1
|
Rabelo ACS, Andrade AKDL, Costa DC. The Role of Oxidative Stress in Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Preclinical Studies. Nutrients 2024; 16:1174. [PMID: 38674865 PMCID: PMC11055095 DOI: 10.3390/nu16081174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Alcoholic Fatty Liver Disease (AFLD) is characterized by the accumulation of lipids in liver cells owing to the metabolism of ethanol. This process leads to a decrease in the NAD+/NADH ratio and the generation of reactive oxygen species. A systematic review and meta-analysis were conducted to investigate the role of oxidative stress in AFLD. A total of 201 eligible manuscripts were included, which revealed that animals with AFLD exhibited elevated expression of CYP2E1, decreased enzymatic activity of antioxidant enzymes, and reduced levels of the transcription factor Nrf2, which plays a pivotal role in the synthesis of antioxidant enzymes. Furthermore, animals with AFLD exhibited increased levels of lipid peroxidation markers and carbonylated proteins, collectively contributing to a weakened antioxidant defense and increased oxidative damage. The liver damage in AFLD was supported by significantly higher activity of alanine and aspartate aminotransferase enzymes. Moreover, animals with AFLD had increased levels of triacylglycerol in the serum and liver, likely due to reduced fatty acid metabolism caused by decreased PPAR-α expression, which is responsible for fatty acid oxidation, and increased expression of SREBP-1c, which is involved in fatty acid synthesis. With regard to inflammation, animals with AFLD exhibited elevated levels of pro-inflammatory cytokines, including TNF-a, IL-1β, and IL-6. The heightened oxidative stress, along with inflammation, led to an upregulation of cell death markers, such as caspase-3, and an increased Bax/Bcl-2 ratio. Overall, the findings of the review and meta-analysis indicate that ethanol metabolism reduces important markers of antioxidant defense while increasing inflammatory and apoptotic markers, thereby contributing to the development of AFLD.
Collapse
Affiliation(s)
- Ana Carolina Silveira Rabelo
- Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-163, Brazil
- Department of Biochemistry, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | | | - Daniela Caldeira Costa
- Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-163, Brazil
| |
Collapse
|
2
|
Wang Z, Zhang X, Lv DM, Cao S, Yang G, Zhang Z, Yu Q. Fructus lycii oligosaccharide alleviates acute liver injury via PI3K/Akt/mTOR pathway. Immunol Res 2024; 72:271-283. [PMID: 38032450 DOI: 10.1007/s12026-023-09431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Regulating the immune-environment is essential for treating acute liver injury (ALI). However, the deficiency of an effective immune balancer restricted progress. Herein, we reported an oligosaccharide from Fructus lycii oligosaccharide (FLO). To investigate the effects of FLO, we adopted primary macrophages and LO2 for experiments in vitro. In vivo, we assessed the influence of FLO in ALI with histochemical staining and enzyme indicators detection. Following that, we clarified the underlying mechanisms using western blotting and immunofluorescence. Our results indicated that FLO (100 μg/mL) showed apparent inflammatory reversal effects by shifting the phenotype of macrophages from M1 to M2 without causing any cytotoxicity. Furthermore, CCl4-induced mice were significantly improved by FLO intragastric administration. Meanwhile, PI3K/AKT/mTOR pathway was confirmed for the up-regulation of IL-10 via M2 polarization of macrophages. Collectively, our findings highlight the beneficial effects of FLO on ALI therapy via M1 to M2 macrophage conversion.
Collapse
Affiliation(s)
- Zhe Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xingxing Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - De Ming Lv
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Sucheng Cao
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Guang Yang
- Nanjing Tech University, Nanjing, 210003, China
| | - Zhijian Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Qingtong Yu
- Laboratory of Drug Delivery and Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
3
|
Lu C, Zhang S, Lei SS, Wang D, Peng B, Shi R, Chong CM, Zhong Z, Wang Y. A comprehensive review of the classical prescription Yiguan Jian: Phytochemistry, quality control, clinical applications, pharmacology, and safety profile. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117230. [PMID: 37778517 DOI: 10.1016/j.jep.2023.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiguan Jian (YGJ) is a classical prescription, which employs 6 kinds of medicinal herbs including Rehmanniae Radix, Lycii Fructus, Angelicae sinensis Radix, Glehniae Radix, Ophiopogonis Radix, and Toosendan Fructus. YGJ decoction is originally prescribed in Qing Dynasty (1636 CE ∼ 1912 CE) in China, and is commonly used to treat liver diseases. There remain abundant literature investigating YGJ decoction from multiple aspects, but few reviews summarized the research and gave a precise definition, which impedes further applications and commercialization of YGJ decoction. AIM OF THE REVIEW The aim of this review is to provide comprehensive descriptions of YGJ decoction, tackling with issues in the research and development of YGJ decoction. MATERIALS AND METHODS The literature and clinical reports were obtained from the databases including Web of Science, Science Direct, PubMed, Google Scholar, China National Knowledge Infrastructure, China Science Periodical Database, China Science and Technology Journal Database, and SinoMed since 2000. The phytochemical characteristics, quality control, pharmaceutical forms, clinical position, pharmacological effects, and toxic events of YGJ decoction were included for analysis. RESULT This review firstly summarized the progress of the chemical existences of YGJ decoction and discussed the advanced methods in monitoring quality of YGJ decoction and its herbal ingredients, particularly in the form of granules. Whilst this review aims to identify the pharmacological actions and clinical impacts of YGJ decoction, the medicinal materials that could provide these benefits were observed in the remaining herbs to exert the anti-fibrotic effects, anti-inflammatory activities, anti-cancer, and anti-diabetic effects, and to universally treat liver and gastric diseases. This review provided supplementary descriptions on the safety issues, especially in Glehniae Radix and Toosendan Fructus, to define the alterations between hepatoprotective activities and unclear toxics in YGJ decoction application. CONCLUSIONS Our comprehensively organized review discussed the chemical characteristics and the research in altering or identifying these essences. The effects of YGJ decoction on the non-clinical and clinical tests exert the good management of sophisticated diseases. In this review, current issues are discussed to inform and inspire subsequent research of YGJ decoction and other classical prescriptions.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Si San Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Danni Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ruipeng Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
4
|
Su ZW, Yan TY, Feng J, Zhang MY, Han L, Zhang HF, Xiao Y. Protective Effects and Mechanism of Polysaccharides from Edible Medicinal Plants in Alcoholic Liver Injury: A Review. Int J Mol Sci 2023; 24:16530. [PMID: 38003718 PMCID: PMC10671977 DOI: 10.3390/ijms242216530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Alcohol use accounts for a large variety of diseases, among which alcoholic liver injury (ALI) poses a serious threat to human health. In order to overcome the limitations of chemotherapeutic agents, some natural constituents, especially polysaccharides from edible medicinal plants (PEMPs), have been applied for the prevention and treatment of ALI. In this review, the protective effects of PEMPs on acute, subacute, subchronic, and chronic ALI are summarized. The pathogenesis of alcoholic liver injury is analyzed. The structure-activity relationship (SAR) and safety of PEMPs are discussed. In addition, the mechanism underlying the hepatoprotective activity of polysaccharides from edible medicinal plants is explored. PEMPs with hepatoprotective activities mainly belong to the families Orchidaceae, Solanaceae, and Liliaceae. The possible mechanisms of PEMPs include activating enzymes related to alcohol metabolism, attenuating damage from oxidative stress, regulating cytokines, inhibiting the apoptosis of hepatocytes, improving mitochondrial function, and regulating the gut microbiota. Strategies for further research into the practical application of PEMPs for ALI are proposed. Future studies on the mechanism of action of PEMPs will need to focus more on the utilization of multi-omics approaches, such as proteomics, epigenomics, and lipidomics.
Collapse
Affiliation(s)
- Zhuo-Wen Su
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Food Engineering and Nutritional Science, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-W.S.)
- Academician and Expert Workstations in Puer City of Yunnan Province, Puer 665600, China
| | - Ting-Yu Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Food Engineering and Nutritional Science, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-W.S.)
| | - Jing Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Food Engineering and Nutritional Science, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-W.S.)
| | - Meng-Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Food Engineering and Nutritional Science, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-W.S.)
| | - Lei Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Food Engineering and Nutritional Science, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-W.S.)
| | - Hua-Feng Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Food Engineering and Nutritional Science, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-W.S.)
- Academician and Expert Workstations in Puer City of Yunnan Province, Puer 665600, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| |
Collapse
|
5
|
Rajkowska K, Otlewska A, Broncel N, Kunicka-Styczyńska A. Microbial Diversity and Bioactive Compounds in Dried Lycium barbarum Fruits (Goji): A Comparative Study. Molecules 2023; 28:molecules28104058. [PMID: 37241797 DOI: 10.3390/molecules28104058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
This study compares the microbial diversity and content of bioactive compounds in dried goji berries available on the Polish market to those of the most highly valued goji berries from the Ningxia region in China. The content of phenols, flavonoids, and carotenoids were determined, as well as the antioxidant capacities of the fruits. The quantitative and qualitative composition of the microbiota inhabiting the fruits was assessed using metagenomics by high-throughput sequencing on the Illumina platform. The highest quality was demonstrated by naturally dried fruits from the Ningxia region. These berries were characterized by a high content of polyphenols and high antioxidant activity, as well as high microbial quality. The lowest antioxidant capacity was shown by goji berries cultivated in Poland. However, they contained a high amount of carotenoids. The highest microbial contamination was found in the goji berries available in Poland (>106 CFU/g), which is important in terms of consumer safety. Despite the widely accepted benefits of consuming goji berries, both the country of cultivation and the preservation method may influence their composition, bioactivity, and microbial quality.
