1
|
Sherefedin U, Belay A, Gudishe K, Kebede A, Kumela AG, Asemare S. Photophysical Properties of Sinapic Acid and Ferulic Acid and Their Binding Mechanism with Caffeine. J Fluoresc 2024:10.1007/s10895-024-03689-7. [PMID: 38592595 DOI: 10.1007/s10895-024-03689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/23/2024] [Indexed: 04/10/2024]
Abstract
Sinapic acid (SA) and ferulic acid (FA) are bioactive compounds used in the food, pharmaceutical, and cosmetic industries due to their antioxidant properties. In this work, we studied the photophysical properties of SA and FA in different solvents and concentrations and their interactions with caffeine (CF), using ultraviolet-visible (UV-Vis), fluorescence spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The findings show that the quantum yield, fluorescence lifetime, radiative decay rates, and non-radiative decay rates of SA and FA are influenced by the concentrations and solvent polarity. The interaction between SA and FA with CF was also studied using UV-Vis and fluorescence spectroscopy. The results indicate that the CF quenched the fluorescence intensity of SA and FA by static quenching due to the formation of a non-fluorescent complex. The van't Hoff equation suggests that the van der Waals forces and hydrogen bonds force were responsible for the interaction between SA and CF, as indicated by a negative change in enthalpy (Δ H o < 0) and a negative change in entropy (Δ S o < 0). On the other hand, the interaction between FA and CF was primarily controlled by electrostatic force, as indicated by a negative change in enthalpy (Δ H o < 0) and a positive change in entropy (Δ S o > 0). The negative change in Gibbs free energy (Δ G o ) indicates that both compounds underwent a spontaneous binding process.
Collapse
Affiliation(s)
- Umer Sherefedin
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| | - Abebe Belay
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| | - Kusse Gudishe
- Department of Applied Physics, School of Applied Natural and Computational Sciences, Jinka University, P.O. Box 165, Jinka, Ethiopia
- Department of Applied Physics, College of Natural and Computational Sciences, Mekdela Amba University, Tullu Awulia, P.O. Box 32, Amhara, Ethiopia
| | - Alemu Kebede
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Alemayehu Getahun Kumela
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
- Department of Applied Physics, School of Applied Natural and Computational Sciences, Jinka University, P.O. Box 165, Jinka, Ethiopia
- Department of Applied Physics, College of Natural and Computational Sciences, Mekdela Amba University, Tullu Awulia, P.O. Box 32, Amhara, Ethiopia
| | - Semahegn Asemare
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| |
Collapse
|
2
|
Alotayeq A, Ghannay S, Alhagri IA, Ahmed I, Hammami B, E. A. E. Albadri A, Patel H, Messaoudi S, Kadri A, M. Al-Hazmy S, Aouadi K. Synthesis, optical properties, DNA, β-cyclodextrin interaction, hydrogen isotope sensor and computational study of new enantiopure isoxazolidine derivative (ISoXD). Heliyon 2024; 10:e26341. [PMID: 38404822 PMCID: PMC10884473 DOI: 10.1016/j.heliyon.2024.e26341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
A novel isoxazolidine derivative (ISoXD) dye was successfully synthesized and comprehensively characterized. In this study, we conducted a thorough examination of its various properties, including optical characteristics, interactions with DNA and β-cyclodextrin (β-CD), molecular docking, molecular dynamic simulation, and density functional theory (DFT) calculations. Our investigation encompassed a systematic analysis of the absorption and emission spectra of ISoXD in diverse solvents. The observed variations in the spectroscopic data were attributed to the specific solvent's capacity to engage in hydrogen bonding interactions. Remarkably, the most pronounced intensities were observed in glycol, which can establish many hydrogen bonds with ISoXD. Furthermore, our study revealed a significant distinction in the fluorescence behavior of ISoXD when subjected to different solvents, particularly between CHCl3 and CDCl3. Moreover, we explored the fluorescence intensity of the ISoXD complex in the presence of various metals, both in ethanol and water. The ISoXD complex exhibited a substantial increase of fluorescence upon interaction with different metal ions. The utilization of DFT calculations allowed us to propose an intramolecular charge transfer (ICT) mechanism as a plausible explanation for this quenching phenomenon. The interaction of ISoXD with DNA and β-CD was studied using absorption spectra. The binding constant (K) and the standard Gibbs free energy change (ΔGo) for the interaction between DNA and β-CD with ISoXD were determined. In docking study, ISoXD exhibited significant docking scores (-6.511) and MM-GBSA binding free energies (-66.27 kcal/mol) within the PARP-1 binding cavity. Its binding pattern closely resembles to the co-crystal ligand veliparib, and during a 100ns MD simulation, ISoXD displayed strong stability and formed robust hydrogen bonds with key amino acids. These findings suggest ISoXD's potential as a PARP-1 inhibitor for further investigation in therapeutic development.
