1
|
Chen NY, Li CP, Huang HF. Synthesis, antitumor evaluation and computational study of thiazolidinone derivatives of dehydroabietic acid-based B ring-fused-thiazole. Mol Divers 2024; 28:875-888. [PMID: 36862356 DOI: 10.1007/s11030-023-10626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
In an attempt to search for new natural product-based antitumor agents, a series of novel thiazolidinone derivatives of dehydroabietic acid-based B ring-fused-thiazole were designed and synthesized. The primary antitumor tests showed that compounds 5 m exhibited almost the best inhibitory activity against the tested cancer cells. The computational study suggested NOTCH1, IGF1R, TLR4, and KDR were the core targets of the title compounds, and the IC50 of SCC9 and Cal27 is strong correlation with the binding ability of TLR4 and compounds.
Collapse
Affiliation(s)
- Nai-Yuan Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| | - Cui-Ping Li
- Key Laboratory of Research and Application of Stomatological Equipment, School of Stomatology/Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, China.
| | - Hong-Fei Huang
- XI DA Testing Co., Ltd. of GuangXi, Nanning, 530007, China
| |
Collapse
|
2
|
Farghaly TA, Alosaimy AM, Al-Qurashi NT, Masaret GS, Abdulwahab HG. The most Recent Compilation of Reactions of Enaminone Derivatives with various Amine Derivatives to Generate Biologically Active Compounds. Mini Rev Med Chem 2024; 24:793-843. [PMID: 37711104 DOI: 10.2174/1389557523666230913164038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Heterocyclic derivatives serve as the fundamental components of both natural and synthetic drugs. Enaminones play a crucial role as foundational units in the synthesis of numerous bioactive heterocyclic compounds, including pyrazoles, pyridines, oxazoles, isoxazoles, as well as fused heterocyclic structures like indoles, carbazoles, quinolines, acridines, and phenanthridines. These diverse heterocyclic rings are well-known for their various therapeutic activities, encompassing anticancer, anti-inflammatory, antimicrobial, antidepressant, and antiviral properties. By reacting with nitrogenbased nucleophiles, enaminones can generate bioactive azoles, azines, and their fused systems. This study focuses on the recent advancements in enaminone reactions with (a) nitrogen-based nucleophiles, such as aliphatic amines, derivatives of aniline, heterocyclic amines, hydroxylamine, hydrazine derivatives, guanidine derivatives, urea, and thiourea derivatives, and (b) nitrogen-based electrophiles, such as diazonium salts. These reactions have led to the synthesis of a wide range of bioactive fused heterocyclic compounds from 2010 to the end of 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Amal M Alosaimy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Nadia T Al-Qurashi
- Department of Basic Science, University College in Adam, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Soni JP, Chilvery S, Sharma A, Reddy GN, Godugu C, Shankaraiah N. Design, synthesis and in vitro cytotoxicity evaluation of indolo-pyrazoles grafted with thiazolidinone as tubulin polymerization inhibitors. RSC Med Chem 2023; 14:549-562. [PMID: 36970141 PMCID: PMC10033828 DOI: 10.1039/d2md00442a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
In the pursuit of potential and effective chemotherapeutic agents, a series of 2-((3-(indol-3-yl)-pyrazol-5-yl)imino)thiazolidin-4-ones was designed and synthesized, conjoining salient pharmacophoric properties for directing prominent cytotoxicity. The in vitro cytotoxicity evaluation revealed potent compounds with IC50 values <10 μM on tested human cancer cell lines. Compound 6c exhibited the highest cytotoxicity with an IC50 value of 3.46 μM against melanoma cancer cells (SK-MEL-28) and was highly cytospecific and selective towards cancer cells. The traditional apoptosis assays revealed morphological and nuclear alterations such as apoptotic body formation, condensed/horseshoe-shaped/fragmented/blebbing nuclei, and the generation of ROS. Flow cytometric analysis revealed effective early-stage apoptosis induction and cell-cycle arrest in the G2/M phase. In addition, the enzyme-based effect of 6c on tubulin showed the inhibition of tubulin polymerization (about 60% inhibition, IC50 was <1.73 μM). Moreover, molecular modeling studies affirmed the constant accommodation of compound 6c at the active pocket of tubulin, establishing many electrostatic and hydrophobic interactions with the active pocket's residues. The tubulin-6c complex was stable during the MD simulation for 50 ns with the recommended range of RMSD value (2-4 Å) for each pose.
Collapse
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Anamika Sharma
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - G Nikitha Reddy
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| |
Collapse
|
4
|
Sierakowska A, Jasiewicz B, Piosik Ł, Mrówczyńska L. New C8-substituted caffeine derivatives as promising antioxidants and cytoprotective agents in human erythrocytes. Sci Rep 2023; 13:1785. [PMID: 36720903 PMCID: PMC9888743 DOI: 10.1038/s41598-022-27205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/28/2022] [Indexed: 02/02/2023] Open
Abstract
New structurally diverse groups of C8-substituted caffeine derivatives were synthesized and evaluated for their chemical and biological properties. Mass spectrometry, FT-IR, and NMR characterizations of these derivatives were performed. The cytotoxic activity of the derivatives was estimated in vitro using human red blood cells (RBC) and in silico pharmacokinetic studies. The antioxidant capacity of the compounds was analyzed using a ferrous ion chelating activity assay. The ability of the derivatives to protect RBC from oxidative damage, including the oxidation of hemoglobin to methemoglobin, was assessed using a water-soluble 2,2'-azobis(2-methyl-propionamidine) dihydrochloride (AAPH) as a standard inducer of peroxyl radicals. The level of intracellular oxidative stress was assessed using the fluorescent redox probe 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA). The results indicate that all derivatives are biocompatible compounds with significant antioxidant and cytoprotective potential dependent on their chemical structure. In order to explain the antioxidant and cytoprotective activity of the derivatives, a mechanism of hydrogen atom transfer (HAT), radical adduct formation (RAF), or single electron transfer (SET), as well as the specific interactions of the derivatives with the lipid bilayer of RBC membrane, have been proposed. The results show that selected modifications of the caffeine molecule enhance its antioxidant properties, which expands our knowledge of the structure-activity relationship of caffeine-based cytoprotective compounds.
Collapse
Affiliation(s)
- Arleta Sierakowska
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Beata Jasiewicz
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | - Łukasz Piosik
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
5
|
Missioui M, Guerrab W, Nchioua I, El Moutaouakil Ala Allah A, Kalonji Mubengayi C, Alsubari A, Mague JT, Ramli Y. Crystal structure and Hirshfeld surface analysis of 2-chloro- N-(4-meth-oxy-phen-yl)acetamide. Acta Crystallogr E Crystallogr Commun 2022; 78:687-690. [PMID: 35855360 PMCID: PMC9260361 DOI: 10.1107/s205698902200576x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 11/10/2022]
Abstract
In the title mol-ecule, C9H10ClNO2, the meth-oxy group lies very close to the plane of the phenyl ring while the acetamido group is twisted out of this plane by 28.87 (5)°. In the crystal, a three-dimensional structure is generated by N-H⋯O, C-H⋯O and C-H⋯Cl hydrogen bonds plus C-H⋯π(ring) inter-actions. A Hirshfeld surface analysis of the inter-molecular inter-actions was performed and indicated that C⋯H/H⋯C inter-actions make the largest contribution to the surface area (33.4%).
