesis of mischmetal alloying in Sm-Co permanent magnets. NANOSCALE 2022; 14:5824-5839. [PMID: 35353109 DOI: 10.1039/d2nr00364c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The use of the mischmetal alloy, comprised of La and Ce in 1 : 3 ratio, as a partial substitute for Sm in the CaCu5-type structure is explored, as a means for the search of viable alternatives for permanent magnets that require fewer steps in the rare earth separation processing. The structural and magnetic properties of the introduced stoichiometry, containing 50% less Sm, are compared to the ones of the SmCo5, LaCo5 and CeCo5 binary compounds by means of ab initio simulations. The capability of artificial neural networks to accurately predict the relationship between structure and total magnetization from DFT calculations in the supercell approach that was employed, is also demonstrated. Experimental fabrication and structural and magnetic characterization of the proposed stoichiometry verifies the structural configuration and provides insight for the macroscopic hard magnetic properties of the material. The reduction of magnetic properties was found to be favorable compared to the respective reduction of the raw materials cost, while measurements of the Cure temperature verify that the proposed compound is still suitable for high temperature applications.
Collapse
Affiliation(s)
- Stefanos Giaremis
- School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Georgios Katsikas
- School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Georgios Sempros
- School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Margarit Gjoka
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | - Charalambos Sarafidis
- School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Joseph Kioseoglou
- School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
12
|
Lin RY, Shi YR, Hou YH, Xia WS, Weng WZ, Zhou ZH. Highly water-soluble dimeric and trimeric lanthanide carbonates with ethylenediaminetetraacetates as precursors of catalysts for the oxidative coupling reaction of methane. NEW J CHEM 2022. [DOI: 10.1039/d1nj05608e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly water-soluble dimeric and trimeric lanthanide carbonates with ethylenediaminetetraacetates have been obtained. Their coordination modes provide a model for the oxidative coupling of methane of lanthanide carbonates.
Collapse
Affiliation(s)
- Rong-Yan Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yan-Ru Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu-Hui Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wen-Sheng Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei-Zheng Weng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
13
|
Removal of Fluorine from RECl3 in Solution by Adsorption, Ion Exchange and Precipitation. MINERALS 2021. [DOI: 10.3390/min12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, methods of effective removal of fluorine from rare earth chloride solution by adsorption, ion exchange and precipitation with lanthanum carbonate or CO2 gas as fluorine-removal agent, respectively, were studied. The relevant parameters studied for fluorine-removal percentage were the effects of the type and dosage of fluorine-removal agent, the injection flow and mode of CO2, the initial concentration of rare earth solution and initial pH value, contact time, temperature and stirring. XRD, SEM and EDS were used to analyze and characterize the filter slag obtained after fluorine removal. SEM and EDS results showed that RECO3(OH) with a porous structure was formed in rare earth chloride solution when lanthanum carbonate was used as fluorine-removal agent, and it had strong selective adsorption for F−. The XRD spectra showed that F− was removed in the form of REFCO3 precipitates, which indicates that the adsorbed F− replaced the OH− group on the surface of RECO3(OH) by ion exchange. The experimental results showed that a fluorine-removal percentage of 99.60% could be obtained under the following conditions: lanthanum carbonate dosage, 8%; initial conc. of rare earths, 240 g/L; initial pH, 1; reaction temperature, 90 ∘C; reaction time, 2 h. Simultaneously, a fluorine-removal process by CO2 precipitation was explored. In general, RE2(CO3)3 precipitation is generated when CO2 is injected into a rare earth chloride solution. Interestingly, the results of XRD, SEM and EDS showed that the sedimentation slag was composed of REFCO3 and RE2O2CO3. It was inferred that RE2(CO3)3 obtained at the initial reaction stage had a certain adsorption effect on F− in the solution, and then F− replaced CO32− on the surface of RE2(CO3)3 by ion exchange. Therefore, F− was finally removed by the high crystallization of REFCO3 precipitation, and excess RE2(CO3)3 was aged to precipitate RE2O2CO3. The fluorine-removal percentage can reach 98.92% with CO2 precipitation under the following conditions: venturi jet; CO2 injection flow, 1000 L/h; reaction temperature, 70 ∘C; initial pH, 1; reaction time, 1.5 h; initial conc. of rare earths, 240–300 g/L; without stirring. The above two methods achieve deep removal of fluorine in mixed fluorine-bearing rare earth chloride solution by exchanging different ionic groups. The negative influence of fluorine on subsequent rare earth extraction separation is eliminated. This technology is of great practical significance for the further development of the rare earth metallurgy industry and the protection of the environment.