Collapse
Affiliation(s)
- Katarzyna Rajkowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| | - Natalia Broncel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
- Bionanopark Ltd., Dubois 114/116, 93-465 Łódź, Poland
| | - Alina Kunicka-Styczyńska
- Department of Sugar Industry and Food Safety Management, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| |
Collapse
|
6
|
Liu Y, Xue Y, Zhang Z, Ji J, Li C, Zheng K, Lu J, Gao Y, Gong Y, Zhang Y, Shi X. Wolfberry enhanced the abundance of Akkermansia muciniphila by YAP1 in mice with acetaminophen-induced liver injury. FASEB J 2023; 37:e22689. [PMID: 36468767 DOI: 10.1096/fj.202200945r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) by acetaminophen (APAP) was one of the most challenging liver diseases. Wolfberry (Lycium barbarum L.), a traditional Chinese medicinal material and food supplement, has a potential effect on increasing the abundance of Akkermansia muciniphila (A. muciniphila) in mice colons. However, the effect and mechanism of wolfberry remain unclear in APAP-induced DILI. In this study, wolfberry promoted the proliferation of activated-A. muciniphila in vitro and in vivo. For the first time, we detected that the activated-A. muciniphila but not the killed-A. muciniphila increased the expression level of Yes-associated protein 1 (YAP1) in the liver and alleviated liver injury in APAP-induced DILI mice. Mechanically, A. muciniphila improved the intestinal mucosal barrier and reduced lipopolysaccharide (LPS) content in the liver, leading to the increased expression level of YAP1. Furthermore, wolfberry increased the A. muciniphila abundance in the colon and YAP1 expression in the liver from APAP-induced DILI mice, which promoted the recovery of APAP-induced liver injury. Meanwhile, wolfberry combination with A. muciniphila synergistically increased AKK abundance and YAP1 expression in the liver. Our research provides an innovative strategy to improve DILI.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Kangning Zheng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Junlan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuting Gao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yi Gong
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuman Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
7
|
C-Phycocyanin and Lycium barbarum Polysaccharides Protect against Aspirin-Induced Inflammation and Apoptosis in Gastric RGM-1 Cells. Nutrients 2022; 14:nu14235113. [PMID: 36501143 PMCID: PMC9736128 DOI: 10.3390/nu14235113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Aspirin causes gastrotoxicity and damaged epithelial defense via cyclooxygenase inhibition. C-phycocyanin (CPC) and Lycium barbarum polysaccharides (LBP), an active ingredient of Spirulina platensis and wolfberry, respectively, exerted antioxidation, anti-inflammation, and/or immunoregulation. The actions of CPC and/or LBP on gastric damage induced by aspirin were explored in rat gastric mucosal RGM-1 cells. Gastric injury was performed by 21 mM aspirin for 3 h after the pretreatment of CPC and/or LBP (100-500 μg/mL) for 24 h in RGM-1 cells. Proinflammatory, anti-inflammatory, and apoptotic markers were examined by ELISA or gel electrophoresis and Western blotting. Cell viability and interleukin 10 (IL-10) were reduced by aspirin. Increased proinflammatory markers, caspase 3 activity, and Bax protein were observed in RGM-1 cells with aspirin treatment. Aspirin elevated nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) activation, while CPC and/or LBP increased IL-10, and attenuated proinflammatory markers, Bax protein, NF-κB, and the activation of ERK and JNK. Therefore, CPC and/or LBP possess anti-inflammation by restraining the activation of the ERK signaling pathway, and LBP decreases apoptosis by suppressing the JNK signaling pathway activation in gastric RGM-1 cells with aspirin-induced epithelial damage.
Collapse
|
8
|
Liu T, Xu G, Liang L, Xiao X, Zhao Y, Bai Z. Pharmacological effects of Chinese medicine modulating NLRP3 inflammasomes in fatty liver treatment. Front Pharmacol 2022; 13:967594. [PMID: 36160411 PMCID: PMC9492967 DOI: 10.3389/fphar.2022.967594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a key contributing factor in the pathogenesis of fatty liver diseases (FLD), such as nonalcoholic fatty liver disease (NAFLD) and alcohol-associated liver diseases (ALDs). The NLRP3 inflammasome is widely present in the hepatic parenchymal and non-parenchymal cells, which are assembled and activated by sensing intracellular and extracellular danger signals resulting in the matures of IL-1β/IL-18 and pyroptosis. Moreover, the aberrant activation of the NLRP3 inflammasome is considered the main factor to drives immune outbreaks in relation to hepatic injury, inflammation, steatosis, and fibrosis. Therefore, inhibition of NLRP3 inflammasome may be a promising therapeutic target for FLD. Currently, accumulating evidence has revealed that a number of traditional Chinese medicines (TCM) exert beneficial effects on liver injury via inhibiting the NLRP3 inflammasome activation. Here, we summarized the mechanism of NLRP3 inflammasomes in the progression of FLD, and TCM exerts beneficial effects on FLD via positive modulation of inflammation. We describe that TCM is a promising valuable resource for the prevention and treatment agents against FLD and has the potential to be developed into clinical drugs.
Collapse
Affiliation(s)
- Tingting Liu
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Guizhou, China
| | - Guang Xu
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| | - Longxin Liang
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| | - Zhaofang Bai
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| |
Collapse
|
9
|
Asiedu B, Lembede BW, Nyakudya TT, Chivandi E. Orally administered zingerone does not mitigate alcohol-induced hepatic oxidative stress in growing Sprague Dawley rat pups. Drug Chem Toxicol 2022:1-10. [PMID: 35734876 DOI: 10.1080/01480545.2022.2085740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Neonatal alcohol exposure (NAE) can induce oxidative stress. We determined whether zingerone (ZO), a phytochemical with anti-oxidant activity, can mitigate the negative impact of neonatal alcohol-induced oxidative stress. Seventy ten-day-old Sprague-Dawley rat pups (35 male, 35 female) were randomly assigned and administered the following treatment regimens daily from postnatal day (PND) 12-21: group 1 - nutritive milk (NM), group 2 - NM +1 g/kg ethanol (Eth), group 3 - NM + 40 mg/kg ZO, group 4 - NM + Eth + ZO. Growth performance, blood glucose and plasma triglycerides (TGs), total cholesterol, HDL-cholesterol, leptin and insulin concentration were determined. Cytochrome p450E21(CYP2E1) and thiobarbituric acid (TBARS); markers of hepatic oxidative stress and catalase, superoxide dismutase (SOD) and total glutathione (GSH), anti-oxidant markers of the pups were determined. Oral administration of ethanol (NM + Eth), zingerone (NM + ZO) and combined ethanol and zingerone (NM + Eth + ZO) did not affect the growth performance and insulin and leptin concentration of the rats (p > 0.05). Ethanol significantly reduced plasma TGs concentration of female rats (p = 0.04 vs control). However, ethanol and/or its combination with zingerone decreased hepatic GSH (p = 0.02 vs control) and increased CYP2E1 (p = 0.0002 vs control) activity in male rat pups. Zingerone had no effect (p > 0.05 vs control) on the rats' CYP2E1, GSH, SOD and catalase activities. Neonatal alcohol administration elicited hepatic oxidative stress in male rat pups only, showing sexual dimorphism. Zingerone (NM + ZO) prevented an increase in CYP2E1 activity and a decrease in GSH concentration but did not prevent the alcohol-induced hepatic oxidative stress in the male rat pups.
Collapse
Affiliation(s)
- Bernice Asiedu
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Busisani Wiseman Lembede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Trevor Tapiwa Nyakudya
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Gezina, South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| |
Collapse
|
10
|
Zhang Y, Meng J, Zhang L, Bao J, Shi W, Li Q, Wang X. Shudi Erzi San relieves ovary aging in laying hens. Poult Sci 2022; 101:102033. [PMID: 35926353 PMCID: PMC9356177 DOI: 10.1016/j.psj.2022.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Poultry meat and eggs are a primary source of animal protein. To meet the market needs, high yield laying hens are reared continuously, resulting in quick ovary aging. Thus, we investigated the anti-aging effects of Shudi Erzi San (SES) on laying hens. Sixty 300-day-old laying hens were divided into 2 experimental groups and a control group. The control group was fed on a basic diet, which was supplemented with 1% and 2% SES for experimental groups I and II, respectively. Egg quality and changes in serum hormones and blood-biochemical indicators of laying hens were determined. The rate of egg production was significantly higher in group Ⅱ than in both the control and group Ⅰ by 9.29 and 8.22 percentage points, respectively (P < 0.05). Eggshell strength of groups Ⅰ and Ⅱ were significantly higher than that of the control group (P < 0.01). Albumen height and Haugh Units of group Ⅱ were significantly higher than those of the control (P < 0.05). Serum levels of follicle stimulating hormone and estradiol in group Ⅱ were significantly higher than those of both the control and group Ⅰ (P < 0.05), whereas groups Ⅰ and Ⅱ had significantly higher serum levels of luteinizing hormone than the control (P < 0.05). Levels of superoxide dismutase (SOD) did not significantly differ between the control and group Ⅰ (P > 0.05), but SOD and malondialdehyde (MDA) levels in group Ⅱ were significantly higher and lower, respectively (P < 0.05) when compared to the control. Compared with the control, uric acid levels in groups Ⅰ and Ⅱ were significantly lower (P < 0.05), as was urea nitrogen in group Ⅱ (P < 0.05). Transcriptome and KEGG pathway analysis of ovarian tissues of laying hens showed a significant immune related signal pathway as the possible main regulator of a lysosome related signal pathway. Thus, supplementing chicken feed with SES improves egg production and quality and alleviates ovarian decline in laying hens.
Collapse
Affiliation(s)
- Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Jiacheng Meng
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Linchao Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qian Li
- Institute of Animal Husbandry and Veterinary Medicine of Hebei Province, Baoding, 071001, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
11
|
Chen F, Zhao CY, Guan JF, Liu XC, Li XF, Xie DZ, Xu C. High-Carbohydrate Diet Alleviates the Oxidative Stress, Inflammation and Apoptosis of Megalobrama amblycephala Following Dietary Exposure to Silver Nanoparticles. Antioxidants (Basel) 2021; 10:antiox10091343. [PMID: 34572975 PMCID: PMC8471270 DOI: 10.3390/antiox10091343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
A 12-week feeding trial was performed to evaluate the effects of high-carbohydrate diet on oxidative stress, inflammation and apoptosis induced by silver nanoparticles (Ag-NPs) in M. amblycephala. Fish (20.12 ± 0.85 g) were randomly fed four diets (one control diet (C, 30% carbohydrate), one control diet supplemented with 100 mg kg−1 Ag-NPs (CS), one high-carbohydrate diet (HC, 45% carbohydrate) and one HC diet supplemented with 100 mg kg−1 Ag-NPs (HCS)). The results indicated that weight gain rate (WGR), specific growth rate (SGR), antioxidant enzyme (SOD and CAT) activities and expression of Trx, Cu/Zn-SOD, Mn-SOD, CAT and GPx1 of fish fed CS diet were all remarkably lower than those of other groups, whereas the opposite was true for plasma IL 1β and IL 6 levels, liver ROS contents, hepatocytes apoptotic rate, AMP/ATP ratio, AMPKα, P 53 and caspase 3 protein contents and mRNA levels of AMPKα 1, AMPKα 2, TXNIP, NF-κB, TNFα, IL 1β, IL 6, P 53, Bax and caspase 3. However, high-carbohydrate diet remarkably increased WGR, SGR, liver SOD and CAT activities, AMPKα protein content and mRNA levels of antioxidant genes (Cu/Zn-SOD, Mn-SOD, CAT and GPx1), anti-inflammatory cytokines (IL 10) and anti-apoptotic genes (Bcl 2) of fish facing Ag-NPs compared with the CS group, while the opposite was true for liver ROS contents, hepatocytes apoptotic rate, P 53 and caspase 3 protein contents, as well as mRNA levels of TXNIP, NF-κB, TNFα, IL 1β, IL 6, P 53, Bax and caspase 3. Overall, high-carbohydrate diet could attenuate Ag-NPs-induced hepatic oxidative stress, inflammation and apoptosis of M. amblycephala through AMPK activation.