Collapse
Affiliation(s)
- Mohcine Missioui
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Walid Guerrab
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Intissar Nchioua
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | | | - Camille Kalonji Mubengayi
- Laboratoire de Chimie et Biochimie, Institut Superieur des Techniques Medicales de Kinshasa, Republique Democratique du , Congo
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
6
|
El-Zahabi HSA, Nossier ES, Mousa SM, Hassan H, Shalaby ASG, Arafa RK. Antibacterial and anticancer profiling of new benzocaine derivatives: Design, synthesis, and molecular mechanism of action. Arch Pharm (Weinheim) 2022; 355:e2100451. [PMID: 35102593 DOI: 10.1002/ardp.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/08/2022]
Abstract
The need for new chemotherapeutics to overcome development of resistance merits research to discover new agents. Benzocaine derivatives are essential compounds in medicinal chemistry due to their various biological activities including antibacterial and anticancer activities. Therefore, this study focuses on the synthesis of new benzocaine derivatives 3a-e, 6, 7a and 7b, 8, 10-14, and 16a-d and their in vitro evaluation as antibacterial agents against gram +ve and -ve strains and as anticancer agents against HepG-2, HCT-116, and MCF-7 human cancer cell lines. The obtained results demonstrated that thiazolidines 6 and 7b showed higher antibacterial and anticancer activity in comparison with the reference drugs. In addition, 6 and 7b showed high potency as inhibitors toward their biological targets, that is DNA gyrase and human topoisomerase IIα, as compared to the reference standard drugs novobiocin and etoposide, respectively. Molecular docking demonstrated that both compounds could identify the active site of their target enzymes and develop effective binding interactions. Absorption, distribution, metabolism and elimination (ADME) and drug-likeness predictions of both compounds showed that they both have good ADME profiles and no structural alerts that might cause toxicity. Based on this, 6 and 7b could serve as lead compounds for the design of more potent antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Heba S A El-Zahabi
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Safya M Mousa
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Heba Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt
| | - Al Shimaa G Shalaby
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Center, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt.,Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
7
|
Shehab WS, Aziz MA, Elhoseni NKR, Assy MG, Abdellattif MH, Hamed EO. Design, Synthesis, Molecular Docking, and Evaluation Antioxidant and Antimicrobial Activities for Novel 3-Phenylimidazolidin-4-One and 2-Aminothiazol-4-One Derivatives. Molecules 2022; 27:767. [PMID: 35164032 PMCID: PMC8840376 DOI: 10.3390/molecules27030767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
On our way to discovering and developing compounds that have an antioxidant impact compared to ascorbic acid and other biological activities, we designed, synthesized, and evaluated a new series of heterocyclic moieties drugs (1-11) as antioxidants and antimicrobial agents. As starting moieties, these new candidates were derived from two promising heterocyclic compounds, imidazoldin-4-one and thiazol-4-one. Firstly, diphenylimidazol 1 was obtained because of the cyclo condensation one-pot ternary reaction of urea, aniline, and chloroacetic acid under thermal conditions. Out of this starting compound, we could design and create new vital rings such as purine and triazine as in compounds 5 and 6, respectively. Secondly, the start thiazole derivative 7 was obtained from the intermolecular cyclization of thiourea, chloroacetic acid, p-nitobezaldehyde in the presence of sodium acetate. We synthesized various derivatives from this second starting compound 7 by being subjected to different reagents such as aniline, phenylenediamine, phenylhydrazine, and barbituric acid to yield 8, 9, 10, and 11, respectively. Using ascorbic acid as the standard compound, the pharmacological testing for antioxidant activity assessment of the produced derivatives was evaluated against ABTS (2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid). Candidate 6 exhibited the best activity as an antioxidant agent compared to ascorbic acid as a reference compound. Moreover, all compounds were evaluated as antimicrobial agents against a series of bacteria and fungi. Among all synthesized compounds, compound 6 achieved high efficiency against two types of fungi and four kinds of bacteria, as Clotrimazole and Ampicillin were used as the reference agents, respectively. All chemical structures of the novel synthesized candidates were unequivocally elucidated and confirmed utilizing spectroscopical and elemental investigations.
Collapse
Affiliation(s)
- Wesam S. Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.A.A.); (N.K.R.E.); (M.G.A.); (E.O.H.)
| | - Maged A. Aziz
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.A.A.); (N.K.R.E.); (M.G.A.); (E.O.H.)
| | - Nourhan Kh. R. Elhoseni
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.A.A.); (N.K.R.E.); (M.G.A.); (E.O.H.)
| | - Mohamed G. Assy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.A.A.); (N.K.R.E.); (M.G.A.); (E.O.H.)
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Eman O. Hamed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.A.A.); (N.K.R.E.); (M.G.A.); (E.O.H.)
| |
Collapse
|
8
|
Taha I, Keshk EM, Khalil AGM, Fekri A. Benzocaine as a precursor of promising derivatives: synthesis, reactions, and biological activity. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01808-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Almehmadi SJ, Alsaedi AMR, Harras MF, Farghaly TA. Synthesis of a new series of pyrazolo[1,5-a]pyrimidines as CDK2 inhibitors and anti-leukemia. Bioorg Chem 2021; 117:105431. [PMID: 34688130 DOI: 10.1016/j.bioorg.2021.105431] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Based on the structural study of previously known CDK2 inhibitors, a new series of pyrazolo[1,5-a]pyrimidine derivatives was designed and synthesized. The target compounds were biologically assessed as potent CDK2 inhibitors and promising anti-leukemia hits. The 7-(4-Bromo-phenyl)-3-(3-chloro/2-chloro-phenylazo)-pyrazolo[1,5-a]pyrimidin-2-ylamines 5 h and 5i revealed the best CDK2 inhibitory activity with comparable potency (IC50 = 22 and 24 nM, respectively) to that of dinaciclib (IC50 = 18 nM). Additionally, both analogues showed potent activities against CDK1, CDK5 and CDK9 at nanomolar concentrations (IC50 = 28-80 nM). The anti-leukemia screening of the target compounds showed strong to moderate cytotoxicity against the used leukemia cell lines (MOLT-4 and HL-60). Compound 5 h inhibited MOLT-4 and HL-60 by 1.4 and 2.3 folds (IC50 = 0.93 and 0.80 µM), respectively, compared to dinaciclib (IC50 = 1.30 and 1.84 µM). Furthermore, compound 5i was comparable to dinaciclib against MOLT-4 and exhibited twice its activity against HL-60. Besides, the cytotoxicity of the promising analogues on normal human blood cells indicated the safety of 5h and 5i as compared to the reference dinaciclib. The pharmacokinetic properties of 5h and 5i were predicted using ADME calculations revealing good oral bioavailability and high GI absorption. The molecular docking simulations indicated, as expected, that the dinaciclib analogues can well-accommodate the CDK2 binding site, forming a variety of interactions.