Collapse
Affiliation(s)
- Afnan Alotayeq
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Ibrahim A. Alhagri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Chemistry, Faculty of Sciences, Ibb University, Ibb, Yemen
| | - Iqrar Ahmed
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Bechir Hammami
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Adel Kadri
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Al- Baha University, Saudi Arabia
| | - Sadeq M. Al-Hazmy
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Kaiss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir, 5019, Tunisia
| |
Collapse
|
3
|
V N, Gopal R, C A, T P A, K K A, Praveen VK, Kizhakayil RN. p-Phenylenediamine-derived carbon nanodots for probing solvent interactions. NANOSCALE ADVANCES 2024; 6:1535-1547. [PMID: 38419862 PMCID: PMC10898438 DOI: 10.1039/d3na00799e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Carbon nanodots, the luminescent nanoparticles of carbon with size restriction below 10 nm, have attracted inordinate attention in materials science due to their widespread applications in optoelectronic and biological fields. Low toxicity and facile synthesis pathways render them favourites in the above-mentioned areas in the context of green chemistry. This work presents fine applications of p-phenylenediamine-derived carbon nanodots (PD-CNDs) achieved via a facile one-pot hydrothermal method. Adequate characterization using X-ray diffraction and spectroscopic and microscopic studies confirmed spherical particles with an average particle size of 2.8 nm, functionalised with amino, carboxyl, and hydroxyl groups. The carbon framework was functionalised with pyridinic and pyrrolic nitrogens. Upon 365 nm UV light illumination, an aqueous dispersion of PD-CNDs showed red-orange fluorescence. Detailed spectral analysis using UV-visible absorption and fluorescence spectroscopy identified edge states and surface groups as luminescent centres, with a significant contribution arising from the latter. The investigation conducted using a collection of solvents, categorized into polar and nonpolar, indicated the potential of the system for applications based on its solvatochromic nature. The feature enabled the determination of different polarity parameters of the solvents, as well as dielectric constants of solvents and solvent mixtures, with considerable accuracy. The system was potent for predicting the composition of a given pair of solvents. The service of the system is also extended for moisture sensing in organic solvents within an error percentage < 1. High quantum yield values (0.61) combined with solvent composition-dependent optical features ensure broader applications of the system to probe solvent interactions.
Collapse
Affiliation(s)
- Nidhisha V
- Advanced Materials Research Centre, Department of Chemistry, University of Calicut Kerala 673635 India
| | - Ritu Gopal
- Advanced Materials Research Centre, Department of Chemistry, University of Calicut Kerala 673635 India
| | - Anjali C
- Advanced Materials Research Centre, Department of Chemistry, University of Calicut Kerala 673635 India
| | - Amrutha T P
- Advanced Materials Research Centre, Department of Chemistry, University of Calicut Kerala 673635 India
| | - Arunima K K
- Advanced Materials Research Centre, Department of Chemistry, University of Calicut Kerala 673635 India
| | - Vakayil K Praveen
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Renuka Neeroli Kizhakayil
- Advanced Materials Research Centre, Department of Chemistry, University of Calicut Kerala 673635 India
| |
Collapse
|
4
|
Receptor free fluorescent and colorimetric sensors for solution and vapor phase detection of hazardous pollutant nitrobenzene; a new structural approach to design AIEE active and piezofluorochromic sensors. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Paul P, Karar M, Mondal B, Roy UK, Ghosh A, Majumdar T, Mallick A. Controlled tuning of radiative-nonradiative transition via solvent perturbation: Franck-Condon emission vs. aggregation caused quenching. Phys Chem Chem Phys 2022; 24:18245-18254. [PMID: 35876115 DOI: 10.1039/d2cp02305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic molecules with tunable fluorescence quantum yield are attractive for opto-electronic applications. A fluorophore with tunable fluorescence quantum yield should be a better choice for a variety of applications that demand fluorophores with different quantum yields. Here organic emitters with a continuous bell-shaped fluorescence yield profile would be promising in view of sustainability and reusability; however, fluorophores with these properties are rarely reported. A bis-indole derivative, 3,3'-bisindolyl(phenyl)methane (BIPM), was synthesised and found to undergo a unique 'rise-and-fall' profile in fluorescence yield with a compositional change of the 1,4-dioxane (DiOx)-H2O solvent system. A predominant interplay of two contrasting factors, (a) polarity and proticity induced emission enhancement and (b) aggregation caused fluorescence quenching, on either side of a crossover solvent composition (∼50% fW), resulted in a continuous bell-patterned fluorescence yield profile. Interestingly, these two factors could be observed individually or simultaneously by adjusting the H2O fraction. Detailed spectroscopic, electron microscopic and computational studies have been performed to substantiate the photophysics behind the solvent regulated modulation of fluorescence quantum yield.
Collapse
Affiliation(s)
- Provakar Paul
- Department of Chemistry, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Monaj Karar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Bibhas Mondal
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Ujjal Kanti Roy
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Ashutosh Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| |
Collapse
|
6
|
Sung YM, Kwon ES, Maruyama YM, Shin Y, Ihn SG, Kim JS, Choi H, Lee HS, Kim JH, Kim J, Sul S. Probing twisted intramolecular charge transfer of pyrene derivatives as organic emitters in OLEDs. Phys Chem Chem Phys 2022; 24:21995-21999. [DOI: 10.1039/d2cp01394k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular charge transfer (ICT) plays a critical role in determining the photophysical properties of organic molecules, including their luminescence efficiencies. Twisted intramolecular charge transfer (TICT) is a process in which...