Collapse
Affiliation(s)
- Fang Chen
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China; (F.C.); (J.-F.G.); (X.-C.L.); (D.-Z.X.)
| | - Cai-Yuan Zhao
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Jun-Feng Guan
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China; (F.C.); (J.-F.G.); (X.-C.L.); (D.-Z.X.)
| | - Xiao-Cheng Liu
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China; (F.C.); (J.-F.G.); (X.-C.L.); (D.-Z.X.)
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China;
| | - Di-Zhi Xie
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China; (F.C.); (J.-F.G.); (X.-C.L.); (D.-Z.X.)
| | - Chao Xu
- College of Marine Sciences, South China Agricultural University, No.483 Wushan Road, Guangzhou 510642, China; (F.C.); (J.-F.G.); (X.-C.L.); (D.-Z.X.)
- Correspondence:
| |
Collapse
|
12
|
Ni J, Au M, Kong H, Wang X, Wen C. Lycium barbarum polysaccharides in ageing and its potential use for prevention and treatment of osteoarthritis: a systematic review. BMC Complement Med Ther 2021; 21:212. [PMID: 34404395 PMCID: PMC8371808 DOI: 10.1186/s12906-021-03385-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lycium barbarum polysaccharide (LBP), the most abundant functional component of wolfberry, is considered a potent antioxidant and an anti-ageing substance. This review aims to outline the hallmarks of ageing in the pathogenesis of osteoarthritis (OA), followed by the current understanding of the senolytic effect of LBP and its potential use in the prevention and treatment of OA. This will be discussed through the lens of molecular biology and herbal medicine. METHODS A literature search was performed from inception to March 2020 using following keywords: "Lycium barbarum polysaccharide", "DNA damage", antioxidant, anti-apoptosis, anti-inflammation, anti-ageing, osteoarthritis, chondrocytes, fibroblasts, osteoblasts, osteoclasts, and "bone mesenchymal stem cell". The initial search yielded 2287 papers, from which 35 studies were selected for final analysis after screening for topic relevancy by the authors. RESULTS In literature different in vitro and in vivo ageing models are used to demonstrate LBP's ability to reduce oxidative stress, restore mitochondrial function, mitigate DNA damage, and prevent cellular senescence. All the evidence hints that LBP theoretically attenuates senescent cell accumulation and suppresses the senescence-associated secretory phenotype as observed by the reduction in pro-inflammatory cytokines, like interleukin-1beta, and matrix-degrading enzymes, such as MMP-1 and MMP-13. However, there remains a lack of evidence on the disease-modifying effect of LBP in OA, although its chondroprotective, osteoprotective and anti-inflammatory effects were reported. CONCLUSION Our findings strongly support further investigations into the senolytic effect of LBP in the context of age-related OA.
Collapse
Affiliation(s)
- Junguo Ni
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Manting Au
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hangkin Kong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xinluan Wang
- Centre for Translational Medical Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shen Zhen, China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
13
|
Dexmedetomidine reduces the apoptosis of rat hippocampal neurons via mediating ERK1/2 signal pathway by targeting miR-155. Acta Histochem 2021; 123:151734. [PMID: 34048989 DOI: 10.1016/j.acthis.2021.151734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022]
Abstract
Rat hippocampal neurons were isolated and divided into Normal, oxygen glucose deprivation/reoxygenation (OGD/R), OGD/R + DEX, OGD/R + NC mimic, OGD/R + miR-155 mimic and OGD/R + DEX + miR-155 mimic groups. In OGD/R group, LDH, ROS and MDA levels and apoptosis rate was increased, with up-regulations of miR-155, Cyt c and Bax/Bcl-2 ratio, but decreases of SOD, GSH-Px and MMP levels, as well as down-regulations of p-ERK1/2/ERK1/2. As compared to the OGD/R group, parameters above in the OGD/R + DEX group were ameliorated evidently, while OGD/R + miR-155 mimic group manifested the opposite changes. Besides, miR-155 mimic could abolish the protective effect of DEX on the hippocampal neurons under OGD/R. DEX, via down-regulating the expression of miR-155, could activate the ERK1/2 pathway, thereby mitigating the apoptosis and oxidative stress injury and increasing the MMP, thereby protecting hippocampal cells from OGD/R injury.
Collapse
|
14
|
Liu RJ, He YJ, Liu H, Zheng DD, Huang SW, Liu CH. Protective effect of Lycium barbarum polysaccharide on di-(2-ethylhexyl) phthalate-induced toxicity in rat liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23501-23509. [PMID: 33449321 DOI: 10.1007/s11356-020-11990-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Di-(2-ethylhexyl)-phthalate (DEHP) is the most commonly used plasticizer and it has been a ubiquitous environmental contaminant which affects health. The purpose of this study was to investigate the protective effect of the Lycium barbarum polysaccharide (LBP) at dosages of 100, 200, and 300 mg/kg bw on DEHP-induced (3000 mg/kg) toxicity in rat liver through a 28-day animal experiment. The results showed that LBP attenuated oxidative stress slightly by lowering the production of ROS and improving the activity of SOD and GSH-Px in liver and serum of DEHP treatment rats. At the same time, the levels of PXR, CYP450, CYP2E1, CYP3A1, UGT1, and GST were reduced after LBP treatment. Moreover, LBP decreased the mRNA expression of PXR, UGT1, and GST significantly. These findings suggested that LBP might ameliorate DEHP-induced liver injury by down-regulating the expression of PXR in liver, further down-regulating the downstream phase I and II detoxification enzymes, thus reducing the damage caused by DEHP. Therefore, LBP may have the potential to become an auxiliary therapeutic agent as a natural ingredient of health food.
Collapse
Affiliation(s)
- Rui-Jing Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Quality and Safety Risk Assessment to Post-harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China
| | - Yong-Jian He
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Quality and Safety Risk Assessment to Post-harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China
| | - Huan Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Quality and Safety Risk Assessment to Post-harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China
| | - Dong-Dong Zheng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Quality and Safety Risk Assessment to Post-harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China
| | - Shao-Wen Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Quality and Safety Risk Assessment to Post-harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China
| | - Chun-Hong Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Laboratory of Quality and Safety Risk Assessment to Post-harvested Product Storage, Ministry of Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Xia T, Zhang B, Li S, Fang B, Duan W, Zhang J, Song J, Wang M. Vinegar extract ameliorates alcohol-induced liver damage associated with the modulation of gut microbiota in mice. Food Funct 2021; 11:2898-2909. [PMID: 32242560 DOI: 10.1039/c9fo03015h] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vinegar extract is rich in phenolic compounds, which can prevent free radical-induced diseases. The aim of the present study was to explore the effects of vinegar extract on gut microbiota in alcohol-treated mice and their correlation with alcohol-induced liver damage. These results showed that vinegar extract regulated the gut microbiota composition and improved intestinal homeostasis through increasing the expression levels of ZO-1, occludin, claudin-1, Reg3b, and Reg3g in alcohol-treated mice. In addition, vinegar extract inhibited the alcohol-induced production of ROS and inflammatory factors. Moreover, Bacteroidetes, Verrucomicrobia, Akkermansia, and Lactobacillus showed a significant positive correlation with Reg3b, Reg3g, ZO-1, occludin, and claudin-1 and a negative correlation with hepatic inflammation and oxidative stress parameters. However, Firmicutes, Proteobacteria, Butyricimonas, Parabacteroides, and Bilophila exhibited the opposite effect. These findings suggest that vinegar extract modulates gut microbiota and improves intestinal homeostasis, and can be used as a novel gut microbiota manipulator against alcohol-induced liver damage.
Collapse
Affiliation(s)
- Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Bo Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Shaopeng Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Bin Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Wenhui Duan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Jin Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Jia Song
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
16
|
Xu X, Chen W, Yu S, Lei Q, Han L, Ma W. Inhibition of preadipocyte differentiation by Lycium barbarum polysaccharide treatment in 3T3-L1 cultures. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Wang H, Li Y, Liu J, Di D, Liu Y, Wei J. Hepatoprotective effect of crude polysaccharide isolated from Lycium barbarum L. against alcohol-induced oxidative damage involves Nrf2 signaling. Food Sci Nutr 2020; 8:6528-6538. [PMID: 33312537 PMCID: PMC7723211 DOI: 10.1002/fsn3.1942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
In the present work, we investigated the effect of Lycium barbarum L. polysaccharides (LBPs) on L-02 cells exposed to alcohol exploring the potential molecular mechanisms. Our results suggested that LBPs significantly prevented alcohol-induced hepatotoxicity with dose-dependent effect, indicated by both cell viability and diagnostic indicators of liver damage. Moreover, alcohol induced excessive oxidative stress, as evidenced by an increase of the malondialdehyde level and reactive oxygen species production, while reducing antioxidant enzymes (T-SOD, CAT, and GPx) in liver, were inhibited by administration of LBPs. Furthermore, LBPs reversed the cell apoptosis and increased the mitochondrial membrane potential in alcohol-treated liver cell. Studies of underlying mechanisms revealed that LBPs increased expression levels of Nrf2 expression, which in turn blocked proapoptotic signaling events, restoring the balance between proapoptotic Bax and antiapoptotic Bcl-2 proteins, suppressing activities of cytochrome C (Cyto c), caspase-3, and caspase-9 in L-02 cells stimulation by ethanol. In general, the results showed that the inhibition of alcohol-caused liver damage by LBPs is due at least in part to its antioxidant and antiapoptosis activity via Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Chemistry of Northwestern Plant ResourcesLanzhou Institute of Chemical PhysicsChinese Academy of Sciences (CAS)LanzhouChina
- Center of Resource Chemical and New MaterialQingdaoChina
| | - Yongsheng Li
- Key Laboratory of Chemistry of Northwestern Plant ResourcesLanzhou Institute of Chemical PhysicsChinese Academy of Sciences (CAS)LanzhouChina
- School of Public HealthLanzhou UniversityLanzhouChina
| | - Jianfei Liu
- Key Laboratory of Chemistry of Northwestern Plant ResourcesLanzhou Institute of Chemical PhysicsChinese Academy of Sciences (CAS)LanzhouChina
- University of Chinese Academy of SciencesLanzhouChina
| | - Duolong Di
- Key Laboratory of Chemistry of Northwestern Plant ResourcesLanzhou Institute of Chemical PhysicsChinese Academy of Sciences (CAS)LanzhouChina
- Center of Resource Chemical and New MaterialQingdaoChina
| | - Yewei Liu
- School of Public HealthLanzhou UniversityLanzhouChina
| | - Jianteng Wei
- Key Laboratory of Chemistry of Northwestern Plant ResourcesLanzhou Institute of Chemical PhysicsChinese Academy of Sciences (CAS)LanzhouChina
- Center of Resource Chemical and New MaterialQingdaoChina
| |
Collapse
|
18
|
Pehlİvan KarakaŞ F, CoŞkun H, SoytÜrk H, Bozat BG. Anxiolytic, antioxidant, and neuroprotective effects of goji berry polysaccharides in ovariectomized rats: experimental evidence from behavioral, biochemical, and immunohistochemical analyses. ACTA ACUST UNITED AC 2020; 44:238-251. [PMID: 33110362 PMCID: PMC7585160 DOI: 10.3906/biy-2003-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023]
Abstract
Recent studies have indicated that polysaccharides, the main component of the Lycium barbarum L. fruit, have beneficial effects (e.g., anxiolytic, antioxidant, and neuroprotective) on humans and rodents. However, the effects of different dosages of such polysaccharides on ovariectomized rats and their underlying mechanisms in the brain have not been evaluated in the literature. Here, we aimed to evaluate the effects of the high and low doses of polysaccharides obtained from Lycium barbarum fruits (HD-LBP and LD-LBP, respectively) on anxious behaviors via behavioral (using the OFT and EPM), biochemical (using ELISA), and immunohistochemical (using immunohistochemical staining) measures in detail. Two weeks after ovariectomy, the rats were randomly assigned to either the treatment conditions [control (DW, 3 mL/kg, p.o., per day), LD-LBP (20 mg/kg, 3 mL/kg, p.o., per day), HD-LBP (200 mg/kg, 3 mL/kg, p.o., per day), 17 β-ES (1 mg/kg, 3 mL/kg, p.o., per day), DZ(1 mg/kg, 3 mL/kg, p.o., per day)] or operation type [SHAM (pseudo-ovariectomized) and OVX (ovariectomized)]. The treatments were applied for 30 consecutive days, and then serum and brain tissue samples of all rats were collected. Biochemical (SOD, CAT, GPX, MDA, and 17 β-ES) and immunohistochemical (BDNF, SER, and apoptosis) analyses of the samples were performed as well. The rats administered HD-LBP and LD-LBP were less anxious than the control groups. The HD-LBP-treated rats had high levels of SOD and low levels of MDA in their serum samples. Moreover, HD-LBP and drug-treated groups had a high number of SER receptors and BDNF-positive cells and a low number of TUNEL-positive cells in their hippocampal brain tissues. The HD-LBP treatments decrease anxious behavior by increasing antioxidant enzyme activities, hippocampal SER and BDNF neurotransmitter levels and decreasing the TUNEL-positive cell count of ovariectomized rats. Given these findings, we suggest that menopause-induced symptoms of anxiety can be reduced by polysaccharides obtained from goji berry fruits, and that these findings will be beneficial for the production studies of natural herbal-origin antianxiety (anxiolytic) drugs in the future.