Collapse
Affiliation(s)
- Samar J Almehmadi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah 21514, Saudi Arabia
| | - Amani M R Alsaedi
- Department of Chemistry, Collage of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
10
|
Santos L, Donnard M, Panossian A, Vors JP, Jeschke P, Bernier D, Pazenok S, Leroux FR. SO 2F 2-Mediated N-Alkylation of Imino-Thiazolidinones. J Org Chem 2021; 87:2012-2021. [PMID: 34355900 DOI: 10.1021/acs.joc.1c01247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-alkylation of ambident and weakly nucleophilic imino-thiazolidinones has been developed via substitution with alkyl fluorosulfonates. These reactive electrophiles are obtained through the transformation of nontoxic, economic, and commercially available alcohol derivatives on exposure to SO2F2 gas. The use of electron-withdrawing groups and DMAc as solvent affords a (Z)- and N-endocyclic selectivity for the easy introduction of a variety of alkyl and polyfluoroalkyl chains.
Collapse
Affiliation(s)
- Laura Santos
- University of Strasbourg, University of Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Morgan Donnard
- University of Strasbourg, University of Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Armen Panossian
- University of Strasbourg, University of Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Jean-Pierre Vors
- Bayer S.A.S., 14 Impasse Pierre Baizet, BP99163, 69263 Lyon, Cedex 09, France
| | - Peter Jeschke
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
| | - David Bernier
- Bayer S.A.S., 14 Impasse Pierre Baizet, BP99163, 69263 Lyon, Cedex 09, France
| | - Sergii Pazenok
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
| | - Frédéric R Leroux
- University of Strasbourg, University of Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
11
|
Al-Behery AS, Elberembally KM, Eldawy MA. Synthesis, docking, and biological evaluation of thiazolidinone derivatives against hepatitis C virus genotype 4a. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02721-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Darroudi M, Hamzehloueian M, Sarrafi Y. An experimental and mechanism study on the regioselective click reaction toward the synthesis of thiazolidinone-triazole. Heliyon 2021; 7:e06113. [PMID: 33644441 PMCID: PMC7889834 DOI: 10.1016/j.heliyon.2021.e06113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/23/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
An efficient procedure for the synthesis of novel thiazolidinone triazoles through 32 cycloaddition reactions in the presence of copper(I) species was described, and the molecular mechanism of this 32CA was investigated computationally. Different possible pathways for CA process have been studied to achieve this goal, including one-step pathways for both regioisomers 1,4- and 1,5-triazoles (uncatalyzed, mono-copper, di-copper) and also mono- and di-copper stepwise pathways for 1,4-disubstituted triazole. It was exhibited that the most convenient route in terms of energy barriers includes two copper ions. Based on the calculation, the reaction follows a di-copper stepwise mechanism involving the formation of a six-membered ring and then undergoes a ring contraction to a five-membered ring. The regiochemistry of the reaction was investigated based on local and global reactivity indices of reactants, the transition state stabilities calculation. The electron reorganization along the uncatalyzed one-step mechanism has been investigated by the ELF topological analysis of the bonding changes along with the CA reaction.
Collapse
Affiliation(s)
- Mahdieh Darroudi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, 47416 Babolsar, Iran
| | | | - Yaghoub Sarrafi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, 47416 Babolsar, Iran
| |
Collapse
|
13
|
Darroudi M, Ranjbar S, Esfandiar M, Khoshneviszadeh M, Hamzehloueian M, Khoshneviszadeh M, Sarrafi Y. Synthesis of Novel Triazole Incorporated Thiazolone Motifs Having Promising Antityrosinase Activity through Green Nanocatalyst CuI‐Fe
3
O
4
@SiO
2
(TMS‐EDTA). Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mahdieh Darroudi
- Department of Organic Chemistry, Faculty of Chemistry University of Mazandaran Babolsar 47416 Iran
| | - Sara Ranjbar
- Pharmaceutical Sciences Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Mohammad Esfandiar
- Department of Organic Chemistry, Faculty of Chemistry University of Mazandaran Babolsar 47416 Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences Shiraz Iran
| | | | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences Shiraz Iran
- Department of Medicinal Chemistry, School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Yaghoub Sarrafi
- Department of Organic Chemistry, Faculty of Chemistry University of Mazandaran Babolsar 47416 Iran
| |
Collapse
|
14
|
Targeting EGFR tyrosine kinase: Synthesis, in vitro antitumor evaluation, and molecular modeling studies of benzothiazole-based derivatives. Bioorg Chem 2020; 104:104259. [PMID: 32919134 DOI: 10.1016/j.bioorg.2020.104259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022]
Abstract
New benzothiazole-based derivatives were synthesized in the present work with the aim of evaluating their antitumor activity. They were in vitro tested against hepatocellular carcinoma (HepG2), colorectal carcinoma (HCT-116), mammary gland cancer (MCF-7), prostate cancer (PC-3), and epithelioid carcinoma (HeLa). The results of the in vitro antitumor evaluation revealed that the most active compounds were 39, 40, 51, 56, and 61 exhibiting IC50 values comparable to the reference drug lapatinib. The most active compounds were further subjected to EGFR inhibitory activity assay to rationalize their potency mode. Notably, the most active antitumor compounds 39 and 40 represented the most potent inhibitors to EGFR with IC50 values of 24.58 and 30.42 nM respectively in comparison with 17.38 nM for lapatinib as a standard drug. Molecular modeling studies were also conducted for the synthesized compounds, including docking into EGFR active site and surface mapping. Results proved the superior binding of the hydrazone derivatives 39 and 40 with EGFR suggesting them as good candidates for targeted antitumor therapy through EGFR kinase inhibition.
Collapse
|
15
|
Ibrahim HM, Behbehani H. The first Q-Tube based high-pressure synthesis of anti-cancer active thiazolo[4,5-c]pyridazines via the [4 + 2] cyclocondensation of 3-oxo-2-arylhydrazonopropanals with 4-thiazolidinones. Sci Rep 2020; 10:6492. [PMID: 32300148 PMCID: PMC7162912 DOI: 10.1038/s41598-020-63453-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
A novel and efficient protocol for the synthesis of thiazolo[4,5-c]pyridazine derivatives was developed. The approach utilizes a high pressure Q-Tube reactor to promote cyclocondensation reactions between 3-oxo-2-arylhydrazonopropanals and 4-thiazolidinones. The process has a significantly high atom economy and a broad substrate scope, as well as being applicable to gram scale syntheses. The in vitro cytotoxic activities of the synthesized thiazolo[4,5-c]pyridazine derivatives were examined utilizing a MTT colorimetric assay with doxorubicin as a reference anti-cancer drug and three human cancer cell lines including HCT-116 (colon), MCF-7 (breast) and A549 (lung). The results show that thiazolopyridazines 7c, h, k and p have high cytotoxic activity against the MCF-7 cell line with respective IC50 values of 14.34, 10.39, 15.43 and 13.60 μM. Moreover, the thiazolopyridazine derivative 7s also show promising cytotoxic activity against the HCT-116 cell line with IC50 = 6.90 μM . Observations made in this effort serve as a basis for further investigations into the design and preparation of new anti-cancer drugs.
