1
|
Peterle L, Sanfilippo S, Borgia F, Li Pomi F, Vadalà R, Costa R, Cicero N, Gangemi S. The Role of Nutraceuticals and Functional Foods in Skin Cancer: Mechanisms and Therapeutic Potential. Foods 2023; 12:2629. [PMID: 37444367 DOI: 10.3390/foods12132629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Skin cancer is a prevalent type of cancer worldwide and has a high growth rate compared to other diseases. Although modern targeted therapies have improved the management of cutaneous neoplasms, there is an urgent requirement for a safer, more affordable, and effective chemoprevention and treatment strategy for skin cancer. Nutraceuticals, which are natural substances derived from food, have emerged as a potential alternative or adjunctive treatment option. In this review, we explore the current evidence on the use of omega-3 fatty acids and polyphenols (curcumin, epigallocatechin gallate, apigenin, resveratrol, and genistein) for the treatment of melanoma and non-melanoma skin cancer (NMSC), as well as in their prevention. We discuss the mechanisms of action of the aforementioned nutraceuticals and their probable therapeutic benefits in skin cancer. Omega-3 fatty acids, curcumin, epigallocatechin gallate, apigenin, resveratrol, and genistein have several properties, among which are anti-inflammatory and anti-tumor, which can help to prevent and treat skin cancer. However, their effectiveness is limited due to poor bioavailability. Nanoparticles and other delivery systems can improve their absorption and targeting. More research is needed to evaluate their safety and effectiveness as a natural approach to skin cancer prevention and treatment. These compounds should not replace conventional cancer treatments, but may be used as complementary therapy under the guidance of a healthcare professional.
Collapse
Affiliation(s)
- Lucia Peterle
- School and Operative Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Serena Sanfilippo
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Francesco Borgia
- School and Operative Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Federica Li Pomi
- School and Operative Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Rossella Vadalà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rosaria Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| |
Collapse
|
2
|
Fakhri S, Piri S, Moradi SZ, Khan H. Phytochemicals Targeting Oxidative Stress, Interconnected Neuroinflammatory, and Neuroapoptotic Pathways Following Radiation. Curr Neuropharmacol 2022; 20:836-856. [PMID: 34370636 PMCID: PMC9881105 DOI: 10.2174/1570159x19666210809103346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
The radiation for therapeutic purposes has shown positive effects in different contexts; however, it can increase the risk of many age-related and neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Parkinson's disease (PD). These different outcomes highlight a dose-response phenomenon called hormesis. Prevailing studies indicate that high doses of radiation could play several destructive roles in triggering oxidative stress, neuroapoptosis, and neuroinflammation in neurodegeneration. However, there is a lack of effective treatments in combating radiation-induced neurodegeneration, and the present drugs suffer from some drawbacks, including side effects and drug resistance. Among natural entities, polyphenols are suggested as multi-target agents affecting the dysregulated pathogenic mechanisms in neurodegenerative disease. This review discusses the destructive effects of radiation on the induction of neurodegenerative diseases by dysregulating oxidative stress, apoptosis, and inflammation. We also describe the promising effects of polyphenols and other candidate phytochemicals in preventing and treating radiation-induced neurodegenerative disorders, aiming to find novel/potential therapeutic compounds against such disorders.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| |
Collapse
|
3
|
Kalekhan F, Kudva AK, Raghu SV, Rao S, Hegde SK, Simon P, Baliga MS. Traditionally Used Natural Products in Preventing Ionizing Radiation-Induced Dermatitis: First Review on the Clinical Studies. Anticancer Agents Med Chem 2021; 22:64-82. [PMID: 33820524 DOI: 10.2174/1871520621666210405093236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
In the treatment of cancer, the use of ionizing radiation is an important modality. However, on the downside, radiation, when used for curative purposes, causes acute dermatitis or radiodermatitis at the site of radiation in most individuals. From a clinical viewpoint, severe dermatitis causes a burning and itching sensation is very painful, and severely affects the quality of life of the individual undergoing treatment. In worse situations, acute radiation dermatitis can cause gaps or breaks in the planned treatment and this can adversely affect the treatment objective and outcome. BACKGROUND In various traditional and folk systems of medicine, plants and plant products have been used since time immemorial for treating various skin ailments. Further, many cosmeceutical creams formulated based on knowledge from ethnomedicinal use are marketed and used to treat various ailments. In the current review, an attempt is made at summarizing the beneficial effects of some plants and plant products in mitigating acute radiation dermatitis in humans undergoing curative radiotherapy. Additionally, the emphasis is also placed on the mechanism/s responsible for the beneficial effects. OBJECTIVE The objective of this review is to summarize the clinical observations on the prevention of radiodermatitis by plant products. In this review, the protective effects of Adlay (Coix lachryma-jobi L.) bran extract, Aloe vera, Calendula officinalis, Cucumis sativus, green tea constituent the epigallocatechin-3-gallate, honey, Achillea millefolium, Matricaria chamomilla, olive oil and