Collapse
|
14
|
An in-depth multi-technique characterization of rare earth carbonates – RE2(CO3)3.2H2O – owning tengerite-type structure. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Structural changes in acetylurea complexes with rare-earth (Gd–Er) bromides: Coexistence of different coordination polyhedra in Dy and Ho compounds. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Rajput A, Kundu A, Chakraborty B. Recent Progress on Copper‐Based Electrode Materials for Overall Water‐Splitting. ChemElectroChem 2021. [DOI: 10.1002/celc.202100307] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anubha Rajput
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas 110016 New Delhi India
| | - Avinava Kundu
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas 110016 New Delhi India
| | - Biswarup Chakraborty
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas 110016 New Delhi India
| |
Collapse
|
17
|
Ancira-Cortez A, Ferro-Flores G, Jiménez-Mancilla N, Morales-Avila E, Trujillo-Benítez D, Ocampo-García B, Santos-Cuevas C, Escudero-Castellanos A, Luna-Gutiérrez M. Synthesis, chemical and biochemical characterization of Lu 2O 3-iPSMA nanoparticles activated by neutron irradiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111335. [PMID: 32919684 DOI: 10.1016/j.msec.2020.111335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 11/16/2022]
Abstract
Among the nanomaterials, rare sesquioxides (lanthanide oxides such as Lu2O3) are of interest due to their adequate thermal conductivity, excellent chemical stability, and high light output. The prostate-specific membrane antigen (PSMA) is an integral multifunctional protein overexpressed in various types of cancer cells. The radiolabeled PSMA inhibitor peptides (iPSMA) have demonstrated their usefulness as specific probes in the treatment and detection of a wide variety of neoplasms, mainly due to their high in vivo recognition by the PSMA protein. The objective of this research was to synthesize Lu2O3-iPSMA nanoparticles (NPs) and characterize their physicochemical properties before and after neutron activation, as well as to assess their biodistribution profile and in vitro potential to target cells overexpressing PSMA. The Lu2O3 NPs were synthesized by the precipitation-calcination method and conjugated to the iPSMA peptide using DOTA (1,4,7,10-tetraazocyclodecane-N,N',N″,N‴-tetraacetic acid) as a linking agent. Results of the physicochemical characterization by FT-IR and UV-Vis spectroscopies, SEM, TEM, DLS, HRTEM, SAED, DSC-TGA, and X-ray diffraction indicated the formation of Lu2O3-iPSMA NPs (diameter of 29.98 ± 9.07 nm), which were not affected in their physicochemical properties after neutron activation. 177Lu2O3-iPSMA NPs showed high affinity (Kd = 5.7 ± 1.9 nM) for the PSMA protein, evaluated by the saturation assay on HepG2 hepatocellular carcinoma cells (PSMA-positive). The biodistribution profile of the nanosystem in healthy mice showed the main uptake in the liver. After irradiation, radioactive Lu2O3-iPSMA NPs exhibited radioluminescent properties, making the in vivo acquisition of their biodistribution, via optical imaging, possible. The results obtained from this research validate the execution of additional preclinical studies with the objective of evaluating the potential of the 177Lu2O3-iPSMA NPs for the targeted radiotherapy and in vivo imaging of tumors overexpressing the PSMA protein.