Collapse
Affiliation(s)
- Hamada Mohamed Ibrahim
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
- Chemistry Department, Faculty of Science, Fayoum University, P.O. Box, 63514, Fayoum, Egypt.
| | - Haider Behbehani
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| |
Collapse
|
16
|
Abdel-Latif E, Fahad MM, Ismail MA. Synthesis of N-aryl 2-chloroacetamides and their chemical reactivity towards various types of nucleophiles. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1692225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ehab Abdel-Latif
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mustafa M. Fahad
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed A. Ismail
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Hussein EM, Al-Rooqi MM, Abd El-Galil SM, Ahmed SA. Design, synthesis, and biological evaluation of novel N 4 -substituted sulfonamides: acetamides derivatives as dihydrofolate reductase (DHFR) inhibitors. BMC Chem 2019; 13:91. [PMID: 31384838 PMCID: PMC6661844 DOI: 10.1186/s13065-019-0603-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/29/2019] [Indexed: 11/21/2022] Open
Abstract
Background Sulfonamide derivatives are of great attention due to their wide spectrum of biological activities. Sulfonamides conjugated with acetamide fragments exhibit antimicrobial and anticancer activities. The inhibition dihydrofolate reductase (DHFR) is considered as one of the most prominent mechanism though which sulfonamide derivatives exhibits antimicrobial and antitumor activities. Results In this study, a new series of 2-(arylamino)acetamides and N-arylacetamides containing sulfonamide moieties were designed, synthesized, characterized and assessed for their antimicrobial activity and screened for cytotoxic activity against human lung carcinoma (A-549) and human breast carcinoma (MCF-7) cell lines. A molecular docking study was performed to identify the mode of action of the synthesized compounds and their good binding interactions were observed with the active sites of dihydrofolate reductase (DHFR). Conclusion Most of the synthesized compounds showed significant activity against A-549 and MCF-7 when compared to 5-Fluorouracil (5-FU), which was used as a reference drug. Some of these synthesized compounds are active as antibacterial and antifungal agents.![]() Electronic supplementary material The online version of this article (10.1186/s13065-019-0603-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Essam M Hussein
- 1Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, 21955 Saudi Arabia.,2Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Munirah M Al-Rooqi
- 1Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, 21955 Saudi Arabia
| | - Shimaa M Abd El-Galil
- 3Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-azhar University, Nacr City, Cairo, Egypt
| | - Saleh A Ahmed
- 1Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, 21955 Saudi Arabia.,2Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| |
Collapse
|
18
|
Bakr RB, Ghoneim AA, Azouz AA. Selective cyclooxygenase inhibition and ulcerogenic liability of some newly prepared anti-inflammatory agents having thiazolo[4,5-d]pyrimidine scaffold. Bioorg Chem 2019; 88:102964. [PMID: 31075742 DOI: 10.1016/j.bioorg.2019.102964] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 01/10/2023]
Abstract
Novel candidates of thiazolo[4,5-d]pyrimidines (9a-l) were synthesized and their structures were elucidated by spectral and elemental analyses. All the novel derivatives were screened for their cyclooxygenase inhibitory effect, anti-inflammatory activity and ulcerogenic liability. All the new compounds exhibited anti-inflammatory activity, especially 1-(4-[7-(4-nitrophenyl)-5-thioxo-5,6-dihydro-3H-thiazolo[4,5-d]pyrimidin-2-ylideneamino]phenyl)ethanone (9g) was the most active derivative with 57%, 88% and 88% inhibition of inflammation after 1, 3 and 5h, respectively. Furthermore, this derivative 9g recorded higher anti-inflammatory activity than celecoxib which showed 43%, 43% and 54% inhibition after 1, 3 and 5h, sequentially. Moreover, the target derivatives 9a-l demonstrated moderate to high potent inhibitory action towards COX-2 (IC50 = 0.87-3.78 µM), in particular, the derivatives 9e (IC50 = 0.92 µM), 9g (IC50 = 0.87 µM) and 9k (IC50 = 1.02 µM) recorded higher COX-2 inhibitory effect than the selective COX-2 inhibitor drug celecoxib (IC50 = 1.11 µM). The in vivo potent compounds (9e, 9g and 9k) caused variable ulceration effect (ulcer index = 5-12.25) in comparison to that of celecoxib (ulcer index = 3). Molecular docking was performed to the most potent COX-2 inhibitors (9e, 9g and 9k) to explore the binding mode of these derivatives with Cyclooxygenase-2 enzyme.
Collapse
Affiliation(s)
- Rania B Bakr
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Amira A Ghoneim
- Chemistry Department, Faculty of Science, Jouf University, P.O. Box, 2014, Aljouf, Saudi Arabia; Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Amany A Azouz
- Department of Pharmacology and Toxicology, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
19
|
Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur J Med Chem 2019; 166:502-513. [DOI: 10.1016/j.ejmech.2019.01.067] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
|
20
|
Sunil Kumar A, Kudva J, Bharath BR, Ananda K, Sadashiva R, Madan Kumar S, Revanasiddappa BC, Kumar V, Rekha PD, Naral D. Synthesis, structural, biological andin silicostudies of new 5-arylidene-4-thiazolidinone derivatives as possible anticancer, antimicrobial and antitubercular agents. NEW J CHEM 2019. [DOI: 10.1039/c8nj03671c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiazolidinone–sulfonamide hybrids emerged as promising anticancer and antitubercular agents, and their anticancer activity was confirmed by docking studies.
