High-fidelity and high-resolution phase mapping of granites via confocal Raman imaging.
Sci Rep 2021;
11:8022. [PMID:
33850215 PMCID:
PMC8044247 DOI:
10.1038/s41598-021-87488-1]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
In physical sciences such as chemistry and earth sciences, specifically for characterization of minerals in a rock, automated, objective mapping methods based on elemental analysis have replaced traditional optical petrography. However, mineral phase maps obtained from these newer approaches rely on conversion of elemental compositions to mineralogical compositions and thus cannot distinguish mineral polymorphs. Secondly, these techniques often require laborious sample preparations such as sectioning, polishing, and coating which are time-consuming. Here, we develop a new Raman imaging protocol that is capable of mapping unpolished samples with an auto-focusing Z-mapping feature that allows direct fingerprinting of different polymorphs. Specifically, we report a new methodology for generating high fidelity phase maps by exploiting characteristic peak intensity ratios which can be extended to any multi-phase, heterogenous system. Collectively, these enhancements allow us to rapidly map an unpolished granite specimen (~ 2 × 2 mm) with an exceptionally high accuracy (> 97%) and an extremely fine spatial resolution (< 0.3-2 µm).
Collapse