some polyherbal creams are addressed by also addressing on the mechanism of action for the beneficial effects. METHODS Two authors' data mined for information in Google Scholar, PubMed, Embase and the Cochrane Library for publications in the field from 1901 up to July 2020. The focus was on acute radiation dermatitis, ionizing radiation, curative radiotherapy, human cancer. The articles were collected and analyzed. RESULTS For the first time, this review addresses the usefulness of natural products like adlay bran, Aloe vera, Calendula officinalis, Cucumis sativus, green tea constituent the epigallocatechin-3-gallate, honey, Achillea millefolium, Matricaria chamomilla, olive oil and some experimentally constituted and commercially available polyherbal creams as skincare agents against the deleterious effects of ionizing radiation on the skin. The protective effects are possibly due to the free radical scavenging, antioxidant, anti-inflammatory, wound healing and skin protective effects. CONCLUSION The authors suggest that these plants have been used since antiquity as medicinal agents and require in-depth investigation with both clinical and preclinical validated models of study. The results of these studies will be extremely useful to cancer patients requiring curative radiotherapy, the dermatology fraternity, agro-based and pharmaceutical sectors at large.
Collapse
Affiliation(s)
- Faizan Kalekhan
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Avinash K Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka. India
| | - Shamprasad V Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka. India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka. India
| | - Sanath K Hegde
- Radiation Oncology, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Paul Simon
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Manjeshwar S Baliga
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| |
Collapse
|
4
|
Ruta LL, Oprea E, Popa CV, Farcasanu IC. Saccharomyces cerevisiae cells lacking transcription factors Skn7 or Yap1 exhibit different susceptibility to cyanidin. Heliyon 2020; 6:e05352. [PMID: 33145450 PMCID: PMC7592074 DOI: 10.1016/j.heliyon.2020.e05352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/18/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Anthocyanidins – the aglycone moiety of anthocyanins – are responsible for the antioxidant traits and for many of the health benefits brought by the consumption of anthocyanin-rich foods, but whether excessive anthocyanidins are deleterious to living organisms is still a matter of debate. In the present study we used the model eukaryotic microorganism Saccharomyces cerevisiae to evaluate the potential toxicity of cyanidin, one of the most prevalent anthocyanidins found in berries, grapes, purple vegetables, and red wine. We found that yeast cells lacking the transcription factors responsible for regulating the response to oxidative stress – Skn7 and Yap1 – exhibited different sensitivities to cyanidin. Cells lacking the transcription factor Skn7 were sensitive to low concentrations of cyanidin, a trait that was augmented by exposure to visible light, notably blue or green light. In contrast, the growth of yeast cells devoid of Yap1 was stimulated by low concentrations, but it was impaired by high cyanidin exposure. High, but not low cyanidin was shown to induce Yap1 translocation from cytosol to nucleus, probably by generating reactive oxygen species such as H2O2. Taken together, these observation suggested that Skn7 and Yap1 have complementary roles in adaptation to cyanidin stress, with Skn7 involved in adaptation to low concentrations and with Yap1 responsible for adaptation to high concentrations of cyanidin. The results imply that caution is needed when utilizing cyanidin-enriched supplements, especially when in combination with prolonged exposure to visible light.
Collapse
Affiliation(s)
- Lavinia Liliana Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Claudia Valentina Popa
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Ileana Cornelia Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
5
|
León D, Buchegger K, Silva R, Riquelme I, Viscarra T, Mora-Lagos B, Zanella L, Schafer F, Kurachi C, Roa JC, Ili C, Brebi P. Epigallocatechin Gallate Enhances MAL-PDT Cytotoxic Effect on PDT-Resistant Skin Cancer Squamous Cells. Int J Mol Sci 2020; 21:ijms21093327. [PMID: 32397263 PMCID: PMC7247423 DOI: 10.3390/ijms21093327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) has been used to treat certain types of non-melanoma skin cancer with promising results. However, some skin lesions have not fully responded to this treatment, suggesting a potential PDT-resistant phenotype. Therefore, novel therapeutic alternatives must be identified that improve PDT in resistant skin cancer. In this study, we analyzed the cell viability, intracellular protoporphyrin IX (PpIX) content and subcellular localization, proliferation profile, cell death, reactive oxygen species (ROS) detection and relative gene expression in PDT-resistant HSC-1 cells. PDT-resistant HSC-1 cells show a low quantity of protoporphyrin IX and low levels of ROS, and thus a low rate of death cell. Furthermore, the resistant phenotype showed a downregulation of HSPB1, SLC15A2, FECH, SOD2 and an upregulation of HMBS and BIRC5 genes. On the other hand, epigallocatechin gallate catechin enhanced the MAL-PDT effect, increasing levels of protoporphyrin IX and ROS, and killing 100% of resistant cells. The resistant MAL-PDT model of skin cancer squamous cells (HSC-1) is a reliable and useful tool to understand PDT cytotoxicity and cellular response. These resistant cells were successfully sensitized with epigallocatechin gallate catechin. The in vitro epigallocatechin gallate catechin effect as an enhancer of MAL-PDT in resistant cells is promising in the treatment of difficult skin cancer lesions.