Collapse
Affiliation(s)
- A Ancira-Cortez
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Estado de México 52750, Mexico; Facultad de Química, Universidad Autónoma del Estado de México, Estado de México 50180, Mexico
| | - G Ferro-Flores
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Estado de México 52750, Mexico.
| | - N Jiménez-Mancilla
- Cátedras CONACyT, Instituto Nacional de Investigaciones Nucleares, Estado de México 52750, Mexico.
| | - E Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Estado de México 50180, Mexico
| | - D Trujillo-Benítez
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Estado de México 52750, Mexico; Facultad de Química, Universidad Autónoma del Estado de México, Estado de México 50180, Mexico
| | - B Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Estado de México 52750, Mexico
| | - C Santos-Cuevas
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Estado de México 52750, Mexico
| | - A Escudero-Castellanos
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Estado de México 52750, Mexico
| | - M Luna-Gutiérrez
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Estado de México 52750, Mexico
| |
Collapse
|
18
|
Characteristics of Precipitation of Rare Earth Elements with Various Precipitants. MINERALS 2020. [DOI: 10.3390/min10020178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effective and selective leaching of rare earth elements (REEs) from various sources is frequently possible in practice by adopting a carefully coordinated strategy incorporating a selective precipitation of these elements from undesired ones in solution. In this study, the behavior of chemical precipitation of REEs with commonly used precipitants such as sulfate, carbonate, fluoride, phosphate, and oxalate was examined using thermodynamic principles and calculations. It was found that the pH of the system has a profound effect on determining particular chemical species of precipitants, which are subsequently responsible for the precipitation of REEs. The role of various anions such as Cl−, NO3−, and SO42− derived from the acid used in the leaching process on the precipitation behavior of REEs was examined. These anions form complexes with REEs and display a very positive effect on the precipitation behavior. The nitrate environment exhibits most conducive to precipitation followed by sulfate and then chloride.
Collapse
|
19
|
Spiridigliozzi L, Ferone C, Cioffi R, Accardo G, Frattini D, Dell’Agli G. Entropy-Stabilized Oxides owning Fluorite Structure obtained by Hydrothermal Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E558. [PMID: 31991550 PMCID: PMC7040587 DOI: 10.3390/ma13030558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 11/17/2022]
Abstract
Entropy-Stabilized Oxides (ESO) is a modern class of multicomponent advanced ceramic materials with attractive functional properties. Through a five-component oxide formulation, the configurational entropy is used to drive the phase stabilization over a reversible solid-state transformation from a multiphase to a single-phase state. In this paper, a new transition metal/rare earth entropy-stabilized oxide, with composition Ce0.2Zr0.2Y0.2Gd0.2La0.2O2-, was found after several investigations on alternative candidate systems. X-Ray Diffraction (XRD) analyses of calcined powders pointed out different behavior as a function of the composition and a single-phase fluorite structure was obtained after a specific thermal treatment at 1500 °C. Powders presented the absence of agglomeration, so that the sintered specimen exhibited sufficient densification with a small porosity, uniformly distributed in the sample.
Collapse
Affiliation(s)
- Luca Spiridigliozzi
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino (FR), Italy;
| | - Claudio Ferone
- Department of Engineering, Università di Napoli “Parthenope”, Centro Direzionale, Isola C4, 80143 Napoli (NA), Italy; (C.F.); (R.C.)
- INSTM - National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| | - Raffaele Cioffi
- Department of Engineering, Università di Napoli “Parthenope”, Centro Direzionale, Isola C4, 80143 Napoli (NA), Italy; (C.F.); (R.C.)