Collapse
Affiliation(s)
- A. Sunil Kumar
- Department of Chemistry
- St Joseph Engineering College
- Mangaluru
- India
| | - Jyothi Kudva
- Department of Chemistry
- St Joseph Engineering College
- Mangaluru
- India
| | - B. R. Bharath
- Department of Biotechnology
- NMAM Institute of Technology
- Nitte-574110
- India
| | - K. Ananda
- Biological Sciences
- Poornaprajna Institute of Scientific Research
- Bangalore-562 164
- India
| | - Rajitha Sadashiva
- Sigma-Aldrich Chemical Pvt. Ltd
- Bommasandra-Jigani link Road
- Bengaluru
- India
| | - S. Madan Kumar
- DST-PURSE Lab
- Mangalagangotri
- Mangalore University
- Mangaluru
- India
| | - B. C. Revanasiddappa
- Department of Pharmaceutical Chemistry
- NGSM Institute of Pharmaceutical Sciences
- Nitte University
- Mangaluru-575018
- India
| | - Vasantha Kumar
- Department of Chemistry
- Sri Dharmasthala Manjunatheshwara College (Autonomous)
- Ujire-574240
- India
| | - P. D. Rekha
- Yenepoya Research Centre
- Yenepoya University
- Mangaluru-575018
- India
| | - Damodara Naral
- Department of Chemistry
- Canara Engineering College
- Mangaluru
- India
| |
Collapse
|
21
|
Fischer G. Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Synthesis, Modeling Study and Antioxidants Activity of New Heterocycles Derived from 4-Antipyrinyl-2-Chloroacetamidothiazoles. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present work reports the preparation of twelve new heterocyclic scaffolds containing an antipyrinyl-thiazole hybrid through the reaction of 4-antipyrinyl-2-chloroacetamido-thiazoles 1 and 6 with various types of nucleophiles, namely; ethyl thioglycolate, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, ammonium thiocyanate, malononitrile, and salicylaldehyde. The constructed compounds were characterized by conventional spectroscopic techniques (IR, 1H NMR, 13C NMR, and mass analysis). A DFT method (material studio package) was used to predict the geometry, bond lengths, bond angles, and dipole moments as well as other global chemical reactivities of the constructed antipyrinyl-thiazole compounds. Also, their semi-core pseudopods calculations (dspp) were carried out with DNP (double numerical basis sets plus polarization functional) to predict the properties of materials. In addition, the antioxidant activity of these antipyrinyl-thiazole scaffolds has been screened by the ABTS method. The results indicated that 2-(4-antipyrinylthiazolylamino)-5-substituitedbenzylidene-thiazol-4(5H)-ones 10b and 10c exhibited the best antioxidant activity with a percentage inhibition of 85.74% and 83.51%, respectively.
Collapse
|
23
|
Pejović A, Minić A, Jovanović J, Pešić M, Komatina DI, Damljanović I, Stevanović D, Mihailović V, Katanić J, Bogdanović GA. Synthesis, characterization, antioxidant and antimicrobial activity of novel 5-arylidene-2-ferrocenyl-1,3-thiazolidin-4-ones. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Ahmed Arafa WA, Ibrahim HM. A sustainable strategy for the synthesis of bis-2-iminothiazolidin-4-ones utilizing novel series of asymmetrically substituted bis-thioureas as viable precursors. RSC Adv 2018; 8:10516-10521. [PMID: 35540444 PMCID: PMC9078912 DOI: 10.1039/c8ra01253a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/01/2018] [Indexed: 01/17/2023] Open
Abstract
A series of bis-thioureas was synthesized as viable precursors for the design of bis-2-iminothiazolidin-4-ones utilizing the ultrasonic irradiation as a sustainable energy source.
Collapse
|
25
|
Kaminskyy D, Kryshchyshyn A, Lesyk R. 5-Ene-4-thiazolidinones - An efficient tool in medicinal chemistry. Eur J Med Chem 2017; 140:542-594. [PMID: 28987611 PMCID: PMC7111298 DOI: 10.1016/j.ejmech.2017.09.031] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/14/2017] [Accepted: 09/17/2017] [Indexed: 02/02/2023]
Abstract
The presented review is an attempt to summarize a huge volume of data on 5-ene-4-thiazolidinones being a widely studied class of small molecules used in modern organic and medicinal chemistry. The manuscript covers approaches to the synthesis of 5-ene-4-thiazolidinone derivatives: modification of the C5 position of the basic core; synthesis of the target compounds in the one-pot or multistage reactions or transformation of other related heterocycles. The most prominent pharmacological profiles of 5-ene derivatives of different 4-thiazolidinone subtypes belonging to hit-, lead-compounds, drug-candidates and drugs as well as the most studied targets have been discussed. Currently target compounds (especially 5-en-rhodanines) are assigned as frequent hitters or pan-assay interference compounds (PAINS) within high-throughput screening campaigns. Nevertheless, the crucial impact of the presence/nature of C5 substituent (namely 5-ene) on the pharmacological effects of 5-ene-4-thiazolidinones was confirmed by the numerous listed findings from the original articles. The main directions for active 5-ene-4-thiazolidinones optimization have been shown: i) complication of the fragment in the C5 position; ii) introduction of the substituents in the N3 position (especially fragments with carboxylic group or its derivatives); iii) annealing in complex heterocyclic systems; iv) combination with other pharmacologically attractive fragments within hybrid pharmacophore approach. Moreover, the utilization of 5-ene-4-thiazolidinones in the synthesis of complex compounds with potent pharmacological application is described. The chemical transformations cover mainly the reactions which involve the exocyclic double bond in C5 position of the main core and correspond to the abovementioned direction of the 5-ene-4-thiazolidinone modification.
Collapse
Affiliation(s)
- Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine.
| |
Collapse
|
26
|
Hamama WS, Ibrahim ME, Zoorob HH. Synthesis, DFT Study, and Antitumor Activity of Some New Heterocyclic Compounds Incorporating Isoxazole Moiety. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wafaa S. Hamama
- Department of Chemistry, Faculty of Science; Mansoura University; Mansoura Egypt
| | - Mona E. Ibrahim
- Department of Chemistry, Faculty of Science; Mansoura University; Mansoura Egypt
| | - Hanafi H. Zoorob
- Department of Chemistry, Faculty of Science; Mansoura University; Mansoura Egypt
| |
Collapse
|
27
|
Lamie PF, Ali WAM, Bazgier V, Rárová L. Novel N-substituted indole Schiff bases as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase enzymes: Synthesis, biological activities in vitro and docking study. Eur J Med Chem 2016; 123:803-813. [PMID: 27541263 DOI: 10.1016/j.ejmech.2016.08.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 11/13/2022]
Abstract
Two new series of N-substituted indole derivatives 4a-l and 5a-h were synthesized. Their chemical structures were confirmed using spectroscopic tools including IR, (1)H NMR, (13)C NMR mass spectroscopy and elemental analyses. The results showed no significant cytotoxic activity on either cancer or normal human cells. Anti-inflammatory activity for all target compounds was evaluated in vitro. Compounds 5a-h were found to have better anti-inflammatory activity than 4a-l. The inhibitory activity of COX-2 and 5-LOX were tested for 5a-h. Three compounds, 5c, 5d and 5f showed excellent COX-2 inhibitory activity with IC50 ranging from 0.98 to 1.23 μM compared to the reference celecoxib (1.54 μM). These compounds had a reasonable selectivity index between 7.03 and 8.05. Additionally, p-methylbenzoyl derivative 5g (IC50 = 5.78 μM) had superior 5-LOX inhibitory activity, higher than quercetin. 5e was close to quercetin in its LOX inhibitory activity. Compounds 5a-h were docked inside the active site of COX-2 and 5-LOX enzymes.