Collapse
|
7
|
Al-Harby J, Tar H, Al-Hazmy SM. Photoinduced and Classical Sol-Gel Synthesis: Spectral and Photophysical Behavior of Silica Matrix Doped by Novel Fluorescent Dye Based on Boron Difluoride Complex. Polymers (Basel) 2021; 13:2743. [PMID: 34451283 PMCID: PMC8400351 DOI: 10.3390/polym13162743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
The boron difluoride complex is known as an extraordinary class of fluorescent dyes, which has attracted research interest because of its excellent properties. This article reports the optical properties such as absorption, fluorescence, molar absorptivity, and photo-physical parameters like dipole moment, and oscillator strength of new fluorescent organic dye based on boron difluoride complex 2-(1-(difluoroboraneyl)-1,2-dihydroquinolin-2-yl)-2-(1-methylquinoxalin-2-ylidene) acetonitrile (DBDMA). The spectral characterization of the dye was measured in sol-gel glass, photosol-gel, and organic-inorganic matrices. The absorption and fluorescence properties of DBDMA in sol-gel glass matrices were compared with each other. Compared with the classical sol-gel, it was noticed that the photosol-gel matrix is the best one with immobilized DBDMA. In the latter, a large stokes shift was obtained (97 nm) and a high fluorescence quantum yield of 0.5. Special attention was paid to the addition of gold NPs into the hybrid material. The fluorescence emission intensity of the DBDMA with and without gold nanoparticles in different solid media is described, and that displayed organic-inorganic matrix behavior is the best host.
Collapse
Affiliation(s)
| | - Haja Tar
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Sadeq M. Al-Hazmy
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| |
Collapse
|
8
|
Zhang C, Shao H, Zhang J, Guo X, Liu Y, Song Z, Liu F, Ling P, Tang L, Wang KN, Chen Q. Long-term live-cell lipid droplet-targeted biosensor development for nanoscopic tracking of lipid droplet-mitochondria contact sites. Theranostics 2021; 11:7767-7778. [PMID: 34335963 PMCID: PMC8315056 DOI: 10.7150/thno.59848] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Lipid droplets (LDs) establish a considerable number of contact sites with mitochondria to enable energy transfer and communication. In this study, we developed a fluorescent biosensor to image LD-mitochondria interactions at the nanoscale and further explored the function of LD-mediated matrix transmission in processes involving multi-organelle interactions. Methods: A fluorescent probe called C-Py (C21H19N3O2, 7-(diethylamino) coumarin-3-vinyl-4-pyridine acetonitrile) was designed and synthesized. Colocalization of C-Py and the commercial LD stain Nile Red was analyzed in HeLa cells. The fluorescence stability and signal to background ratio of C-Py under structured illumination microscopy (SIM) were compared to those of the commercial probe BODIPY493/503. The cytotoxicity of C-Py was assessed using CCK-8 assays. The uptake pattern of C-Py in HeLa cells was then observed under various temperatures, metabolic levels, and endocytosis levels. Contact sites between LDs and various organelles, such as mitochondria, nuclei, and cell membrane, were imaged and quantitated using SIM. Physical changes to the contact sites between LDs and mitochondria were monitored after lipopolysaccharide induction. Results: A LD-targeted fluorescent biosensor, C-Py, with good specificity, low background signal, excellent photostability, low cytotoxicity, and high cellular permeability was developed for tracking LD contact sites with multiple organelles using SIM. Using C-Py, the subcellular distribution and dynamic processes of LDs in living cells were observed under SIM. The formation of contact sites between LDs and multiple organelles was visualized at a resolution below ~200 nm. The number of LD-mitochondria contact sites formed was decreased by lipopolysaccharide treatment inducing an inflammatory environment. Conclusions: C-Py provides strategies for the design of ultra-highly selective biosensors and a new tool for investigating the role and regulation of LDs in living cells at the nanoscale.
Collapse
Affiliation(s)
- Chengying Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250101, PR China
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, PR China
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| | - Huarong Shao
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| | - Jie Zhang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University. Jinan 250101, PR China
| | - Xinyan Guo
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| | - Yue Liu
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| | - Zhigang Song
- College of Basic Medicine, Jining Medical University, Jining 272067, PR China
| | - Fei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250101, PR China
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| | - Peixue Ling
- School of Pharmaceutical Sciences, Shandong University, Jinan 250101, PR China
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| | - Longguang Tang
- International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Kang-Nan Wang
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, PR China
| | - Qixin Chen
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, PR China
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, PR China
| |
Collapse
|
9
|
Castillo A, Ceballos P, Santos P, Cerón M, Venkatesan P, Pérez-Gutiérrez E, Sosa-Rivadeneyra M, Thamotharan S, Siegler MA, Percino MJ. Solution and Solid-State Photophysical Properties of Positional Isomeric Acrylonitrile Derivatives with Core Pyridine and Phenyl Moieties: Experimental and DFT Studies. Molecules 2021; 26:1500. [PMID: 33801942 PMCID: PMC8001298 DOI: 10.3390/molecules26061500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
The compounds I (Z)-2-(phenyl)-3-(2,4,5-trimethoxyphenyl)acrylonitrile with one side (2,4,5-MeO-), one symmetrical (2Z,2'Z)-2,2'-(1,4-phenylene)bis(3-(2,4,5-trimethoxyphenyl)acrylonitrile), II (both sides with (2,4,5-MeO-), and three positional isomers with pyridine (Z)-2-(pyridin-2- 3, or 4-yl)-3-(2,4,5-trimethoxyphenyl)acrylonitrile, III-V were synthetized and characterized by UV-Vis, fluorescence, IR, H1-NMR, and EI mass spectrometry as well as single crystal X-ray diffraction (SCXRD). The optical properties were strongly influenced by the solvent (hyperchromic and hypochromic shift), which were compared with the solid state. According to the solvatochromism theory, the excited-state (μe) and ground-state (μg) dipole moments were calculated based on the variation of Stokes shift with the solvent's relative permittivity, refractive index, and polarity parameters. SCXRD analyses revealed that the compounds I and II crystallized in the monoclinic system with the space group, P21/n and P21/c, respectively, and with Z = 4 and 2. III, IV, and V crystallized in space groups: orthorhombic, Pbca; triclinic, P-1; and monoclinic, P21 with Z = 1, 2, and 2, respectively. The intermolecular interactions for compounds I-V were investigated using the CCDC Mercury software and their energies were quantified using PIXEL. The density of states (DOS), molecular electrostatic potential surfaces (MEPS), and natural bond orbitals (NBO) of the compounds were determined to evaluate the photophysical properties.