Collapse
Affiliation(s)
- Fatma Pehlİvan KarakaŞ
- Department of Biology, Faculty of Science and Art, Bolu Abant İzzet Baysal University, Bolu Turkey
| | - Hamit CoŞkun
- Department of Psychology, Faculty of Science and Art, Bolu Abant İzzet Baysal University, Bolu Turkey
| | - Hayriye SoytÜrk
- Department of Poultry Science andTechnology, Faculty of Agriculture and Natural Science, Bolu Abant İzzet Baysal University, Bolu Turkey
| | - Bihter Gökçe Bozat
- Disciplinary Neuroscience, Health Sciences Institute, Bolu Abant İzzet Baysal University, Bolu Turkey
| |
Collapse
|
19
|
Castrica M, Menchetti L, Balzaretti CM, Branciari R, Ranucci D, Cotozzolo E, Vigo D, Curone G, Brecchia G, Miraglia D. Impact of Dietary Supplementation with Goji Berries ( Lycium barbarum) on Microbiological Quality, Physico-Chemical, and Sensory Characteristics of Rabbit Meat. Foods 2020; 9:foods9101480. [PMID: 33081259 PMCID: PMC7603015 DOI: 10.3390/foods9101480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 01/20/2023] Open
Abstract
Forty-two New Zealand White rabbits (n = 21/group) were fed with two different diets: a commercial diet (control group) and a diet supplemented with goji berries (3% w/w). After slaughtering, the effect of dietary supplementation on microbiological, physico-chemical, and sensory characteristics of the rabbit loins, packed in an oxygen-permeable package, was evaluated at 6 h post mortem (day 0), after 4 and 10 days of refrigerated storage. No relevant results were obtained for pH and total volatile basic Nitrogen (TVBN) values but with regards to the color, some significant differences were observed between the groups. The goji berries (GBs) dietary supplementation had positive effects by reducing thiobarbituric acid reactive substances (TBARS) values in all the observations (p < 0.001). Moreover, microbiological results showed that the supplementation had a significant impact on Lactobacillus spp. (p < 0.001) prevalence, indeed the goji group had higher means on day 0 (p < 0.05) and on day 4 (p < 0.001) than the control group. Lastly, with regards to the consumer's test, the tasters assigned a higher score to GBs rabbit meatballs and the purchase interest increased when the rabbit diet was known. Overall, these results indicate that the goji berries inclusion in the rabbit diet could represent a valuable strategy to improve quality and sensory traits of meat.
Collapse
Affiliation(s)
- Marta Castrica
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (M.C.); (C.M.B.)
| | - Laura Menchetti
- Department of Agricultural and Agri-Food Sciences and Technologies, University of Bologna, Viale Fanin 46, 40138 Bologna, Italy;
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.); (D.M.)
| | - Claudia M. Balzaretti
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (M.C.); (C.M.B.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.); (D.M.)
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.); (D.M.)
| | - Elisa Cotozzolo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy;
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (D.V.); (G.C.)
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (D.V.); (G.C.)
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (D.V.); (G.C.)
- Correspondence:
| | - Dino Miraglia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.); (D.M.)
| |
Collapse
|
20
|
Ruíz-Salinas AK, Vázquez-Roque RA, Díaz A, Pulido G, Treviño S, Floran B, Flores G. The treatment of Goji berry (Lycium barbarum) improves the neuroplasticity of the prefrontal cortex and hippocampus in aged rats. J Nutr Biochem 2020; 83:108416. [PMID: 32554223 DOI: 10.1016/j.jnutbio.2020.108416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/06/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022]
Abstract
The main characteristic of brain aging is an exacerbated inflammatory and oxidative response that affects dendritic morphology and the function of the neurons of the prefrontal cortex (PFC) and the hippocampus. This consequently causes memory loss. Recently, the use of the Goji berry (Lycium barbarum) as an antioxidant extract has provided neuroprotection and neuroplasticity, however, its therapeutic potential has not been demonstrated in aging conditions. The objective of this study was to evaluate the effect of Goji administration on memory recognition, as well as the changes in the dendritic morphology of the PFC and Hippocampus pyramidal neurons in old rats. Goji (3 g/kg) was administrated for 60 days in 18-month-old rats. After the treatment, recognition memory was evaluated using the new object recognition task (NORt). The changes in the neuron morphology of the PFC and hippocampus pyramidal neurons in old rats were evaluated by Golgi-cox stain and immunoreactivity for synaptophysin, glial fibrillary acidic protein (GFAP), caspase-3, 3-nitrotyrosine (3-NT) and nuclear factor erythroid 2-related factor 2 (Nrf2). The rats treated with Goji showed a significant increase in dendritic morphology in the PFC and hippocampus neurons, a greater immunoreactivity to synaptophysin and a decrease in reactive astrogliosis and also in caspase-3, in 3-NT and in Nrf2 in these brain regions was also observed. Goji administration promotes the plasticity processes in the PFC and in the hippocampus of old rats, critical structures in the brain aging process.
Collapse
Affiliation(s)
- Ana Karen Ruíz-Salinas
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, CP: 72570, Puebla, Mexico
| | - Rubén A Vázquez-Roque
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, CP: 72570, Puebla, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Guadalupe Pulido
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Benjamín Floran
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigaciones y Estudios Avanzados IPN, DF, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, CP: 72570, Puebla, Mexico.
| |
Collapse
|
21
|
Jin M, Zhu T, Tocher DR, Luo J, Shen Y, Li X, Pan T, Yuan Y, Betancor MB, Jiao L, Sun P, Zhou Q. Dietary fenofibrate attenuated high-fat-diet-induced lipid accumulation and inflammation response partly through regulation of pparα and sirt1 in juvenile black seabream (Acanthopagrus schlegelii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103691. [PMID: 32251698 DOI: 10.1016/j.dci.2020.103691] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
An 8-week feeding trail was conducted in Acanthopagrus schlegelii with an initial body weight of 8.34 ± 0.01g. Three isonitrogenous diets were formulated, (1) Control: medium-fat diet (12%); (2) HFD: high-fat diet (18%); (3) HFD + FF: high-fat diet with fenofibrate (0.15%). Liver histological analysis revealed that, compared to HFD, vacuolar fat drops were smaller and fewer in fish fed fenofibrate. Expression of lipid catabolism regulator peroxisome proliferator-activated receptor alpha (pparα) was up-regulated by fenofibrate compared with HFD. In addition, fenofibrate significantly increased the expression level of silent information regulator 1 (sirt1). Meanwhile, the expression level of anti-inflammatory cytokine interleukin 10 (il-10) in intestine was up-regulated, while pro-inflammatory cytokine interleukin 1β (il-1β) in liver and intestine were down-regulated by dietary fenofibrate supplementation. Overall, the present study indicated that fenofibrate reduced fat deposition and attenuated inflammation response caused by HFD partly through a pathway involving regulation of pparα and sirt1.