- INSTM - National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| | - Grazia Accardo
- Center of Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology, Hwarangno 14-gil, Seongbuk-gu, Seoul 136-791, Korea;
| | - Domenico Frattini
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea;
| | - Gianfranco Dell’Agli
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino (FR), Italy;
- INSTM - National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| |
Collapse
|
20
|
Extraction of Rare Earth Elements from Phospho-Gypsum: Concentrate Digestion, Leaching, and Purification. METALS 2020. [DOI: 10.3390/met10010131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rare earth-bearing gypsum tailings from the fertilizer industry are a potential source for an economically viable and sustainable production of rare earth elements. Large quantities are generated inter alia in Catalão, Brazil, as a by-product in a fertilizer production plant. Hitherto, the gypsum has been used as soil conditioner in agriculture or was dumped. The cooperative project, “Catalão Monazite: Economical exploitation of rare earth elements from monazite-bearing secondary raw materials,” intends to extract rare earth elements from these gypsum tailings. In this paper, a chemical process route to obtain a mixed rare earth carbonate from a monazite concentrate, was investigated. The results of the digestion, leaching, and precipitation experiments are presented and discussed herein. This includes reagent choice, process parameter optimization through experimental design, mineralogical characterization of the feed material and residues, purification of the leach solution, and precipitation of the rare earth as carbonates. The results showed that a rare earth extraction of about 90% without the mobilization of key impurities is possible during a sulfuric acid digestion with two heating stages and subsequent leaching with water. In the following purification step, the remaining impurities were precipitated with ammonium solution and the rare earth elements were successfully recovered as carbonates with a mixture of ammonium solution and ammonium bicarbonate.
Collapse
|
21
|
New Insights in the Hydrothermal Synthesis of Rare-Earth Carbonates. MATERIALS 2019; 12:ma12132062. [PMID: 31252523 PMCID: PMC6651494 DOI: 10.3390/ma12132062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 11/26/2022]
Abstract
The rare-earth carbonates represent a class of materials with great research interest owing to their intrinsic properties and because they can be used as template materials for the formation of other rare earth phases, particularly of rare-earth oxides. However, most of the literature is focused on the synthesis and characterization of hydroxycarbonates. Conversely, in the present study we have synthesized both rare-earth carbonates—with the chemical formula RE2(CO3)3·2-3H2O, in which RE represents a generic rare-earth element, and a tengerite-type structure with a peculiar morphology—and rare-earth hydroxycarbonates with the chemical formula RECO3OH, by hydrothermal treatment at low temperature (120 °C), using metal nitrates and ammonium carbonates as raw materials, and without using any additive or template. We found that the nature of the rare-earth used plays a crucial role in relation to the formed phases, as predicted by the contraction law of lanthanides. In particular, the hydrothermal synthesis of rare-earth carbonates with a tengerite-type structure was obtained for the lanthanides from neodymium to erbium. A possible explanation of the different behaviors of lighter and heavier rare-earths is given.
Collapse
|
22
|
Adeel M, Lee JY, Zain M, Rizwan M, Nawab A, Ahmad MA, Shafiq M, Yi H, Jilani G, Javed R, Horton R, Rui Y, Tsang DCW, Xing B. Cryptic footprints of rare earth elements on natural resources and living organisms. ENVIRONMENT INTERNATIONAL 2019; 127:785-800. [PMID: 31039528 DOI: 10.1016/j.envint.2019.03.022] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rare earth elements (REEs) are gaining attention due to rapid rise of modern industries and technological developments in their usage and residual fingerprinting. Cryptic entry of REEs in the natural resources and environment is significant; therefore, life on earth is prone to their nasty effects. Scientific sectors have expressed concerns over the entry of REEs into food chains, which ultimately influences their intake and metabolism in the living organisms. OBJECTIVES Extensive scientific collections and intensive look in to the latest explorations agglomerated in this document aim to depict the distribution of REEs in soil, sediments, surface waters and groundwater possibly around the globe. Furthermore, it draws attention towards potential risks of intensive industrialization and modern agriculture to the exposure of REEs, and their effects on living organisms. It also draws links of REEs usage and their footprints in natural resources with the major food chains involving plants, animals and humans. METHODS Scientific literature preferably spanning over the last five years was obtained online from the MEDLINE and other sources publishing the latest studies on REEs distribution, properties, usage, cycling and intrusion in the environment and food-chains. Distribution of REEs in agricultural soils, sediments, surface and ground water was drawn on the global map, together with transport pathways of REEs and their cycling in the natural resources. RESULTS Fourteen REEs (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Th and Yb) were plighted in this study. Wide range of their concentrations has been detected in agricultural soils (<15.9-249.1 μg g-1) and in groundwater (<3.1-146.2 μg L-1) at various sites worldwide. They have strong tendency to accumulate in the human body, and thus associated with kidney stones. The REEs could also perturb the animal physiology, especially affecting the reproductive development in both terrestrial and aquatic animals. In plants, REEs might affect the germination, root and shoot development and flowering at concentration ranging from 0.4 to 150 mg kg-1. CONCLUSIONS This review article precisely narrates the current status, sources, and potential effects of REEs on plants, animals, humans health. There are also a few examples where REEs have been used to benefit human health. However, still there is scarce information about threshold levels of REEs in the soil, aquatic, and terrestrial resources as well as living entities. Therefore, an aggressive effort is required for global action to generate more data on REEs. This implies we prescribe an urgent need for inter-disciplinary studies about REEs in order to identify their toxic effects on both ecosystems and organisms.