Collapse
Affiliation(s)
- Armando Castillo
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Paulina Ceballos
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Pilar Santos
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Margarita Cerón
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Perumal Venkatesan
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Enrique Pérez-Gutiérrez
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Martha Sosa-Rivadeneyra
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esquina San Claudio, San Manuel, Puebla 72570, Mexico;
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, School of Chemical & Biotechnology, Department of Bioinformatics, SASTRA Deemed University, Thanjavur 613401, India;
| | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, New Chemistry Building, 3400 N. Charles St., Baltimore, MD 21218, USA;
| | - María Judith Percino
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| |
Collapse
|
10
|
Wang BY, Wang JY, Chang WW, Chu CC. A dendrimer-functionalized turn-on fluorescence probe based on enzyme-activated debonding feature of azobenzene linkage. NEW J CHEM 2021. [DOI: 10.1039/d1nj03943a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hypoxic feature of tumors has led to researchers developing hypoxia-activated prodrugs and probes that leverage oxidoreductases overexpressed in tumor tissues.
Collapse
Affiliation(s)
- Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua City 50006, Taiwan
- School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City 40201, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
- College of Medicine, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
| | - Jia-Yi Wang
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Science, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Chih-Chien Chu
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung City 40201, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| |
Collapse
|
11
|
Nunes MC, dos Santos Carlos F, Fuganti O, da Silva LA, Ribas HT, Winnischofer SMB, Nunes FS. A Facile Preparation of a New Water-Soluble Acridine Derivative and Application as a Turn-off Fluorescence Chemosensor for Selective Detection of Hg2+. J Fluoresc 2020; 30:235-247. [DOI: 10.1007/s10895-020-02489-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
|
12
|
Turn-on fluorescence study of a highly selective acridine-based chemosensor for Zn2+ in aqueous solutions. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119191] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Yalcin D, Drummond CJ, Greaves TL. Solvation properties of protic ionic liquids and molecular solvents. Phys Chem Chem Phys 2020; 22:114-128. [DOI: 10.1039/c9cp05711k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids (ILs) are highly tailorable solvents with many potential applications. Knowledge about their solvation properties is highly beneficial in the utilization of ILs for specific tasks, though for many ILs this is currently unknown.
Collapse
Affiliation(s)
- Dilek Yalcin
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne
| | - Calum J. Drummond
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne
| | - Tamar L. Greaves
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne
| |
Collapse
|
14
|
Kushvaha SK, Arumugam S, Shankar B, Sarkar RS, Ramkumar V, Mondal KC. Isolation and Characterization of Different Homometallic and Heterobimetallic Complexes of Nickel and Zinc Ions by Controlling Molar Ratios and Solvents. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Kushvaha SK, Shankar B, Gorantla NVTSM, Mondal KC. A Fluorescent Hexanuclear Zn(II) Complex. ChemistrySelect 2019. [DOI: 10.1002/slct.201803745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Amino acid-sensitive reagents with coumarin moiety for latent prints examination. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
González-Pérez M, Ooi SY, Martins S, Prates Ramalho JP, Pereira A, Caldeira AT. Gaining insight into the photophysical properties of a coumarin STP ester with potential for bioconjugation. NEW J CHEM 2018. [DOI: 10.1039/c8nj03548b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The photophysical properties of a coumarin 392 4-sulfotetrafluorophenyl ester, C392STP (sodium (E/Z)-4-(4-(2-(6,7-dimethoxycoumarin-3-yl)vinyl)-benzoyl)-2,3,5,6-tetrafluoro-benzenesulfonate), an amine reactive coumarine with potential for bioconjungation, have been studied in different solvents.