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xuejiao Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Tingting Pan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ye Yuan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
22
|
Zhao R, Master BQ, Master BM, Cai Y. Improving Activity of Lycium Barbarum. Polysaccharide on Depressive Mice Induced by Reserpine. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1556-1565. [PMID: 32641963 PMCID: PMC6934982 DOI: 10.22037/ijpr.2019.1100763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Depressive disorder will be the second highest disease burden worldwide, which will impair life quality, reduce productivity, and increase disability and mortality. Lycium barbarum. polysaccharide (LBP) is the main active fraction purified from Lycium barbarum. The aim of this study was to evaluate the potential therapeutic effects of LBP on depressive mice induced by reserpine, as well as the relevant mechanisms. The antidepressant effect of LBP was investigated by open field test (OFT), forced swimming test (FST), tail suspension test (TST), and antagonism of reserpine hypothermia and ptosis in mice. In addition, we examined the oxidative status and antioxidation power of striatum in both control and depressive mice with or without LBP treatment. To explore the mechanism of LBP on regulating antioxidants in the depressive mice, we detected the expression level of Bcl-2 and poly (ADP ribose) polymerase (PARP) in striatum of mice by western blotting. The results showed that administration with LBP for 4 consecutive weeks significantly increased locomotor activity, reduced the duration of immobility, and antagonized hypothermia and ptosis in mice induced by reserpine. Also, LBP treatment was able to reduce the lipid peroxidation (LPO) production, and enhance the antioxidation effect of the striatum in depressive mice. Furthermore, LBP inhibited the decreased extent of the apoptotic suppressors, Bcl-2 and PARP, which were markedly decreased after treatment with reserpine. The above results indicated that LBP possess antidepressant activities, probably via its powerful antioxidative properties and then decreased the apoptosis of striatum neuron.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, 163319, P. R. China
| | - Bing Qiu Master
- Department of Gastroenterology, Heilongjiang Province Hospital, 82 Zhongshan Road, Harbin, 150036, P. R. China
| | - Baoling Ma Master
- Department of Physical education, Hebei Normal University of Science and Technology, 360 Hebei Street, Qinhuangdao 066004, P. R. China
| | - Yaping Cai
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, 163319, P. R. China
| |
Collapse
|
23
|
Yang Y, Ji J, Di L, Li J, Hu L, Qiao H, Wang L, Feng Y. Resource, chemical structure and activity of natural polysaccharides against alcoholic liver damages. Carbohydr Polym 2020; 241:116355. [PMID: 32507196 DOI: 10.1016/j.carbpol.2020.116355] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022]
Abstract
Many natural polysaccharides from bio-resources hold advantages of multi-functions, high efficiency, non-toxicity or low side effect, and have strong potentials in protection against alcoholic liver damages. This review summarized the bio-resources, chemical and structural characteristics of natural polysaccharides with potentials in inhibition against alcoholic liver damages, and also emphasized knowledge on correlations between their chemical structure and function. Approximately 95 species were confirmed in generation of hepatoprotective polysaccharides. Products as crude polysaccharides originated from 17 species were sum up despite the indetermination of their accurate structure. Additional four polysaccharides were described for their known chemical structures. Possible roles of hepatoprotective polysaccharides were provided with evidence on antioxidant promotion, lipids regulation, apoptosis inhibition and anti-inflammation, as well as confirmations in immune enhancement, iron removal and anti-fibrosis when currently treated against the alcoholic liver damages. To sum up, this overview could serve to guide development and utilization of natural hepatoprotective polysaccharides.
Collapse
Affiliation(s)
- Ying Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Jing Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China; School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| | - Yibin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
24
|
Lakshmanan Y, Wong FSY, Zuo B, So KF, Bui BV, Chan HHL. Posttreatment Intervention With Lycium Barbarum Polysaccharides is Neuroprotective in a Rat Model of Chronic Ocular Hypertension. Invest Ophthalmol Vis Sci 2020; 60:4606-4618. [PMID: 31756254 DOI: 10.1167/iovs.19-27886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the neuroprotective effects of Lycium barbarum polysaccharides (LBP) against chronic ocular hypertension (OHT) in rats and to consider if effects differed when treatment was applied before (pretreatment) or during (posttreatment) chronic IOP elevation. Methods Sprague-Dawley rats (10-weeks old) underwent suture implantation around the limbus for 15 weeks (OHT) or 1 day (sham). Four experimental groups were studied, three OHT groups (n = 8 each) treated either with vehicle (PBS), LBP pretreatment or posttreatment, and a sham control (n = 5) received no treatment. LBP (1 mg/kg) pre- and posttreatment were commenced at 1 week before and 4 weeks after OHT induction, respectively. Treatments continued up through week 15. IOP was monitored twice weekly for 15 weeks. Optical coherence tomography and ERG were measured at baseline, week 4, 8, 12, and 15. Eyes were collected for ganglion cell layer (GCL) histologic analysis at week 15. Results Suture implantation successfully induced approximately 50% IOP elevation and the cumulative IOP was similar between the three OHT groups. When compared with vehicle control (week 4: -23 ± 5%, P = 0.03), LBP pretreatment delayed the onset of retinal nerve fiber layer (RNFL) thinning (week 4, 8: -2 ± 7%, -11 ± 3%, P > 0.05) and arrested further reduction up through week 15 (-10 ± 4%, P > 0.05). LBP posttreatment intervention showed no significant change in rate of loss (week 4, 15: -25 ± 4.1%, -28 ± 3%). However, both LBP treatments preserved the retinal ganglion cells (RGC) and retinal functions up to week 15, which were significantly reduced in vehicle control. Conclusions LBP posttreatment arrested the subsequent neuronal degeneration after treatment commencement and preserved RGC density and retinal functions in a chronic OHT model, which was comparable with pretreatment outcomes.
Collapse
Affiliation(s)
- Yamunadevi Lakshmanan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Francisca Siu Yin Wong
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bing Zuo
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kwok-Fai So
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Guangdong-Hongkong-Macau (GHM) Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Bang Viet Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | - Henry Ho-Lung Chan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China.,Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
25
|
Proteoglycan isolated from Corbicula fluminea exerts hepato-protective effects against alcohol-induced liver injury in mice. Int J Biol Macromol 2020; 142:1-10. [DOI: 10.1016/j.ijbiomac.2019.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/18/2019] [Accepted: 12/01/2019] [Indexed: 12/27/2022]
|
26
|
Long LN, Kang BJ, Jiang Q, Chen JS. Effects of dietary Lycium barbarum polysaccharides on growth performance, digestive enzyme activities, antioxidant status, and immunity of broiler chickens. Poult Sci 2019; 99:744-751. [PMID: 32029159 PMCID: PMC7587896 DOI: 10.1016/j.psj.2019.10.043] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022] Open
Abstract
Lycium barbarum polysaccharides (LBP) are considered to be the major bioactive components of L. barbarum and have been widely used as a well-known traditional Chinese medicine and functional food because of their various biological activities. However, no published research has investigated the use of LBP as a feed additive in broilers. The objective of this study was to evaluate the effects of dietary LBP supplementation on the growth performance, digestive enzyme activities, antioxidant status, and immunity of broiler chickens. A total of 256 one-day-old Arbor Acres male broiler chicks were randomly allotted into 4 groups, with 8 replicates of 8 birds each, and were fed a corn-soybean meal-type basal diet supplemented without (control group) or with 1,000, 2,000, or 4,000 mg/kg LBP for 6 wk. The results showed that compared with the control diet, a significant increase in ADG (P < 0.05) during the grower and overall periods was observed in chickens fed the basal diet supplemented with 2,000 mg/kg LBP, whereas supplementation with 1,000 or 2,000 mg/kg LBP decreased feed-to-gain ratio (P < 0.05) during the starter period. The inclusion of LBP in the broiler diets increased overall amylase, lipase, and protease activities (P < 0.05). Supplementation with increasing levels of dietary LBP increased the activities of superoxide dismutase and glutathione peroxidase but decreased malondialdehyde content in the serum and liver (P < 0.05). Broilers fed with LBP-containing diets exhibited higher serum IgG and IgA concentrations (P < 0.05) than the broilers fed with the control diet. Serum tumor necrosis factor α and IL-4 concentrations were significantly elevated in the group fed 2,000 mg/kg LBP compared with the control group (P < 0.05). Broilers fed diets supplemented with LBP showed linear (P < 0.05) and quadratic (P < 0.05) increases in serum IL-6 and interferon gamma concentrations. The results indicated that dietary LBP supplementation can improve growth performance, digestive enzyme activities, antioxidant capacity, and immune function of broilers. In conclusion, LBP may be used as a promising feed additive for broilers, and a supplementation level of 2,000 mg/kg LBP in the broiler diet is recommended.
Collapse
Affiliation(s)
- L N Long
- School of Life Science and Engineering, Foshan University, Foshan 528231, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - B J Kang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Q Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - J S Chen
- School of Life Science and Engineering, Foshan University, Foshan 528231, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
27
|
Jin M, Pan T, Tocher DR, Betancor MB, Monroig Ó, Shen Y, Zhu T, Sun P, Jiao L, Zhou Q. Dietary choline supplementation attenuated high-fat diet-induced inflammation through regulation of lipid metabolism and suppression of NFκB activation in juvenile black seabream ( Acanthopagrus schlegelii). J Nutr Sci 2019; 8:e38. [PMID: 32042405 PMCID: PMC6984006 DOI: 10.1017/jns.2019.34] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate whether dietary choline can regulate lipid metabolism and suppress NFκB activation and, consequently, attenuate inflammation induced by a high-fat diet in black sea bream (Acanthopagrus schlegelii). An 8-week feeding trial was conducted on fish with an initial weight of 8·16 ± 0·01 g. Five diets were formulated: control, low-fat diet (11 %); HFD, high-fat diet (17 %); and HFD supplemented with graded levels of choline (3, 6 or 12 g/kg) termed HFD + C1, HFD + C2 and HFD + C3, respectively. Dietary choline decreased lipid content in whole body and tissues. Highest TAG and cholesterol concentrations in serum and liver were recorded in fish fed the HFD. Similarly, compared with fish fed the HFD, dietary choline reduced vacuolar fat drops and ameliorated HFD-induced pathological changes in liver. Expression of genes of lipolysis pathways were up-regulated, and genes of lipogenesis down-regulated, by dietary choline compared with fish fed the HFD. Expression of nfκb and pro-inflammatory cytokines in liver and intestine was suppressed by choline supplementation, whereas expression of anti-inflammatory cytokines was promoted in fish fed choline-supplemented diets. In fish that received lipopolysaccharide to stimulate inflammatory responses, the expression of nfκb and pro-inflammatory cytokines in liver, intestine and kidney were all down-regulated by dietary choline compared with the HFD. Overall, the present study indicated that dietary choline had a lipid-lowering effect, which could protect the liver by regulating intrahepatic lipid metabolism, reducing lipid droplet accumulation and suppressing NFκB activation, consequently attenuating HFD-induced inflammation in A. schlegelii.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Choline
- HFD + C1, HFD + choline (3 g/kg)
- HFD + C2, HFD + choline (6 g/kg)
- HFD + C3, HFD + choline (12 g/kg)
- HFD, high-fat diet
- High-fat diets
- Inflammation
- LPS, lipopolysaccharide
- Lipid metabolism
- NFκB
- accα, acetyl-CoA carboxylase α
- cpt1a, carnitine palmitoyltransferase 1a
- fas, fatty acid synthase
- hsl, hormone-sensitive lipase
- qPCR, quantitative PCR
- srebp-1, sterol regulatory element-binding protein-1
- tgfβ-1, transforming growth factor β-1
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| | - Tingting Pan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| | - Douglas R. Tocher
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, StirlingFK9 4LA, UK
| | - Mónica B. Betancor
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, StirlingFK9 4LA, UK
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| |
Collapse
|
28
|
Yan Y, Wu W, Lu L, Ren J, Mi J, Liu X, Cao Y. Study on the synergistic protective effect of Lycium barbarum L. polysaccharides and zinc sulfate on chronic alcoholic liver injury in rats. Food Sci Nutr 2019; 7:3435-3442. [PMID: 31762996 PMCID: PMC6848838 DOI: 10.1002/fsn3.1182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Both Lycium barbarum L. polysaccharides (LBP) and zinc have protective effects on liver injuries. In this paper, LBP and ZnSO4 were combined to study the effects on the prevention of alcoholic liver injury. The rats were divided into six groups, the normal group, alcohol group, zinc sulfate group, LBP group, low-dose group of ZnSO4, and high-dose group of ZnSO4 and LBP, used to explore the impact of LBP and ZnSO4 complex on liver lipid metabolism of alcohol, alcohol-metabolizing enzymes, oxidative damage, and inflammation of the liver. The experimental model was established by gavage treatment, observation, and determination of indexes of rats. The results showed that the combination of LBP and ZnSO4 could significantly decrease the levels of triglyceride (TG), total cholesterol (TC), tumor necrosis factor-α(TNF-ɑ), malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and the activity of enzyme subtype 2E1 (CYP2E1). It also significantly increased the activities of total superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione peptide (GSH), and alcohol dehydrogenase, effectively improved the liver tissue lesion. What is more, the combination of LBP and ZnSO4 had a synergistic effect on the remission of alcoholic fatty liver, and alleviated chronic alcoholic liver injury by promoting lipid metabolism, inhibiting oxidative stress, controlling inflammatory responses, and regulating the expression and activity of alcohol-metabolizing enzymes in rats.