Collapse
Affiliation(s)
- Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, PR China
| | - Jie Yinn Lee
- Institute for Tropical Biology and Conservation (ITBC), University of Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia
| | - Muhammad Zain
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, Henan 453003, PR China
| | - Muhammad Rizwan
- Microelement research center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Aamir Nawab
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - M A Ahmad
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, PR China
| | - Muhammad Shafiq
- Faculty of biological and agricultural sciences, University of Colima, Mexico
| | - Hao Yi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, PR China
| | - Ghulam Jilani
- Insititute of Soil Science and SWC, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Rabia Javed
- Department of Multidisciplinary Studies, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - R Horton
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, PR China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
23
|
Spiridigliozzi L, Pinter L, Biesuz M, Dell'Agli G, Accardo G, Sglavo VM. Gd/Sm-Pr Co-Doped Ceria: A First Report of the Precipitation Method Effect on Flash Sintering. MATERIALS 2019; 12:ma12081218. [PMID: 31013962 PMCID: PMC6514829 DOI: 10.3390/ma12081218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/02/2022]
Abstract
In this work, ceria-based ceramics with the composition Gd0.14Pr0.06Ce0.8O2-δ and Sm0.14Pr0.06Ce0.8O2-δ, were synthesized by a simple co-precipitation process using either ammonium carbonate or ammonia solution as a precipitating agent. After the calcination, all of the produced samples were constituted by fluorite-structured ceria only, thus showing that both dopant and co-dopant cations were dissolved in the fluorite lattice. The ceria-based nanopowders were uniaxially compacted and consequently flash-sintered using different electrical cycles (including current-ramps). Different results were obtained as a function of both the adopted precipitating agent and the applied electrical cycle. In particular, highly densified products were obtained using current-ramps instead of “traditional” flash treatments (with the power source switching from voltage to current control at the flash event). Moreover, the powders that were synthesized using ammonia solution exhibited a low tendency to hotspot formation, whereas the materials obtained using carbonates as the precipitating agent were highly inhomogeneous. This points out for the first time the unexpected relevance of the precipitating agent (and of the powder shape/degree of agglomeration) for the flash sintering behavior.
Collapse
Affiliation(s)
- Luca Spiridigliozzi
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino (FR), Italy.
| | - Lorenzo Pinter
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy.
| | - Mattia Biesuz
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy.
| | - Gianfranco Dell'Agli
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino (FR), Italy.
| | - Grazia Accardo
- Center of Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology, Hwarangno 14-gil, Seongbuk-gu, Seoul 136-791, Korea.