Collapse
Affiliation(s)
- Phoebe F Lamie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | | | - Vaclav Bazgier
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Lucie Rárová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
28
|
Bakr RB, Azouz AA, Abdellatif KRA. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1-phenylpyrazolo[3,4-d]pyrimidine derivatives. J Enzyme Inhib Med Chem 2016; 31:6-12. [DOI: 10.1080/14756366.2016.1186018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Rania B. Bakr
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef, Egypt, and
| | - Amany A. Azouz
- Department of Pharmacology and Toxicology, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
29
|
Synthesis and Biological Evaluation of Novel Benzothiazole Derivatives as Potential Anticonvulsant Agents. Molecules 2016; 21:164. [PMID: 26938519 PMCID: PMC6274423 DOI: 10.3390/molecules21030164] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/25/2016] [Indexed: 02/01/2023] Open
Abstract
New benztriazoles with a mercapto-triazole and other heterocycle substituents were synthesized and evaluated for their anticonvulsant activity and neurotoxicity by using the maximal electroshock (MES), subcutaneous pentylenetetrazole (scPTZ), and rotarod neurotoxicity (TOX) tests. Among the compounds studied, compound 2-((1H-1,2,4-triazol-3-yl)thio)-N-(6-((3-fluorobenzyl)oxy)benzo[d]thiazol-2-yl)acetamide (5i) and 2-((1H-1,2,4-triazol-3-yl)thio)-N-(6-((4-fluorobenzyl)oxy)benzo[d] thiazol-2-yl)acetmide (5j) were the most potent, with an ED50 value of 50.8 mg/kg and 54.8 mg/kg in the MES test and 76.0 mg/kg and 52.8 mg/kg in the scPTZ seizures test, respectively. They also showed lower neurotoxicity and, therefore a higher protective index. In particular, compound 5j showed high protective index (PI) values of 8.96 in the MES test and 9.30 in the scPTZ test, which were better than those of the standard drugs used as positive controls in this study.
Collapse
|
30
|
Synthesis and Biological Evaluation of Novel Benzothiazole Derivatives as Potential Anticonvulsant Agents. Molecules 2016. [DOI: 10.3390/molecules21020164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
31
|
Mague JT, Mohamed SK, Akkurt M, Younes SHH, Albayati MR. Crystal structure of (5Z)-5-(2-hy-droxy-benzyl-idene)-1,3-thia-zolidine-2,4-dione. Acta Crystallogr E Crystallogr Commun 2015; 71:o965-6. [PMID: 26870553 PMCID: PMC4719925 DOI: 10.1107/s2056989015021908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/17/2015] [Indexed: 11/11/2022]
Abstract
The title compound, C10H7NO3S, crystallizes with four independent mol-ecules in the asymmetric unit with slightly different conformations; the dihedral angles between the six- and five-membered rings are 2.6 (1), 1.09 (9), 8.6 (1) and 6.2 (1)°. In the crystal, mol-ecules are linked by O-H⋯O and N-H⋯O hydrogen bonds, forming sheets lying parallel to (101).
Collapse
Affiliation(s)
- Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Shaaban K. Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England
- Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
| | - Sabry H. H. Younes
- Department of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Mustafa R. Albayati
- Kirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
| |
Collapse
|
32
|
Abdellatif KRA, Abdelgawad MA, Elshemy HAH, Alsayed SSR. Design, synthesis and biological screening of new 4-thiazolidinone derivatives with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorg Chem 2015; 64:1-12. [PMID: 26561742 DOI: 10.1016/j.bioorg.2015.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 12/24/2022]
Abstract
Two series of new thiazolidin-4-one derivatives 4a-c and 8a-e were designed and prepared. All the synthesized compounds were evaluated for their in vitro COX-2 selectivity and anti-inflammatory activity in vivo. Compounds 8c and 8d showed the best overall in vitro COX-2 selectivity (selectivity indexes of 4.56 and 5.68 respectively) and in vivo activities (edema inhibition %=61.8 and 67 after 3h, respectively) in comparison with the reference drug celecoxib (S.I.=7.29, edema inhibition %=60 after 3h). In addition, 8c and 8d were evaluated for their mean effective anti-inflammatory doses (ED50=27.7 and 18.1 μmol/kg respectively, celecoxib ED50=28.2 μmol/kg) and ulcerogenic liability (reduction in ulcerogenic potential versus celecoxib=85%, 92% respectively. Molecular docking studies were performed and the results were in agreement with that obtained from the in vitro COX inhibition assays.
Collapse
Affiliation(s)
- Khaled R A Abdellatif
- Department of Pharmaceutical Organic Chemistry, Beni Suef University, Beni Suef 62514, Egypt.
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Organic Chemistry, Beni Suef University, Beni Suef 62514, Egypt; Pharmaceutical Chemistry Department, College of Pharmacy, Al Jouf University, Sakaka, Al Jouf 2014, Saudi Arabia
| | - Heba A H Elshemy
- Department of Pharmaceutical Organic Chemistry, Beni Suef University, Beni Suef 62514, Egypt
| | - Shahinda S R Alsayed
- Department of Pharmaceutical Organic Chemistry, Beni Suef University, Beni Suef 62514, Egypt
| |
Collapse
|
33
|
Abou-Seri SM, Eldehna WM, Ali MM, Abou El Ella DA. 1-Piperazinylphthalazines as potential VEGFR-2 inhibitors and anticancer agents: Synthesis and in vitro biological evaluation. Eur J Med Chem 2015; 107:165-79. [PMID: 26590508 DOI: 10.1016/j.ejmech.2015.10.053] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 01/07/2023]
Abstract
In our endeavor towards the development of effective VEGFR-2 inhibitors, three novel series of phthalazine derivatives based on 1-piperazinyl-4-arylphthalazine scaffold were synthesized. All the newly prepared phthalazines 16a-k, 18a-e and 21a-g were evaluated in vitro for their inhibitory activity against VEGFR-2. In particular, compounds 16k and 21d potently inhibited VEGFR-2 at sub-micromolar IC50 values 0.35 ± 0.03 and 0.40 ± 0.04 μM, respectively. Moreover, seventeen selected compounds 16c-e, 16g, 16h, 16j, 16k, 18c-e and 21a-g were evaluated for their in vitro anticancer activity according to US-NCI protocol, where compounds 16k and 21d proved to be the most potent anticancer agents. While, compound 16k exhibited potent broad spectrum anticancer activity with full panel GI50 (MG-MID) value of 3.62 μM, compound 21d showed high selectivity toward leukemia and prostate cancer subpanels [subpanel GI50 (MG-MID) 3.51 and 5.15 μM, respectively]. Molecular docking of compounds16k and 21d into VEGFR-2 active site was performed to explore their potential binding mode.
Collapse
Affiliation(s)
- Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, P.O. Box 11829, Egypt.
| | - Mamdouh M Ali
- Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Dalal A Abou El Ella
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, P.O. Box 11566, Egypt.
| |
Collapse
|
34
|
Inam A, Van Zyl RL, van Vuuren NJ, Chen CT, Avecilla F, Agarwal SM, Azam A. Chloroquinoline–acetamide hybrids: a promising series of potential antiprotozoal agents. RSC Adv 2015. [DOI: 10.1039/c5ra05472a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In an endeavour to develop efficacious antiprotozoal agents chloroquinoline–acetamide hybrids were synthesized and screened in vitro against E. histolytica and P. falciparum and molecular docking studies were performed against PfDHFR.