Collapse
Affiliation(s)
| | - S. Y. Ooi
- Chemistry Department
- School of Sciences and Technology
- Evora University
- Evora
- Portugal
| | - S. Martins
- HERCULES Laboratory
- Evora University
- Evora
- Portugal
| | | | - A. Pereira
- HERCULES Laboratory
- Evora University
- Evora
- Portugal
- Chemistry Department
| | - A. T. Caldeira
- HERCULES Laboratory
- Evora University
- Evora
- Portugal
- Chemistry Department
| |
Collapse
|
18
|
Majumder I, Chakraborty P, Dasgupta S, Massera C, Escudero D, Das D. A Deep Insight into the Photoluminescence Properties of Schiff Base CdII and ZnII Complexes. Inorg Chem 2017; 56:12893-12901. [DOI: 10.1021/acs.inorgchem.7b01692] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ishani Majumder
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Prateeti Chakraborty
- Department
of Chemistry, Bangabasi College, 19, Rajkumar Chakraborty Sarani, Kolkata 700009, India
| | - Sanchari Dasgupta
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Chiara Massera
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, University of Parma, Viale delle Scienze 17/A, 43124 Parma, Italy
| | - Daniel Escudero
- Chimie
Et Interdisciplinarité, Synthèse, Analyse, Modélisation,
BP 92208, UMR CNRS No. 6320, Université de Nantes, 2, Rue de
la Houssinière, 44322 Nantes, Cedex 3, France
| | - Debasis Das
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
19
|
Adhikary J, Chakraborty P, Samanta S, Zangrando E, Ghosh S, Das D. Thiocyanate mediated structural diversity in phenol based "end-off" compartmental ligand complexes of group 12 metal ions: Studies on their photophysical properties and phosphatase like activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 178:114-124. [PMID: 28171815 DOI: 10.1016/j.saa.2017.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/30/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
The reaction of a pentadentate compartmental ligand LH, namely 4-tert-Butyl-2,6-bis-[(2-pyridin-2-yl-ethylimino)-methyl]-phenol, with group 12 metal ions (ZnII, CdII, HgII) followed by addition of NaSCN afforded one discrete dinuclear complex [Zn2(L)(SCN)3](1), and two polymeric 1D species [Cd2.5(L)(SCN)3(AcO)]n (2) and [Hg2(L)(SCN)3]n (3). All the complexes have been structurally characterized by single crystal X-ray diffraction. The crystal structure of the complexes reveals different coordination modes of thiocyanate anion that affect the different topology detected in the compounds: the anions are μ1-NCS and μ1,1-NCS connected in complex 1, while μ1,3-NCS bridging mode is observed in 2, and μ1-SCN and μ1,3-NCS in 3. The polymeric Hg complex of the bicompartmental ligand system here reported is unprecedented. Detail study of their photophysical properties including the phosphorescence spectra at 77K has been done. Phosphatase like activity of all the three complexes has been performed in DMSO-H2O medium and their activity follows the order of 1>2>>3.
Collapse
Affiliation(s)
- Jaydeep Adhikary
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India; Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Prateeti Chakraborty
- Department of Chemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| | - Sugata Samanta
- Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Sanjib Ghosh
- The School of Science, Adamas University, Barasat, West Bengal, India.
| | - Debasis Das
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India.
| |
Collapse
|
20
|
|
21
|
Meng F, Liu T, Schneider E, Alzobaidi S, Gil M, Zhang F. Self-Association of Rafoxanide in Aqueous Media and Its Application in Preparing Amorphous Solid Dispersions. Mol Pharm 2017; 14:1790-1799. [DOI: 10.1021/acs.molpharmaceut.7b00068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Fan Meng
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712, United States
| | - Tongzhou Liu
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712, United States
| | - Elizabeth Schneider
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712, United States
| | - Shehab Alzobaidi
- Department
of Chemical Engineering, The University of Texas at Austin, 200
East Dean Keeton Street, Austin, Texas 78712, United States
| | - Marco Gil
- Hovione LLC, 40 Lake Drive, East Windsor, New Jersey 08520, United States
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Gupta VK, Singh RA. Aggregation-induced enhanced green light emission from a simple donor–π–acceptor (D–π–A) material: a structure–property relationship study. Faraday Discuss 2017; 196:131-142. [DOI: 10.1039/c6fd00158k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic D–π–A materials, possessing intramolecular charge transfer, have attracted much scientific attention in recent years because of their potential applications in the development of organic light emitting devices (OLEDs). Two new compounds, A1 and A2, having a D–π–A skeleton have been synthesized and single crystals were grown by the solution growth technique. Both compounds were characterized for crystallographic, thermal and photophysical properties. Upon photo-excitation in the solid state, A1 showed very strong green light emission while A2 gave sky-blue emission with much lower intensity. A single crystal X-ray diffraction study revealed that in the crystal lattice of A1, both the donor and acceptor groups are involved in the intermolecular interactions. This results in the restricted intramolecular rotation (RIR) of the D and A moieties, and enables A1 to emit more intensely in the solid state due to aggregation-induced emission (AIE). Intense green light emission, along with a good crystalline nature indicates that A1 might be a potential candidate for opto-electronic devices.
Collapse
Affiliation(s)
- Vinod Kumar Gupta
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221 005
| | - Ram Adhar Singh
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221 005
| |
Collapse
|
23
|
Chakraborty P, Adhikary J, Samanta S, Majumder I, Massera C, Escudero D, Ghosh S, Bauza A, Frontera A, Das D. Influence of para substituents in controlling photophysical behavior and different non-covalent weak interactions in zinc complexes of a phenol based "end-off" compartmental ligand. Dalton Trans 2015; 44:20032-44. [PMID: 26527456 DOI: 10.1039/c5dt02768c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three dinuclear zinc(II) complexes with "end-off" compartmental ligands, namely 2,6-bis(N-ethylmorpholine-iminomethyl)-4-R-phenol (R = -CH3, Cl, (t)Bu) have been synthesized with the aim of exploring the role of the para substituent present in the ligand backbone in controlling the structural diversity, photophysical properties and different weak interactions of the complexes. All three species, with the general formula {2[Zn2L(CH3COO)2][Zn(NCS)4]}, show the complex anion Zn(NCS)4(2-) as a common structural feature decisive for crystallization. Interestingly, all of them possess several non-covalent weak interactions where the nature of the "R" group plays an essential role as exposed by DFT study. Besides exhibiting fluorescence behavior, the complexes also show para substitution controlled phosphorescence both at room and low temperature. Anisotropy studies suggest the existence of complexes 2 and 3 as dimers in solution. The origins of the unusual room temperature phosphorescence and fluorescence behavior of the complexes have been rationalized in the light of theoretical calculations.