Collapse
Affiliation(s)
- Yamei Yan
- National Wolfberry Engineering Research CenterYinchuanChina
| | - Wanqiang Wu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
| | - Lu Lu
- National Wolfberry Engineering Research CenterYinchuanChina
| | - Jie Ren
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
| | - Jia Mi
- National Wolfberry Engineering Research CenterYinchuanChina
| | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
| | - Youlong Cao
- National Wolfberry Engineering Research CenterYinchuanChina
| |
Collapse
|
29
|
Lakshmanan Y, Wong FSY, Yu WY, Li SZC, Choi KY, So KF, Chan HHL. Lycium Barbarum Polysaccharides Rescue Neurodegeneration in an Acute Ocular Hypertension Rat Model Under Pre- and Posttreatment Conditions. Invest Ophthalmol Vis Sci 2019; 60:2023-2033. [PMID: 31067322 DOI: 10.1167/iovs.19-26752] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the posttreatment neuronal rescue effects of Lycium barbarum polysaccharides (LBP) in an acute ocular hypertensive (AOH) model. Methods Intraocular pressure (IOP) was elevated manometrically to 80 mm Hg (AOH) or 15 mm Hg (sham) for 120 minutes in adult Sprague-Dawley rats. Five experimental groups were considered: Three AOH groups were pretreated with PBS (vehicle) (n = 9), LBP 1 mg/kg (n = 8), or 10 mg/kg (n = 13), and one AOH group was posttreated with LBP 10 mg/kg (n = 8), once daily. The sham cannulation group (n = 5) received no treatment. Pretreatments commenced 7 days before and posttreatment 6 hours after AOH, and continued up through postcannulation day 28. All the animals underwent optical coherence tomography and electroretinogram measurements at baseline and postcannulation days 10 and 28. The ganglion cell layer (GCL) densities were quantified at day 28. Results Both inner retinal layer thickness (IRLT) and positive scotopic threshold response (pSTR) underwent significant reduction (≥50% of thickness and amplitude) in the vehicle group (P < 0.05). Pretreatment with LBP 1 and 10 mg/kg retained 77 ± 11% and 89 ± 8% of baseline IRLT, respectively, and preserved pSTR functions. The posttreatment group showed a significant reduction in IRLT (-35 ± 8%, P < 0.001) and pSTR (∼48% of baseline, P < 0.001) on day 10. By day 28, there was an improvement in functional pSTR (∼72% of baseline, P > 0.05) with no significant further thinning (-40 ± 8%, P = 0.15) relative to day 10. GCL density was reduced in vehicle control (P = 0.0001), but did not differ between sham and pre- and posttreated AOH groups. Conclusions The rescue effect of LBP posttreatment was observed later, which arrested the secondary degeneration and improved the retinal function.
Collapse
Affiliation(s)
- Yamunadevi Lakshmanan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Francisca Siu-Yin Wong
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wing-Yan Yu
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Serena Zhe-Chuang Li
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kai-Yip Choi
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Guangdong-Hongkong-Macau (GHM) Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Henry Ho-Lung Chan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
30
|
Yuan F, Gao Z, Liu W, Li H, Zhang Y, Feng Y, Song X, Wang W, Zhang J, Huang C, Jia L. Characterization, Antioxidant, Anti-Aging and Organ Protective Effects of Sulfated Polysaccharides from Flammulina velutipes. Molecules 2019; 24:molecules24193517. [PMID: 31569331 PMCID: PMC6803911 DOI: 10.3390/molecules24193517] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
As an irreversible and complex degenerative physiological process, the treatment for aging seems strategically necessary, and polysaccharides play important roles against aging owing to their abundant bioactivities. In this paper, the antioxidant and anti-aging activities of Flammulina velutipes polysaccharides (FPS) and its sulfated FPS (SFPS) on d-galactose-induced aging mice were investigated. The in vitro antioxidant activities demonstrated that SFPS had strong reducing power and superior scavenging effects on 2, 2-diphenylpicrylhydrazyl (DPPH), hydroxyl radicals and the chelating activities of Fe2+. The in vivo animal experiments manifested that the SFPS showed superior antioxidant and protective abilities against the d-galactose-induced aging by increasing the antioxidant enzyme activities, decreasing lipid peroxidation, improving the inflammatory response and ameliorating the anile condition of mice. Furthermore, the structural analysis of SFPS was investigated through FT-IR, NMR, and HPLC analysis, and the results indicated that SFPS was a homogeneous heteropolysaccharide with a weight-average molecular weight of 2.81 × 103 Da. Furthermore, SFPS has also changed in characteristic functional groups and monosaccharide composition compared to FPS. These results suggested that sulfated modification could enhance the anti-oxidation, anti-aging and protective activities of F. velutipes polysaccharides, which may provide references for the development of functional foods and natural medicines.
Collapse
Affiliation(s)
- Fangfang Yuan
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Science, Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture, Jinan 250100, China.
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Zheng Gao
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Wenbo Liu
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Huaping Li
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Yiwen Zhang
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Yanbo Feng
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Xinling Song
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Wenshuai Wang
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Jianjun Zhang
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| | - Chunyan Huang
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Science, Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture, Jinan 250100, China.
| | - Le Jia
- College of Life Science, Shangdong Agricultural University, Taian 271018, China.
| |
Collapse
|
31
|
Extraction, Structural Characterization, and Biological Functions of Lycium Barbarum Polysaccharides: A Review. Biomolecules 2019; 9:biom9090389. [PMID: 31438522 PMCID: PMC6770593 DOI: 10.3390/biom9090389] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Lycium barbarum polysaccharides (LBPs), as bioactive compounds extracted from L. barbarum L. fruit, have been widely explored for their potential health properties. The extraction and structural characterization methods of LBPs were reviewed to accurately understand the extraction method and structural and biological functions of LBPs. An overview of the biological functions of LBPs, such as antioxidant function, antitumor activity, neuroprotective effects, immune regulating function, and other functions, were summarized. This review provides an overview of LBPs and a theoretical basis for further studying and extending the applications of LBPs in the fields of medicine and food.
Collapse
|
32
|
Kołota A, Głąbska D, Oczkowski M, Gromadzka-Ostrowska J. Influence of Alcohol Consumption on Body Mass Gain and Liver Antioxidant Defense in Adolescent Growing Male Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16132320. [PMID: 31261999 PMCID: PMC6651161 DOI: 10.3390/ijerph16132320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022]
Abstract
The World Health Organization (WHO) reported that alcohol consumption is a serious problem in adolescents. The aim of the study was to assess the influence of the time of exposure of various alcoholic beverages on body mass as well as on select parameters of liver antioxidant defense in adolescent Wistar rats. Thirty-day-old animals were divided into 12 groups (six animals in each): control and groups receiving various beverages containing 10% of alcohol (ethanol, red wine, beer), observed for two, four, and six weeks. The body weight gain and energy supply were analyzed for body mass assessment. The catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase, transferase (GST), reductase activities, total antioxidant status, and glutathione level (GSH) were analyzed, for a liver antioxidant defense assessment. Group receiving red wine was characterized by the highest alcohol intake, lowest dietary intake, and highest total energy supply (p < 0.05). However, this did not influence body weight gain (p > 0.05). Reduced diet intake in groups receiving alcohol was counterbalanced by its energy value. Therefore, the energy supply was not lower than for the control (p > 0.05). Alcohol consumption and the experiment duration influenced CAT, SOD, and GST activities and GSH level. Alcohol consumption may influence hepatic antioxidant defense in adolescent male rats, but without influence on body weight gain.
Collapse
Affiliation(s)
- Aleksandra Kołota
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159c Nowoursynowska Street, 02-776 Warsaw, Poland.
| | - Dominika Głąbska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159c Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Michał Oczkowski
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159c Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159c Nowoursynowska Street, 02-776 Warsaw, Poland
| |
Collapse
|
33
|
Huang AC, Wu JM, Chang YH, Dubey NK, Chiu AW, Yeh CY, Tsai TH, Yeh KY. Neuronal nitric oxide synthase activity mediates Lycium barbarum polysaccharides-enhanced sexual performance without stimulating noncontact erection in rats. Psychopharmacology (Berl) 2019; 236:1293-1301. [PMID: 30539267 DOI: 10.1007/s00213-018-5141-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022]
Abstract
RATIONALE Lycium barbarum polysaccharide (LBP) is known to promote reproductive functions. However, its role in noncontact erection (NCE) of penis initiated by brain regions including medial preoptic area (MPOA) and paraventricular nucleus (PVN) regions responsible for sexual behavior has not been investigated. OBJECTIVES Therefore, this study initially investigated the effects of LBP on male sexual function, and subsequently, the mechanistic insight was investigated through assessing the expression of neuronal nitric oxide synthase (nNOS) in the MPOA and PVN. METHODS The adult male rats were treated with 100 mg/kg of LBP or vehicle by oral gavage. Before and after 14 days of treatment, copulatory behavior and noncontact erection (NCE) were recorded. After the last behavioral test, the brain was isolated to measure nNOS expression in the MPOA and PVN. RESULTS Data showed that LBP treatment significantly increased both the frequencies of intromission as well as ejaculation, compared to the control group. Whereas, a reduced post-ejaculatory interval was observed compared to same group on day 0. Furthermore, the treatment led to an increased intromission ratio, inter-intromission interval, and the number of MPOA nNOS-immunoreactive cells (nNOS-ir). Additionally, a significantly positive correlation between ejaculation frequency and MPOA nNOS-ir cells was recorded. Of note, LBP treatment had no effects on NCE and PVN nNOS-ir expression. CONCLUSION These findings suggest that LBP enhances sexual behavior through increased nNOS expression in the MPOA in male rats.