Collapse
Affiliation(s)
- Daniela León
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
| | - Kurt Buchegger
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
- Department of Basic Sciences, School of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Ramón Silva
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Autónoma de Chile, Temuco 4810101, Chile; (R.S.); (I.R.)
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Autónoma de Chile, Temuco 4810101, Chile; (R.S.); (I.R.)
| | - Tamara Viscarra
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
| | - Bárbara Mora-Lagos
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
| | - Louise Zanella
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
| | - Fabiola Schafer
- Department of Medical Specialties, School of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, São Carlos 13560-970, São Paulo, Brazil;
| | - Juan Carlos Roa
- Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | - Carmen Ili
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
- Correspondence: (C.I.); (P.B.); Tel.: +56-45-2-596693 (C.I.); +56-45-2-596583 (P.B.)
| | - Priscilla Brebi
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
- Correspondence: (C.I.); (P.B.); Tel.: +56-45-2-596693 (C.I.); +56-45-2-596583 (P.B.)
| |
Collapse
|
6
|
Lingzhi Z, Meirong L, Xiaobing F. Biological approaches for hypertrophic scars. Int Wound J 2019; 17:405-418. [PMID: 31860941 DOI: 10.1111/iwj.13286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Scar formation is usually the pathological consequence of skin trauma. And hypertrophic scars (HSs) frequently occur in people after being injured deeply. HSs are unusually considered as the result of tissue contraction and excessive extracellular matrix component deposition. Myofibroblasts, as the effector cells, mainly differentiated from fibroblasts, play the crucial role in the pathophysiology of HSs. A number of growth factors, inflammatory cytokines involved in the process of HS occurrence. Currently, with in-depth exploration and clinical research of HSs, various creative and effective treatments budded. In here, we summarize the progress in the molecular mechanism of HSs, and review the available biotherapeutic methods for their pathophysiological characteristics. Additionally, we further prospected that the comprehensive therapy may be more suitable for HS treatment.
Collapse
Affiliation(s)
- Zhong Lingzhi
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Li Meirong
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China.,Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital Hainan Branch, Sanya, China
| | - Fu Xiaobing
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Rosenthal A, Israilevich R, Moy R. Management of acute radiation dermatitis: A review of the literature and proposal for treatment algorithm. J Am Acad Dermatol 2019; 81:558-567. [DOI: 10.1016/j.jaad.2019.02.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 01/05/2023]
|
8
|
Naparlo K, Zyracka E, Bartosz G, Sadowska-Bartosz I. Flavanols protect the yeast Saccharomyces cerevisiae against heating and freezing/thawing injury. J Appl Microbiol 2019; 126:872-880. [PMID: 30520210 DOI: 10.1111/jam.14170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
AIMS The aim of the study was to check whether two flavanols ((-)-epigallocatechin gallate and (+)-catechin) can ameliorate oxidative stress (OS) accompanying and contributing to the lethal effects of heating (50°C) and freezing-thawing on the yeast Saccharomyces cerevisiae. METHODS AND RESULTS The flavanols studied increased yeast survival during heating and freezing-thawing, estimated by the colony forming assay. They improved also such indices of OS as increased production of reactive oxygen species, decrease of total antioxidant activity of yeast cell extracts and increase in the level of protein carbonyls. CONCLUSIONS Amelioration of OS by flavanols increases the survival of the yeast subjected to high temperature and freezing-thawing. SIGNIFICANCE AND IMPACT OF THE STUDY Flavanols may be considered as means of enhancing yeast survival under extreme temperature conditions and probably in other conditions involving OS.