Collapse
Affiliation(s)
- Prateeti Chakraborty
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India.
| | - Jaydeep Adhikary
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India.
| | - Sugata Samanta
- Department of Chemistry, Presidency University, Kolkata 700073, India.
| | - Ishani Majumder
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India.
| | - Chiara Massera
- Dipartimento di Chimica, University of Parma, Viale delle Scienze 17/A, 43124 Parma, Italy
| | - Daniel Escudero
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS no. 6320, BP 92208, Université de Nantes, 2, Rue de la Houssinière, 44322 Nantes, Cedex 3, France.
| | - Sanjib Ghosh
- Department of Chemistry, Presidency University, Kolkata 700073, India.
| | - Antonio Bauza
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain.
| | - Debasis Das
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India.
| |
Collapse
|
24
|
Gupta VK, Singh RA. An investigation on single crystal growth, structural, thermal and optical properties of a series of organic D–π–A push–pull materials. RSC Adv 2015. [DOI: 10.1039/c5ra04907e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present the large single crystal growth of a series of donor–π–acceptor (D–π–A) push–pull chromophores (1–4). The thermal, structural and optical properties of the synthesized chromophores were explored. These studies indicate the potential opto-electronic application of these push–pull chromophores.
Collapse
Affiliation(s)
- Vinod Kumar Gupta
- Department of Chemistry
- Centre of Advanced Study
- Faculty of Science
- Banaras Hindu University
- Varanasi-221 005
| | - Ram Adhar Singh
- Department of Chemistry
- Centre of Advanced Study
- Faculty of Science
- Banaras Hindu University
- Varanasi-221 005
| |
Collapse
|
25
|
Synthesis and Photochromic Properties of Spirobiindane Based Bis-coumarins. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2014. [DOI: 10.1007/s40010-014-0179-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Prior AM, Gunaratna MJ, Kikuchi D, Desper J, Kim Y, Chang KO, Maezawa I, Jin LW, Hua DH. Syntheses of 3-[(Alkylamino)methylene]-6-methylpyridine-2,4(1 H,3 H)-diones, 3-Substituted 7-Methyl-2 H-pyrano[3,2- c]pyridine-2,5(6 H)-dione Fluorescence Probes, and Tetrahydro-1 H,9 H-2,10-dioxa-9-azaanthracen-1-ones. SYNTHESIS-STUTTGART 2014; 46:2179-2190. [PMID: 25177061 PMCID: PMC4146570 DOI: 10.1055/s-0033-1339027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Various condensation and ring-closing reactions were used for the syntheses of 3-[(alkylamino)methylene]-6-methylpyri-dine-2,4(1H,3H)-diones, bicyclic pyridinones, and tricyclic morpholinopyrones. For instance, 3-[(dialkylamino)methylene]-6-methylpyridine-2,4(1H,3H)-diones were synthesized from the condensation of dialkylamines and 3-formyl-4-hydroxy-6-methylpyridin-2(1H)-one. 3-Formyl-4-hydroxy-6-methylpyridin-2(1H)-one, derived from 3-formyl-4-hydroxy-6-methylpyridin-2(1H)-one, was used to construct a number of bicyclic pyridinones via a one-pot Knoevenagal and intramolecular lactonization reaction. Tricyclic morpholinopyrones were assembled from a dialkylation reaction involving a dinucleophile, 3-amino-4-hydroxy-6-methyl-2H-pyran-2-one, and a dielectrophile, trans-3,6-dibromocyclohexene. Depending on the reaction conditions, isomers of the tricyclic molecules can be selectively produced, and their chemical structures were unequivocally determined using single-crystal X-ray analyses and 2D COSY spectroscopy. The fluorescently active bicyclic pyridinone compounds show longer absorption (368-430 nm; maximum) and emission wavelengths (450-467 nm) than those of 7-amino-4-methylcoumarin (AMC; λabs,max = 350 nm; λem = 430 nm) suggesting these molecules, such as 3-(2-aminoacetyl)-7-methyl-2H-pyrano[3,2-c]pyridine-2,5(6H)-dione, can be employed as fluorescence activity based probes for tracing biological pathways.