| | - Vincenzo M Sglavo
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
24
|
Bouchmila I, Bejaoui Kefi B, Souissi R, Abdellaoui M. Desorption of La3+ and Ce3+ from Treated ‘Chert’ a Siliceous Byproduct of the Phosphate Mining Industry of Gafsa-Metlaoui Basin (Southwestern Tunisia). CHEMISTRY AFRICA 2019. [DOI: 10.1007/s42250-018-0022-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Controlled Coprecipitation of Amorphous Cerium-Based Carbonates with Suitable Morphology as Precursors of Ceramic Electrolytes for IT-SOFCs. MATERIALS 2019; 12:ma12050702. [PMID: 30818832 PMCID: PMC6427277 DOI: 10.3390/ma12050702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 11/29/2022]
Abstract
To be suitable as electrolytes in intermediate temperature solid oxide fuel cell (IT-SOFC), ceramic precursors have to be characterized by high sintering aptitude for producing fully densified products which are needed for this kind of application. Therefore, synthesis processes able to prepare highly reactive powders with low costs are noteworthy to be highlighted. It has been shown that amorphous coprecipitates based on cerium doped (and codoped) hydrated hydroxycarbonates can lead to synthesized ceramics with such desired characteristics. These materials can be prepared by adopting a simple coprecipitation technique using ammonium carbonate as precipitating agent. As a function of both the molar ratio between carbonate anions and total metallic cations, and the adopted mixing speed, the coprecipitate can be either amorphous, owning a very good morphology, or crystalline, owning worse morphology, packing aptitude, and sinterability. The amorphous powders, upon a mild calcination step, gave rise to the formation of stable solid solutions of fluorite-structured ceria maintaining the same morphology of the starting powders. Such calcined powders are excellent precursors for sintering ceramic electrolytes at low temperatures and with very high electrical conductivity in the intermediate temperature range (i.e., 500–700 °C). Therefore, irrespective of the actual composition of ceria-based systems, by providing an accurate control of both chemical conditions and physical parameters, the coprecipitation in the presence of ammonium carbonate can be considered as one of the most promising synthesis route in terms of cost/effectiveness to prepare excellent ceramic precursors for the next generation of IT-SOFC solid electrolytes.
Collapse
|
26
|
Zhang J, Peh SB, Wang J, Du Y, Xi S, Dong J, Karmakar A, Ying Y, Wang Y, Zhao D. Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe3+ in aqueous solution. Chem Commun (Camb) 2019; 55:4727-4730. [DOI: 10.1039/c9cc00178f] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybrid MOF-808-Tb nanospheres were synthesized by a microwave-assisted approach and post-synthetic modification, exhibiting an outstanding luminescence sensing performance.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Chemical and Biomolecular Engineering
- National University of
- Singapore
- Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering
- National University of
- Singapore
- Singapore
| | - Jian Wang
- Department of Chemical and Biomolecular Engineering
- National University of
- Singapore
- Singapore
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences
- A*STAR
- Jurong Island
- Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences
- A*STAR
- Jurong Island
- Singapore
| | - Jinqiao Dong
- Department of Chemical and Biomolecular Engineering
- National University of
- Singapore
- Singapore
| | - Avishek Karmakar
- Department of Chemical and Biomolecular Engineering
- National University of
- Singapore
- Singapore
| | - Yunpan Ying
- Department of Chemical and Biomolecular Engineering
- National University of
- Singapore
- Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering
- National University of
- Singapore
- Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering
- National University of
- Singapore
- Singapore
| |
Collapse
|
27
|
Pretorius R, le Roux J, Wagener K, van Vuuren D, Crouse P. Fluorination of neodymium carbonate monohydrate with anhydrous hydrogen fluoride in a Carberry spinning-basket reactor. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00117k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental data show that the fluorination of neodymium carbonate hydrate, using anhydrous hydrogen fluoride to yield the metal trifluoride, is independent of temperature and linearly dependent on the reagent partial pressure.
Collapse
Affiliation(s)
- Ryno Pretorius
- Department of Chemical Engineering
- University of Pretoria
- Pretoria 0002
- South Africa
- Research and Development Division
| | - John le Roux
- Research and Development Division
- South African Nuclear Energy Corporation SOC Limited
- Pretoria 0001
- South Africa
| | - Kobus Wagener
- Research and Development Division
- South African Nuclear Energy Corporation SOC Limited
- Pretoria 0001
- South Africa
| | - David van Vuuren
- Department of Chemical Engineering
- University of Pretoria
- Pretoria 0002
- South Africa
| | - Philip Crouse
- Department of Chemical Engineering
- University of Pretoria
- Pretoria 0002
- South Africa
| |
Collapse
|