Collapse
Affiliation(s)
- Andy C Huang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Urology, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Jia-Min Wu
- Department of Physical Therapy, Hung Kuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung, 43302, Taiwan
| | - Ya-Han Chang
- Department of Physical Therapy, Hung Kuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung, 43302, Taiwan
| | - Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Allen W Chiu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Urology, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Chien-Yu Yeh
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chemical Engineering, National United University, Miaoli, Taiwan
| | - Kuei-Ying Yeh
- Department of Physical Therapy, Hung Kuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung, 43302, Taiwan.
| |
Collapse
|
34
|
Huang C, Yao R, Zhu Z, Pang D, Cao X, Feng B, Paulsen BS, Li L, Yin Z, Chen X, Jia R, Song X, Ye G, Luo Q, Chen Z, Zou Y. A pectic polysaccharide from water decoction of Xinjiang Lycium barbarum fruit protects against intestinal endoplasmic reticulum stress. Int J Biol Macromol 2019; 130:508-514. [PMID: 30826406 DOI: 10.1016/j.ijbiomac.2019.02.157] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 02/05/2023]
Abstract
Neutral polysaccharides from Ningxia L. barbarum fruit have been reported with immunomodulatory and antioxidative biological activities. Few studies on pectic polysaccharides have been reported, especially not from the Xinjiang L. barbarum. In the present study, a pectic polysaccharide, XLBP-I-I, was obtained from water decoction of Xinjiang L. barbarum using anion exchange chromatography and gel filtration. The results from methanolysis, methylation, FT-IR and NMR experiments indicated that XLBP-I-I was a typical pectic polysaccharide. In vitro assay showed that XLBP-I-I could reduce the ER stress and UPR in tunicamycin insult IPEC-J2 cells, and further protect IPEC-J2 cells against apoptosis induced by ER stress. These results reveal a new perspective for pectic L. barbarum polysaccharides on intestine ER stress, and this elicited interests for its further applications.
Collapse
Affiliation(s)
- Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ruyu Yao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Zhongkai Zhu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Dejiang Pang
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xiyue Cao
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | | | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xingfu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Renrong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
35
|
|
36
|
Tang R, Chen X, Dang T, Deng Y, Zou Z, Liu Q, Gong G, Song S, Ma F, Huang L, Wang Z. Lycium barbarum polysaccharides extend the mean lifespan of Drosophila melanogaster. Food Funct 2019; 10:4231-4241. [DOI: 10.1039/c8fo01751d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fruits of Lycium barbarum are considered medicinal foods with high nutritional value and bioactivity.
Collapse
Affiliation(s)
- Rui Tang
- College of Life Sciences
- Northwest University
- Xi'an 710069
- China
| | - Xiaoyi Chen
- College of Life Sciences
- Northwest University
- Xi'an 710069
- China
| | - Tiantian Dang
- College of Life Sciences
- Northwest University
- Xi'an 710069
- China
| | - Yangni Deng
- College of Life Sciences
- Northwest University
- Xi'an 710069
- China
| | - Zihua Zou
- College of Life Sciences
- Northwest University
- Xi'an 710069
- China
| | - Qian Liu
- College of Food Science and Technology
- Northwest University
- Xi'an 710069
- China
| | - Guiping Gong
- College of Food Science and Technology
- Northwest University
- Xi'an 710069
- China
| | - Shuang Song
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Fangli Ma
- Infinitus (China) Company Ltd
- Jiangmen 529156
- China
| | - Linjuan Huang
- College of Food Science and Technology
- Northwest University
- Xi'an 710069
- China
| | - Zhongfu Wang
- College of Food Science and Technology
- Northwest University
- Xi'an 710069
- China
| |
Collapse
|
37
|
Li D, Sun L, Yang Y, Wang Z, Yang X, Guo Y. Preventive and therapeutic effects of pigment and polysaccharides in Lycium barbarum on alcohol-induced fatty liver disease in mice. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1512530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dan Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, P. R. China
| | - Lijun Sun
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, P. R. China
| | - Yongli Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, P. R. China
| | - Zichao Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, P. R. China
| | - Xi Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, P. R. China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, P. R. China
| |
Collapse
|
38
|
Yang J, Wei YQ, Ding JB, Li YL, Ma JL, Liu JL. Research and application of Lycii Fructus in medicinal field. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
39
|
Dong Y, Qi Y, Liu M, Song X, Zhang C, Jiao X, Wang W, Zhang J, Jia L. Antioxidant, anti-hyperlipidemia and hepatic protection of enzyme-assisted Morehella esculenta polysaccharide. Int J Biol Macromol 2018; 120:1490-1499. [PMID: 30266646 DOI: 10.1016/j.ijbiomac.2018.09.134] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/22/2018] [Accepted: 09/22/2018] [Indexed: 11/28/2022]
Abstract
The aims of this work were to investigate the antioxidant, anti-hyperlipidemia and hepatic protection of Morehella esculenta polysaccharide (MPS) from fruiting body and its enzyme-assisted MPS (EnMPS). The in vitro scavenging rates of EnMPS at 600 mg/L on superoxide, hydroxyl and 1,1‑diphenyl‑2‑pyrazole hydrazide (DPPH) radicals were 76.92 ± 2.61%, 66.74 ± 2.56% and 75.78 ± 2.4%, higher than those of MPS, respectively. Animals experiments showed that the EnMPS exhibited superior abilities of reducing hepatic lipid levels by monitoring the serum enzyme activities (ALP, ALT, ALB and AST) and serum lipid levels (CK, TC, TG, HDL-C, LDL-C and LDH), enhancing the hepatic antioxidant enzymes (FFA, SOD, CAT and T-AOC) and decreasing the lipid peroxidation (MDA and MPO). The results suggested that the EnMPS can act as a natural candidate for developing drugs to reduce blood lipids, resist oxidation and protect the liver.
Collapse
Affiliation(s)
- Yuhan Dong
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Yanran Qi
- Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Min Liu
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Xinling Song
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Chen Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Xun Jiao
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Wenshuai Wang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
40
|
Olive oil combined with Lycium barbarum polysaccharides attenuates liver apoptosis and inflammation induced by carbon tetrachloride in rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Herbal management of hepatocellular carcinoma through cutting the pathways of the common risk factors. Biomed Pharmacother 2018; 107:1246-1258. [PMID: 30257339 PMCID: PMC7127621 DOI: 10.1016/j.biopha.2018.08.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the most frequent tumor that associated with high mortality rate. Several risk factors contribute to the pathogenesis of HCC, such as chronic persistent infection with hepatitis C virus or hepatitis B virus, chronic untreated inflammation of liver with different etiology, oxidative stress and fatty liver disease. Several treatment protocols are used in the treatment of HCC but they also associated with diverse side effects. Many natural products are helpful in the co-treatment and prevention of HCC. Several mechanisms are involved in the action of these herbal products and their bioactive compounds in the prevention and co-treatment of HCC. They can inhibit the liver cancer development and progression in several ways as protecting against liver carcinogens, enhancing effects of chemotherapeutic drugs, inhibiting tumor cell growth and metastasis, and suppression of oxidative stress and chronic inflammation. In this review, we will discuss the utility of diverse natural products in the prevention and co-treatment of HCC, through its capturing of the common risk factors known to lead to HCC and shed the light on their possible mechanisms of action. Our theory assumes that shutting down the risk factor to cancer development pathways is a critical strategy in cancer prevention and management. We recommend the use of these plants side by side to recent chemical medications and after stopping these chemicals, as a maintenance therapy to avoid HCC progression and decrease its global incidence.
Collapse
|
42
|
Liang J, Guo S, Zhou A, Hui AL, Zong K, Yu NJ, Peng DY. Effect of high-pressure processing on the polysaccharides content and antioxidant activity of fresh Dendrobium officinale
juice. J Food Biochem 2018. [DOI: 10.1111/jfbc.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Juan Liang
- School of Pharmacy; Anhui University of Chinese Medicine; Hefei China
- Anhui Province Key Laboratory of R&D of Chinese Medicine; Anhui University of Chinese Medicine; Hefei China
| | - Sai Guo
- School of Pharmacy; Anhui University of Chinese Medicine; Hefei China
| | - An Zhou
- Anhui Province Key Laboratory of R&D of Chinese Medicine; Anhui University of Chinese Medicine; Hefei China
| | - Ai Ling Hui
- Institute of Natural Medicine; Hefei University of Technology; Hefei China
| | - Kai Zong
- Anhui Enter-exit Inspection and Quarantine Bureau; Hefei China
| | - Nian Jun Yu
- School of Pharmacy; Anhui University of Chinese Medicine; Hefei China
| | - Dai Yin Peng
- Anhui Province Key Laboratory of R&D of Chinese Medicine; Anhui University of Chinese Medicine; Hefei China
| |
Collapse
|
43
|
Xie Y, Wang X. Lycium barbarum polysaccharides attenuates the apoptosis of hippocampal neurons induced by sevoflurane. Exp Ther Med 2018; 16:1834-1840. [PMID: 30186408 PMCID: PMC6122330 DOI: 10.3892/etm.2018.6426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/21/2018] [Indexed: 01/29/2023] Open
Abstract
Following the application of inhalational anesthetics, including sevoflurane, patients may suffer from neural injury. The present study was conducted to explore the mechanism involved in Lycium barbarum polysaccharides (LBP) treatment of sevoflurane injured hippocampal neurons. Primary hippocampal neurons were isolated from Sprague Dawley embryonic rats. The Cell Counting Kit-8 (CCK-8) assay was used to detect cell viability. Furthermore, flow cytometry (FCM) was used to determine cell proliferation and apoptosis rates. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were applied to detect the expression levels of apoptosis-related factors, including activated-Caspase-3, B-cell lymphoma/leukemia-2 (Bcl-2) and Bcl-2 associated X (Bax), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and total ERK1/2. The results showed that LBP promoted cell viability and cell proliferation but inhibited cell apoptosis in neurons injured with 3% sevoflurane, in dose-dependent manners (100, 200 and 400 µg/ml). LBP increased the expression levels of Bcl-2 and p-ERK1/2, and decreased levels of activated-Caspase-3 and Bax in a dose-dependent manner in hippocampal neurons that were injured with sevoflurane. In addition, ERK1/2 inhibitor reversed the above phenomenon in 400 µg/ml LBP and 3% sevoflurane-treated hippocampal neurons. Therefore, the present study indicated that LBP protected hippocampal neurons from sevoflurane injury, including aberrant cell apoptosis, via the ERK1/2 pathway.