Collapse
Affiliation(s)
- Afreen Inam
- Department of Chemistry
- Jamia Millia Islamia
- New Delhi
- India
| | - Robyn L. Van Zyl
- Pharmacology Division
- Department of Pharmacy and Pharmacology
- WITS Research Institute for Malaria (WRIM)
- Faculty of Health Sciences
- University of Witwatersrand
| | - Natasha J. van Vuuren
- Pharmacology Division
- Department of Pharmacy and Pharmacology
- WITS Research Institute for Malaria (WRIM)
- Faculty of Health Sciences
- University of Witwatersrand
| | - Chien-Teng Chen
- Pharmacology Division
- Department of Pharmacy and Pharmacology
- WITS Research Institute for Malaria (WRIM)
- Faculty of Health Sciences
- University of Witwatersrand
| | - Fernando Avecilla
- Departamento de Química Fundamental
- Universidade da Coruña
- Campus da Zapateira
- 15071 A Coruña
- Spain
| | - Subhash M. Agarwal
- Bioinformatics Division
- Institute of Cytology and Preventive Oncology (ICMR) I-7
- Noida 201301
- India
| | - Amir Azam
- Department of Chemistry
- Jamia Millia Islamia
- New Delhi
- India
| |
Collapse
|
35
|
Çakır G, Küçükgüzel İ, Guhamazumder R, Tatar E, Manvar D, Basu A, Patel BA, Zia J, Talele TT, Kaushik-Basu N. Novel 4-Thiazolidinones as Non-Nucleoside Inhibitors of Hepatitis C Virus NS5B RNA-Dependent RNA Polymerase. Arch Pharm (Weinheim) 2014; 348:10-22. [DOI: 10.1002/ardp.201400247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/07/2014] [Accepted: 10/01/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Gizem Çakır
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Marmara University; Haydarpaşa İstanbul Turkey
| | - İlkay Küçükgüzel
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Marmara University; Haydarpaşa İstanbul Turkey
| | - Rupa Guhamazumder
- Department of Biochemistry & Molecular Biology; New Jersey Medical School; The State University of New Jersey; Newark NJ USA
| | - Esra Tatar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Marmara University; Haydarpaşa İstanbul Turkey
| | - Dinesh Manvar
- Department of Biochemistry & Molecular Biology; New Jersey Medical School; The State University of New Jersey; Newark NJ USA
| | - Amartya Basu
- Department of Biochemistry & Molecular Biology; New Jersey Medical School; The State University of New Jersey; Newark NJ USA
| | - Bhargav A. Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences; St. John's University; Queens NY USA
| | - Javairia Zia
- Department of Biochemistry & Molecular Biology; New Jersey Medical School; The State University of New Jersey; Newark NJ USA
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences; St. John's University; Queens NY USA
| | - Neerja Kaushik-Basu
- Department of Biochemistry & Molecular Biology; New Jersey Medical School; The State University of New Jersey; Newark NJ USA
| |
Collapse
|
36
|
Gzella AK, Kowiel M, Suseł A, Wojtyra MN, Lesyk R. Heterocyclic tautomerism: reassignment of two crystal structures of 2-amino-1,3-thiazolidin-4-one derivatives. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2014; 70:812-6. [PMID: 25093365 DOI: 10.1107/s2053229614015162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/27/2014] [Indexed: 11/10/2022]
Abstract
The structures of 5-(2-hydroxyethyl)-2-[(pyridin-2-yl)amino]-1,3-thiazolidin-4-one, C10H11N3O2S, (I), and ethyl 4-[(4-oxo-1,3-thiazolidin-2-yl)amino]benzoate, C12H12N2O3S, (II), which are identical to the entries with refcodes GACXOZ [Váňa et al. (2009). J. Heterocycl. Chem. 46, 635-639] and HEGLUC [Behbehani & Ibrahim (2012). Molecules, 17, 6362-6385], respectively, in the Cambridge Structural Database [Allen (2002). Acta Cryst. B58, 380-388], have been redetermined at 130 K. This structural study shows that both investigated compounds exist in their crystal structures as the tautomer with the carbonyl-imine group in the five-membered heterocyclic ring and an exocyclic amine N atom, rather than the previously reported tautomer with a secondary amide group and an exocyclic imine N atom. The physicochemical and spectroscopic data of the two investigated compounds are the same as those of GACXOZ and HEGLUC, respectively. In the thiazolidin-4-one system of (I), the S and chiral C atoms, along with the hydroxyethyl group, are disordered. The thiazolidin-4-one fragment takes up two alternative locations in the crystal structure, which allows the molecule to adopt R and S configurations. The occupancy factors of the disordered atoms are 0.883 (2) (for the R configuration) and 0.117 (2) (for the S configuration). In (I), the main factor that determines the crystal packing is a system of hydrogen bonds, involving both strong N-H...N and O-H...O and weak C-H...O hydrogen bonds, linking the molecules into a three-dimensional hydrogen-bond network. On the other hand, in (II), the molecules are linked via N-H...O hydrogen bonds into chains.
Collapse
Affiliation(s)
- Andrzej K Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Marcin Kowiel
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Aneta Suseł
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Magdalena N Wojtyra
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| |
Collapse
|
37
|
Synthesis of a new class of Pyridazin-3-one and 2-amino-5-arylazopyridine derivatives and their utility in the synthesis of fused azines. Molecules 2014; 19:2637-54. [PMID: 24566327 PMCID: PMC6272007 DOI: 10.3390/molecules19022637] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
A general route for the synthesis of a novel class of pyridazin-3-one derivatives 3 by the reaction in acetic anhydride between 3-oxo-2-arylhydrazonopropanals 1 and some active methylene compounds like p-nitrophenylacetic acid and cyanoacetic acid was established. Under these conditions the pyridazin-3-one derivatives 3 were formed as the sole isolable products in excellent yield. The 6-acetyl-3-oxopyridazine derivative 3l was reacted with DMF-DMA to afford the corresponding enaminone derivative 4, which reacts with a variety of aminoazoles to afford the corresponding azolo[1,5-a]pyrimidine derivatives 5–7. Also, in order to explore the viability and generality of a recently uncovered reaction between 3-oxo-2-arylhydrazonopropanals and active methylene compounds, a variety of 2-amino-6-aryl-5-arylazo-3-aroylpyridines 16–19 were prepared by reacting 3-oxo-2-arylhydrazonopropanals with miscellaneous active methylene compounds like 3-oxo-3-phenylpropionitrile, hetaroylacetonitriles and cyanoacetamides. These 2-aminopyridine derivatives undergo smooth reactions with cyanoacetic acid that led to the formation in high yield of a new class of 1,8-naphthyridine derivatives 24. The structures of all new substances prepared in this investigation were determined by the different analytical spectroscopic methods, in addition to the X-ray crystallographic analysis.