Collapse
Affiliation(s)
- K Naparlo
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - E Zyracka
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - G Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - I Sadowska-Bartosz
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
9
|
Fischer N, Seo EJ, Efferth T. Prevention from radiation damage by natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 47:192-200. [PMID: 30166104 DOI: 10.1016/j.phymed.2017.11.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/20/2017] [Accepted: 11/12/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Radiotherapy is a mainstay of cancer treatment since decades. Ionizing radiation (IR) is used for destruction of cancer cells and shrinkage of tumors. However, the increase of radioresistance in cancer cells and radiation toxicity to normal tissues are severe concerns. The exposure to radiation generates intracellular reactive oxygen species (ROS), which leads to DNA damage by lipid peroxidation, removal of thiol groups from cellular and membrane proteins, strand breaks and base alterations. HYPOTHESIS Plants have to deal with radiation-induced damage (UV-light of sun, other natural radiation sources). Therefore, it is worth speculating that radioprotective mechanisms have evolved during evolution of life. We hypothesize that natural products from plants may also protect from radiation damage caused as adverse side effects of cancer radiotherapy. METHODS The basis of this systematic review, we searched the relevant literature in the PubMed database. RESULTS Flavonoids, such as genistein, epigallocatechin-3-gallate, epicatechin, apigenin and silibinin mainly act as antioxidant, free radical scavenging and anti-inflammatory compounds, thus, providing cytoprotection in addition to downregulation of several pro-inflammatory cytokines. Comparable effects have been found in phenylpropanoids, especially caffeic acid phenylethylester, curcumin, thymol and zingerone. Besides, resveratrol and quercetin are the most important cytoprotective polyphenols. Their radioprotective effects are mediated by a wide range of mechanisms mainly leading to direct or indirect reduction of cellular stress. Ascorbic acid is broadly used as antioxidant, but it has also shown activity in reducing cellular damage after irradiation mainly due to its antioxidant capabilities. The metal ion chelator, gallic acid, represents another natural product attenuating cellular damage caused by radiation. CONCLUSIONS Some secondary metabolites from plants reveal radioprotective features against cellular damage caused by irradiation. These results warrant further analysis to develop phytochemicals as radioprotectors for clinical use.
Collapse
Affiliation(s)
- Nicolas Fischer
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
10
|
Zhu W, Jia L, Chen G, Zhao H, Sun X, Meng X, Zhao X, Xing L, Yu J, Zheng M. Epigallocatechin-3-gallate ameliorates radiation-induced acute skin damage in breast cancer patients undergoing adjuvant radiotherapy. Oncotarget 2018; 7:48607-48613. [PMID: 27224910 PMCID: PMC5217042 DOI: 10.18632/oncotarget.9495] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/04/2016] [Indexed: 11/25/2022] Open
Abstract
There are few effective treatment options for radiation-induced dermatitis in breast cancer patients. We conducted a single-arm trial to tested the hypothesis that topical epigallocatechin-3-gallate (EGCG) is effective against radiation-induced dermatitis in breast cancer patients undergoing radiotherapy. Forty-nine patients participated in this study. The patients underwent mastectomy followed by adjuvant radiotherapy. Topical EGCG was applied daily, starting when grade I dermatitis appeared and ending two weeks after radiotherapy. The maximum dermatitis observed during the EGCG treatment was as follows: Grade 1 toxicity, 71.4% (35 patients); grade 2 toxicity, 28.6% (14 patients); there were no patients with grade 3 or 4 toxicity. The majority of the radiation-induced dermatitis was observed 1 week after the end of radiotherapy. EGCG reduced the pain in 85.7% of patients, burning-feeling in 89.8%, itching in 87.8%, pulling in 71.4%, and tenderness in 79.6%. These findings suggest topical EGCG may be an effective treatment for radiation-induced dermatitis and has acceptable toxicity.