Collapse
Affiliation(s)
- Allan M. Prior
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506-0401, USA
| | - Medha J. Gunaratna
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506-0401, USA
| | - Daisuke Kikuchi
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506-0401, USA
| | - John Desper
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506-0401, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0401, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0401, USA
| | - Izumi Maezawa
- M.I.N.D. Institute and Department of Pathology, 2825 50th Street, UC Davis Health System, Sacramento, CA 95817, USA
| | - Lee-Way Jin
- M.I.N.D. Institute and Department of Pathology, 2825 50th Street, UC Davis Health System, Sacramento, CA 95817, USA
| | - Duy H. Hua
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506-0401, USA
| |
Collapse
|
27
|
Cigáň M, Danko M, Donovalová J, Gašpar J, Stankovičová H, Gáplovský A, Hrdlovič P. 3-(7-Dimethylamino)coumarin N-phenylsemicarbazones in solution and polymer matrices: Tuning their fluorescence via para-phenyl substitution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 126:36-45. [PMID: 24577278 DOI: 10.1016/j.saa.2014.01.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/20/2014] [Accepted: 01/26/2014] [Indexed: 06/03/2023]
Abstract
The photo-physical properties of five new para-phenyl substituted derivatives of 3-(7-dimethylamino)coumarin N-phenylsemicarbazone with various electron-withdrawing substituents R (RF, Br, CF3, CN or NO2) in the para-position on the phenyl ring were investigated in solvents and in polymer matrices. Tuning their fluorescent properties via para-substitution is discussed in terms of Twisted Intra-molecular Charge-Transfer (TICT) state formation, specific solute-solvent interactions (hydrogen bonding), fluorescent H-aggregates formation, and the solvent polarity and polymer matrix effects.
Collapse
Affiliation(s)
- Marek Cigáň
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia.
| | - Martin Danko
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia.
| | - Jana Donovalová
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia.
| | - Jan Gašpar
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia.
| | - Henrieta Stankovičová
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia
| | - Anton Gáplovský
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia.
| | - Pavol Hrdlovič
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia.
| |
Collapse
|
28
|
A Recent Review on Chemiluminescence Reaction, Principle and Application on Pharmaceutical Analysis. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/230858] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper provides a general review on principle of chemiluminescent reactions and their recent applications in drug analysis. The structural requirements for chemiluminescent reactions and the different factors that affect the efficiency of analysis are included in the review. Chemiluminescence application in immunoassay is the new version for this review. Practical considerations are not included in the review since the main interest is to state, through the aforementioned applications, that chemiluminescence has been, is, and will be a versatile tool for pharmaceutical analysis in future years.
Collapse
|
29
|
Cigáň M, Donovalová J, Szöcs V, Gašpar J, Jakusová K, Gáplovský A. 7-(Dimethylamino)coumarin-3-carbaldehyde and its phenylsemicarbazone: TICT excited state modulation, fluorescent H-aggregates, and preferential solvation. J Phys Chem A 2013; 117:4870-83. [PMID: 23697644 DOI: 10.1021/jp402627a] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The photophysical properties of 7-(dimethylamino)coumarin-3-carbaldehyde 3 and its phenylsemicarbazone 4 were investigated in solvents of various polarity and in differing solvent mixtures. The different fluorescent quantum yield (ΦF) behavior of 3 and 4 in highly polar solvents is discussed in terms of Twisted Intramolecular Charge-Tranfer (TICT) state formation and the specific solute-solvent interactions. Because of the weak intermolecular hydrogen bonding ability of both the radiative ICT and nonradiative TICT excited state of 3 and the linear steep decrease in ΦF from a medium to high polarity region, coumarin 3 could be a useful polarity probe for microenvironments containing hydrogen bonding groups. Compared to 3, coumarin 4 exhibits the highest ΦF values in highly polar solvents with strong hydrogen bond acceptor ability. The high quantum yield of fluorescence in DMSO, DMF, and alcohols qualifies coumarin 4 as a laser dye in the given medium, with kF higher than k(nr). Contrary to previous reports that many H-aggregates are nonfluorescent in nature, coumarin 3 forms highly fluorescent H-aggregates in MeOH and EtOH. On the basis of the restrictions of the Kasha-exciton theory model, we assume that the formation of fluorescent H-dimer aggregates of 3 is driven by π(+)-π(-) interactions. To the best of our knowledge, this is the first report on aggregation of coumarin dye in alcoholic solutions. In addition, restrictions in the fitting procedure relating to determination of the solvation number, n, using the Covington-Newman model of preferential solvation and also the solvent nonideality parameter, h', are discussed in this article.
Collapse
Affiliation(s)
- Marek Cigáň
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
30
|
Djiango M, Ritter K, Müller R, Klar TA. Spectral tuning of the phosphorescence from metalloporphyrins attached to gold nanorods. OPTICS EXPRESS 2012; 20:19374-19381. [PMID: 23038580 DOI: 10.1364/oe.20.019374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The spectral shape of the phosphorescence emission of organometallic porphyrin molecules is shown to be altered when these chromophores are incorporated into hybrid nanostructures with gold nanorods. This result shows that triplet-singlet transitions, which are (at least partially) dipolar forbidden, can be modified by the dipolar resonances of gold nanoparticles. By choosing nanorods of increasing aspect ratios, it is possible to match the long axis plasmon resonance of the nanorods to a specific phosphorescence transition. Consequently, the emission colour of the hybrids can be tuned.