Collapse
|
38
|
Physicochemical, Spectral, and Biological Studies of Mn(II), Cu(II), Cd(II), Zr(OH) 2(IV), and UO 2(VI) Compounds with Ligand Containing Thiazolidin-4-one Moiety. J CHEM-NY 2014. [DOI: 10.1155/2014/286136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Schiff base (I) upon reacting with mercaptoacetic acid in dry benzene undergoes cyclization and forms N-(2-carbamoylthienyl)-C-(3′-carboxy-2′-hydroxyphenyl)thiazolidin-4-one, LH3(II). A MeOH solution ofIIreacts with Mn(II), Cu(II), Cd(II), Zr(OH)2(IV), and UO2(VI) ions and forms the coordination compounds, [Mn(LH)(MeOH)2], [Cu(LH)]2, [Cd(LH)], [Zr(OH)2(OAc)2(LH3)], and [UO2(NO3)(LH2)(MeOH)]. The compounds have been characterized on the basis of elemental analyses, molar conductance, molecular weight, spectral (IR, reflectance, and EPR) studies and magnetic susceptibility measurements. LH3behaves as a neutral tridentate ONS donor ligand in [Zr(OH)2(OAc)2(LH3)], monobasic tridentate ONS donor ligand in [UO2(NO3)(LH2)(MeOH)], dibasic tridentate OOS donor ligand in [Cu(LH)]2and dibasic tetradentate OONO donor ligand in [Mn(LH)(MeOH)2] and [Cd(LH)]. [Cu(LH)]2is dimer, while all other compounds are monomers in diphenyl. A square-planar structure for [Cu(LH)]2, a tetrahedral structure for [Cd(LH)], an octahedral structure for [Mn(LH)(MeOH)2], a pentagonal-bipyramidal structure for [Zr(OH)2(OAc)2(LH3)], and an eight-coordinate structure for [UO2(NO3)(LH2)(MeOH)] are proposed. The ligand (II) and its compounds show antibacterial activities towardsE. coli. (Gram negative) andS. aureus(Gram positive).
Collapse
|
39
|
Sirakanyan SN, Geronikaki A, Spinelli D, Hovakimyan AA, Noravyan AS. Synthesis and structure of condensed triazolo- and tetrazolopyrimidines. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Behbehani H, Ibrahim HM. A strategy for the synthesis of 2-aryl-3-dimethylaminopyrazolo-[3,4-c]pyridines that utilizes [4+1] cycloaddition reactions of 5-arylazo-2,3,6-trisubstituted pyridines. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.10.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Suponitsky KY, Chernyshev VM, Palysaeva NV, Sheremetev AB. 3-Methyl-4-(2-phenyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)furazan. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o1648-o1649. [PMID: 24454090 PMCID: PMC3884314 DOI: 10.1107/s1600536813027700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 06/03/2023]
Abstract
In the title mol-ecule, C14H10N6O, the planes of the methyl-furazan fragment and the phenyl ring attached to the triazolo-pyrimidine bicycle are twisted from the mean plane of the bicycle at angles of 45.92 (5) and 5.45 (4)°, respectively. In the crystal, π-π inter-actions, indicated by short distances [in the range 3.456 (3)-3.591 (3) Å] between the centroids of the five- and six-membered rings of neighbouring mol-ecules, link the mol-ecules into stacks propagating along the c-axis direction.
Collapse
Affiliation(s)
- Kyrill Yu. Suponitsky
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St, 119991 Moscow, Russian Federation
| | - Victor M. Chernyshev
- South-Russia State Technical University, 346428 Novocherkassk, Russian Federation
| | - Nadezhda V. Palysaeva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russian Federation
| | - Aleksei B. Sheremetev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
42
|
Behbehani H, Ibrahim HM. Organocatalysis in heterocyclic synthesis: DABCO as a mild and efficient catalytic system for the synthesis of a novel class of quinazoline, thiazolo [3,2-a]quinazoline and thiazolo[2,3-b] quinazoline derivatives. Chem Cent J 2013; 7:82. [PMID: 23651877 PMCID: PMC3681655 DOI: 10.1186/1752-153x-7-82] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/18/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND There are only limited publications devoted to the synthesis of especially thiazolo[3,2-a]quinazoline which involved reaction of 2-mercaptopropargyl quinazolin-4-one with various aryl iodides catalyzed by Pd-Cu or by condensation of 2-mercapto-4-oxoquinazoline with chloroacetic acid, inspite of this procedure was also reported in the literature to afford the thiazolo [2,3-b] quinazoline. So the multistep synthesis of the thiazolo[3,2-a]- quinazoline suffered from some flaws and in this study we have synthesized a novel class of thiazoloquinazolines by a simple and convenient method involving catalysis by 1,4-diazabicyclo[2.2.2]octane (DABCO). RESULTS A new and convenient one-pot synthesis of a novel class of 2-arylidene-2H-thiazolo[3,2-a]quinazoline-1,5-diones 9a-i was established through the reaction between methyl-2-(2-thio-cyanatoacetamido)benzoate (4) and a variety of arylidene malononitriles 8a-i in the presence of DABCO as a mild and efficient catalytic system via a Michael type addition reaction and a mechanism for formation of the products observed is proposed. Moreover 4 was converted to ethyl-2-[(4-oxo-3,4-dihydroquinazolin-2-yl)thio]acetate (10) upon reflux in ethanol containing DABCO as catalyst. The latter was reacted with aromatic aldehydes and dimethylformamide dimethylacetal (DMF-DMA) to afford a mixture of two regioselectively products with identical percentage yield, these two products were identified as thiazolo[3,2-a]quinazoline 9,13 and thiazolo[2,3-b]quinazoline 11,12 derivatives respectively. The structure of the compounds prepared in this study was elucidated by different spectroscopic tools of analyses also the X-ray single crystal technique was employed in this study for structure elucidation, Z/E potential isomerism configuration determination and to determine the regioselectivity of the reactions. CONCLUSION A simple and efficient one-pot synthesis of a novel class of 2-arylidene-2H-thiazolo[3,2-a]quinazoline-1,5-diones 9a-i was established through DABCO catalyzed Michael type addition reaction. In addition many fused quinazoline and quinazoline derivatives were synthesized which appeared as valuable precursors in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Haider Behbehani
- Chemistry Department, Faculty of Science, Kuwait University, P,O, Box 5969, Safat 13060, Kuwait.
| | | |
Collapse
|
43
|
Synthesis and antimicrobial activity of some new 1,3,4-thiadiazole derivatives. Molecules 2012; 17:14625-36. [PMID: 23222925 PMCID: PMC6268563 DOI: 10.3390/molecules171214625] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 12/04/2022] Open
Abstract
New series of 1,3,4-thiadiazoles have been prepared via reaction of 1,3,4-thiadiazolenaminones 1 with N-phenyl 2-oxopropanehydrazonoyl chloride (2) in dioxane in the presence of triethylamine. Also, some new heterocycles incorporating 1,3,4-thiadiazole ring were obtained by reaction of 1,3,4-thiadiazolenaminones 1 with nitrogen-nucleophiles like hydrazine hydrate, 3-amino-1,2,4-triazole and 2-aminobenzimidazole. The structure of the new products was established based on elemental and spectral analysis. The relation between the structure of the products and their activity towards some microorganisms was studied and promising results were obtained.
Collapse
|