Collapse
Affiliation(s)
- Yuhai Xie
- Department of Anesthesiology, Qinghai Red Cross Hospital, Xining, Qinghai 810000, P.R. China
| | - Xuejun Wang
- Department of Anesthesiology, Qinghai Red Cross Hospital, Xining, Qinghai 810000, P.R. China
| |
Collapse
|
44
|
Ejike DE, Adam MA, Sheu OS, Nganda P, Iliya E, Moses DA, Alfred OO, Karimah. Lycopene attenuates diabetes-induced oxidative stress in Wistar rats. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/jde2018.0118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
45
|
Manthey AL, Chiu K, So KF. Demystifying traditional Chinese medicines: Lycium barbarum as a model therapeutic. TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The practice of Traditional Chinese Medicine (TCM) focuses on holistic treatment of the body. This often includes preparation and application of medicinal herbs, either alone or in combination with other supplements. Lycium barbarum (LB), for example, is a commonly used herbal supplement in many Asian countries, being most well-known for improving kidney, liver, and eye health. It is also one of the most widely scientifically researched TCMs and a large body of literature is available describing its effects on various tissues and organ systems. In this perspective, we briefly expand upon how LB can be used as a model TCM in the systematic study of other herbal medicines, highlighting two of the primary barriers to their use in modern medicine worldwide.
Collapse
Affiliation(s)
- Abby Leigh Manthey
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Kin Chiu
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, P. R. China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Kwok-Fai So
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, P. R. China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, P. R. China
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P. R. China
- Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P. R. China
- Ministry of Education Joint International Research, Laboratory of CNS Regeneration, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
46
|
Zhou C, Yin S, Yu Z, Feng Y, Wei K, Ma W, Ge L, Yan Z, Zhu R. Preliminary Characterization, Antioxidant and Hepatoprotective Activities of Polysaccharides from Taishan Pinus massoniana Pollen. Molecules 2018; 23:molecules23020281. [PMID: 29385683 PMCID: PMC6017409 DOI: 10.3390/molecules23020281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/20/2018] [Accepted: 01/28/2018] [Indexed: 12/26/2022] Open
Abstract
The objectives of the present study were to characterize the chemical composition, antioxidant activity and hepatoprotective effect of the polysaccharides from Taishan Pinus massoniana pollen (TPPPS). HPLC analysis showed that TPPPS was an acidic heteropolysaccharide with glucose and arabinose as the main component monosaccharides (79.6%, molar percentage). Fourier transform-infrared spectroscopy (FT-IR) analysis indicated that the spectra of TPPPS displayed infrared absorption peaks characteristic of polysaccharides. In in vitro assays TPPPS exhibited different degrees of dose-dependent antioxidant activities , and this was further verified by suppression of CCl4-induced oxidative stress in the liver with three tested doses of TPPPS (100, 200, and 400 mg/kg bw) in rats. Pretreatment with TPPPS significantly decreased the levels of alanine aminotransferase (AST), aspartate aminotransferase (ALT), alkaline phosphatase (ALP), lactic dehydrogenase (LDH) and malondialdehyde (MDA) against CCl4 injuries, and elevated the activities of superoxide dismutase (SOD) as well as glutathione peroxidase (GSH-Px). Histopathological observation further confirmed that TPPPS could protect the liver tissues from CCl4-induced histological alternation. These results suggest that TPPPS has strong antioxidant activities and significant protective effect against acute hepatotoxicity induced by CCl4. The hepatoprotective effect may partly be related to its free radical scavenging effect, increasing antioxidant activity and inhibiting lipid peroxidation.
Collapse
Affiliation(s)
- Changming Zhou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Shaojie Yin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China.
| | - Zhongfang Yu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Yuxiang Feng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Kai Wei
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Weiming Ma
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Lijiang Ge
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Zhengui Yan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China.
| | - Ruiliang Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
47
|
Kręcisz M, Wójtowicz A, Oniszczuk A. Effect of composition and processing conditions on selected characteristics of extruded corn instant gruels enriched with fruits addition. BIO WEB OF CONFERENCES 2018. [DOI: 10.1051/bioconf/20181002013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cranberries and goji berries were used as natural supplements in extruded instant corn gruels. The effects of additive type and level, as well as extrusion-cooking screw speed on selected properties of extrudates were tested. Corn grit was used as the base raw materials and dry and ground goji berries and cranberries were added at 1, 2, 3, 4 and 5%. Extrusion-cooking of blends was performed with a single screw extruder at temperature ranged 125-135°C using various screw speed during processing. Extrudates were ground below 1 mm for instant gruels. Water absorption, water solubility, as well as colour profile were tested. The results showed that the highest water absorption was evaluated for instant gruels consist the highest amount of goji berries extruded at the highest screw speed during processing, while cranberries addition have no significant effect on water absorption. Increasing amount of dry cranberries and goji berries in the recipe affected on lowering the water solubility of the extrudates. Significant effect of fruits on color coordinates was observed. Increasing amount of dry berries lowered lightness L* and yellowness of instant gruels, especially when goji berries were used in the recipe. Increasing the screw speed during processing decreased intensity b* values.
Collapse
|
48
|
Gan F, Liu Q, Liu Y, Huang D, Pan C, Song S, Huang K. Lycium barbarum polysaccharides improve CCl 4-induced liver fibrosis, inflammatory response and TLRs/NF-kB signaling pathway expression in wistar rats. Life Sci 2017; 192:205-212. [PMID: 29196051 DOI: 10.1016/j.lfs.2017.11.047] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
Lycium barbarum polysaccharides (LBPs) have multiple biological and pharmacological functions, including antioxidant, anti-inflammatory and anticancer activities. This research was conducted to evaluate whether LBPs could alleviate carbon tetrachloride (CCl4)-induced liver fibrosis and the underlying signaling pathway mechanism. Fifty male wistar rats were randomly allocated to five groups (n=10): control, CCl4 and CCl4 with 400, 800 or 1600mg/kg LBPs, respectively. Each wistar rat from each group was used for blood and tissue collections at the end of experiment. The results showed that CCl4 induced liver fibrosis as demonstrated by increasing histopathological damage, α-smooth muscle actin expression, aspartate transaminase activities, alkaline phosphatase activities and alanine aminotransferase activities. LBPs supplementation alleviated CCl4-induced liver fibrosis as demonstrated by reversing the above parameters. In addition, CCl4 treatment induced the oxidative injury, increased the mRNA levels of tumor necrosis factor-α, monocyte chemoattractant protein-1 and interleukin-1β, and up-regulated the protein expressions of toll-like receptor 4 (TLR4), TLR2, myeloid differentiation factor 88, nuclear factor-kappa B (NF-kB) and p-p65. LBPs supplementation alleviated CCl4-induced oxidative injury, inflammatory response and TLRs/NF-kB signaling pathway expression by reversing the above some parameters. These results suggest that the alleviating effects of LBPs on CCl4-induced liver fibrosis in wistar rats may be through inhibiting the TLRs/NF-kB signaling pathway expression.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Qing Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Da Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Suquan Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
49
|
Ali M, Khan T, Fatima K, Ali QUA, Ovais M, Khalil AT, Ullah I, Raza A, Shinwari ZK, Idrees M. Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions. Phytother Res 2017; 32:199-215. [PMID: 29047177 PMCID: PMC7167792 DOI: 10.1002/ptr.5957] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023]
Abstract
Insight into the hepatoprotective effects of medicinally important plants is important, both for physicians and researchers. Main reasons for the use of herbal medicine include their lesser cost compared with conventional drugs, lesser undesirable drug reactions and thus high safety, and reduced side effects. The present review focuses on the composition, pharmacology, and results of experimental trials of selected medicinal plants: Silybum marianum (L.) Gaertn., Glycyrrhiza glabra, Phyllanthus amarus Schumach. & Thonn., Salvia miltiorrhiza Bunge., Astragalus membranaceus (Fisch.) Bunge, Capparis spinosa (L.), Cichorium intybus (L.), Solanum nigrum (L.), Sapindus mukorossi Gaertn., Ginkgo biloba (L.), Woodfordia fruticosa (L.) Kurz, Vitex trifolia (L.), Schisandra chinensis (Turcz.) Baill., Cuscuta chinensis (Lam.), Lycium barbarum, Angelica sinensis (Oliv.) Diels, and Litsea coreana (H. Lev.). The probable modes of action of these plants include immunomodulation, stimulation of hepatic DNA synthesis, simulation of superoxide dismutase and glutathione reductase to inhibit oxidation in hepatocytes, reduction of intracellular reactive oxygen species by enhancing levels of antioxidants, suppression of ethanol-induced lipid accumulation, inhibition of nucleic acid polymerases to downregulate viral mRNA transcription and translation, free radical scavenging and reduction of hepatic fibrosis by decreasing the levels of transforming growth factor beta-1, and collagen synthesis in hepatic cells. However, further research is needed to identify, characterize, and standardize the active ingredients, useful compounds, and their preparations for the treatment of liver diseases.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Tariq Khan
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan.,Department of Biotechnology, University of Malakand Chakdara Dir (L)-18000, Khyber Pakhtunkhwa, Pakistan
| | - Kaneez Fatima
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Qurat Ul Ain Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Muhammad Ovais
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Ali Talha Khalil
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Ikram Ullah
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Abida Raza
- National Institute of Laser and Optronics, Nilore, 45650, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Muhammad Idrees
- Hazara University Mansehra, Khyber Pakhtunkhwa, 21120, Pakistan.,Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan
| |
Collapse
|
50
|
The Antioxidative, Antiaging, and Hepatoprotective Effects of Alkali-Extractable Polysaccharides by Agaricus bisporus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7298683. [PMID: 29104605 PMCID: PMC5585609 DOI: 10.1155/2017/7298683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 01/24/2023]
Abstract
The aim of this work was designed to investigate the antioxidant, antiaging, and hepatoprotective effects of alkali-extractable polysaccharides (AlAPS) and their three purified fractions (AlAPS-1, AlAPS-2, and AlAPS-3) from Agaricus bisporus in D-galactose induced aging mice. For in vitro antioxidant analysis, both AlAPS and its fractions exhibited moderate reducing power, Fe2+-chelating activities, and potent scavenging activities on hydroxyl and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The in vivo results demonstrated that the polysaccharides, especially AlAPS-2, showed potential antiaging and hepatoprotective effects by enhancing the antioxidant status, decreasing serum hepatic enzyme activities, and improving the lipid metabolism. This study suggested that the polysaccharides extracted and purified from A. bisporus could be exploited as a potent dietary supplement to attenuate aging and prevent age-related diseases.
Collapse
|