Collapse
Affiliation(s)
- Martin Djiango
- Institute of Applied Physics, Johannes Kepler University Linz, Linz 4040, Austria.
| | | | | | | |
Collapse
|
31
|
Cigáň M, Filo J, Stankovičová H, Gáplovský A, Putala M. Spectral properties of binaphthalene-coumarins interconnected through hydrazone linkage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 89:276-283. [PMID: 22286056 DOI: 10.1016/j.saa.2012.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 05/31/2023]
Abstract
Photophysical properties of new coumarin-3-carbaldehyde (dihydrodinaphtho[2,1-c:1',2'-e]azepin-N-yl)imines bearing dimethylamino and methoxy groups at position 7 of coumarin were investigated. Dimethylamino derivative exhibits different solvent polarity dependence of fluorescent characteristics for nonpolar, medium polar and highly polar solvents. This effect can be rationalized by diverse charge distribution in the singlet excited state due to its different stabilization by solvation in the solvents of particular group. While 2-fold higher values of Stokes shift were observed for methoxy derivative, its quantum yield of fluorescence is much lower due to high nonradiative decay rate constant of the excited state.
Collapse
Affiliation(s)
- Marek Cigáň
- Institute of Chemistry, Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, SK-84215 Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
32
|
Donovalová J, Cigáň M, Stankovičová H, Gašpar J, Danko M, Gáplovský A, Hrdlovič P. Spectral properties of substituted coumarins in solution and polymer matrices. Molecules 2012; 17:3259-76. [PMID: 22418928 PMCID: PMC6268095 DOI: 10.3390/molecules17033259] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 11/26/2022] Open
Abstract
The absorption and fluorescence spectra of substituted coumarins (2-oxo-2H-chromenes) were investigated in solvents and in polymer matrices. The substitutions involved were: (1) by groups with varying electron donating ability such as CH3, OCH3 and N(CH3)2, mainly, but not exclusively, in positions 7 and (2), by either CHO or 4-PhNHCONHN=CH- in position 3. While the spectra of non-substituted coumarin-3-carbaldehyde has absorptions at approximately 305 and 350 nm, substitution at position 7 leads to remarkable changes in the shape of the absorption spectrum and shifts the absorption to a longer wavelength. Similarly, the replacement of the formyl group with a semicarbazide group substantially influences the shape of the absorption spectrum, and coumarins which have only N(CH3)2 in position 7 experience small changes. These changes are associated with the increasing intramolecular charge transfer (ICT) character and increasing conjugation length of the chromophoric system, respectively, in the studied molecules. The fluorescence is almost negligible for derivatives which have H in this position. With increasing electron donating ability, and the possibility of a positive mesomeric (+M) effect of the substituent in position 7 of the coumarin moiety, the fluorescence increases, and this increase is most intense when N(CH3)2 substitutes in this position, for both 3-substituted derivatives. Spectral measurements of the studied coumarins in polymer matrices revealed that the absorption and fluorescence maxima lay within the maxima for solvents, and that coumarins yield more intense fluorescence in polymer matrices than when they are in solution. The quantum yield of derivatives which have a dimethylamino group in position 7 in polymer matrices approaches 1, and the fluorescence lifetime is within the range of 0.5–4 ns. The high quantum yield of 7-dimethylamino derivatives qualifies them as laser dyes which have kF higher than knr in the given medium. This is caused by stiffening of the coumarin structure in polar polymer matrices, such as PMMA and PVC, due to higher micro-viscosity than in solution and intermolecular dipole-dipole interaction between chromophore (dopant) and matrix.
Collapse
Affiliation(s)
- Jana Donovalová
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovak Republic; (M.C.); (H.S.); (J.G.); (A.G.); (P.H.)
- Author to whom correspondence should be addressed; ; Tel.: +421-2-6029-6306; Fax: +421-2-6029-6337
| | - Marek Cigáň
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovak Republic; (M.C.); (H.S.); (J.G.); (A.G.); (P.H.)
| | - Henrieta Stankovičová
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovak Republic; (M.C.); (H.S.); (J.G.); (A.G.); (P.H.)
| | - Jan Gašpar
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovak Republic; (M.C.); (H.S.); (J.G.); (A.G.); (P.H.)
| | - Martin Danko
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Dúbravská cesta 9, Slovak Republic;
| | - Anton Gáplovský
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovak Republic; (M.C.); (H.S.); (J.G.); (A.G.); (P.H.)
| | - Pavol Hrdlovič
- Faculty of Natural Sciences, Institute of Chemistry, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovak Republic; (M.C.); (H.S.); (J.G.); (A.G.); (P.H.)
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Dúbravská cesta 9, Slovak Republic;
| |
Collapse
|
33
|
Morris JC, McMurtrie JC, Bottle SE, Fairfull-Smith KE. Generation of Profluorescent Isoindoline Nitroxides Using Click Chemistry. J Org Chem 2011; 76:4964-72. [DOI: 10.1021/jo200613r] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jason C. Morris
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology and ‡Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, Queensland 4001, Australia
| | - John C. McMurtrie
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology and ‡Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, Queensland 4001, Australia
| | - Steven E. Bottle
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology and ‡Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, Queensland 4001, Australia
| | - Kathryn E. Fairfull-Smith
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology and ‡Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, Queensland 4001, Australia
| |
Collapse
|
34
|
Srivastava K, Chakraborty T, Singh HB, Butcher RJ. Intramolecularly coordinated azobenzene selenium derivatives: Effect of strength of the Se⋯N intramolecular interaction on luminescence. Dalton Trans 2011; 40:4489-96. [DOI: 10.1039/c0dt01319f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|