Collapse
Affiliation(s)
- Wanqi Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Li Jia
- Department of Radiation Oncology, Jinan Fourth People's Hospital, Jinan, Shandong, China
| | - Guanxuan Chen
- Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| | - Hanxi Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaorong Sun
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xianguang Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China.,Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| | - Meizhu Zheng
- Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| |
Collapse
|
11
|
The Anti-Obesity Effects of Green Tea: A Controlled, Randomized, Clinical Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2018. [DOI: 10.5812/ircmj.55950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Zhao H, Zhu W, Jia L, Sun X, Chen G, Zhao X, Li X, Meng X, Kong L, Xing L, Yu J. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br J Radiol 2015; 89:20150665. [PMID: 26607642 DOI: 10.1259/bjr.20150665] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the safety, tolerability and preliminary effectiveness of topical epigallocatechin-3-gallate (EGCG) for radiation dermatitis in patients with breast cancer receiving adjuvant radiotherapy. METHODS Patients with breast cancer who received radiotherapy to the chest wall after mastectomy were enrolled. EGCG solution was sprayed to the radiation field from the initiation of Grade 1 radiation dermatitis until 2 weeks after completion of radiotherapy. EGCG concentration escalated from 40 to 660 μmol l(-1) in 7 levels with 3-6 patients in each level. EGCG toxicity was graded using the NCI (National Cancer Institute Common Terminology Criteria for Adverse Events) v. 3.0. Any adverse event >Grade 1 attributed to EGCG was considered dose-limiting toxicity. The maximum tolerated dose was defined as the dose level that induced dose-limiting toxicity in more than one-third of patients at a given cohort. Radiation dermatitis was recorded weekly by the Radiation Therapy Oncology Group scoring and patient-reported symptoms. RESULTS From March 2012 to August 2013, 24 patients were enrolled. Acute skin redness was observed in 1 patient and considered to be associated with the EGCG treatment at 140 μmol l(-1) level. Three more patients were enrolled at this level and did not experience toxicity to EGCG. The dose escalation stopped at 660 μmol l(-1). No other reported acute toxicity was associated with EGCG. Grade 2 radiation dermatitis was observed in eight patients during or after radiotherapy, but all decreased to Grade 1 after EGCG treatments. Patient-reported symptom scores were significantly decreased at 2 weeks after the end of radiotherapy in pain, burning, itching and tenderness, p < 0.05. CONCLUSION The topical administration of EGCG was well tolerated and the maximum tolerated dose was not found. EGCG may be effective in treating radiation dermatitis with preliminary investigation. ADVANCES IN KNOWLEDGE EGCG solution seemed to be feasible for treating radiation dermatitis in patients with breast cancer after mastectomy. It should be tested as a way to reduce radiation-induced normal tissue toxicity and complications in future years.
Collapse
Affiliation(s)
- Hanxi Zhao
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong
| | - Wanqi Zhu
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong
| | - Li Jia
- 2 Department of Radiation Oncology, Jinan Fourth People's Hospital, Jinan, Shandong
| | - Xiaorong Sun
- 3 Department of Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong.,4 Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| | - Guanxuan Chen
- 4 Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| | - Xianguang Zhao
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong
| | - Xiaolin Li
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong
| | - Xiangjiao Meng
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong
| | - Lingling Kong
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong
| | - Ligang Xing
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong.,4 Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| | - Jinming Yu
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong.,4 Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| |
Collapse
|
13
|
Zhao H, Zhu W, Xie P, Li H, Zhang X, Sun X, Yu J, Xing L. A phase I study of concurrent chemotherapy and thoracic radiotherapy with oral epigallocatechin-3-gallate protection in patients with locally advanced stage III non-small-cell lung cancer. Radiother Oncol 2014; 110:132-6. [PMID: 24444526 DOI: 10.1016/j.radonc.2013.10.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/22/2013] [Accepted: 10/03/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Patients with unresectable stage III non-small-cell lung cancer receiving concurrent chemoradiotherapy often develop esophagitis that may lead to unplanned treatment interruptions, which may severely reduce rates of locoregional tumor control and survival. No effectivetreatment that would reduce the incidence and severity of this complication has been identified up to now. Although acceleration of normal tissue protection using epigallocatechin-3-gallate (EGCG) has been reported, its actual clinical practicability remains obscure. METHODS AND MATERIALS This is a phase I study of EGCG in combination with standard chemoradiation in surgically unresectable stage III non-small-cell lung cancer. Chemotherapy (cisplatin and etoposide) was given concurrently with radiation. EGCG solution was swallowed three times a day after the occurrence of grade 2 esophagitis at six concentration levels and dose escalation followed a standard phase I design. Esophageal toxicity and patient-reported pain was recorded weekly. RESULTS Twenty-four patients with AJCC stage IIIA (six) and IIIB (eighteen) completed the course of therapy. Twelve had squamous histology, ten adenocarcinoma, and two not specified. Patients were treated in six cohorts at six dose levels of EGCG. RT was not interrupted with a median dose of 64 Gy. There were no dose-limiting toxicities reported in all EGCG dosing tiers. Dramatic regression of esophagitis to grade 0/1 was observed in 22 of 24 patients, whereas grade 2 esophagitis persisted in 2 of 24 patients at the end of radiotherapy. The pain score was also reduced from a mean of 4.58 (N=24), 1.29 (N=24), 1.42 (N=24), 0.96 (N=23) to 1.13 (N=16) every week in turn. CONCLUSION We conclude that the oral administration of EGCG is feasible, safe and effective. The phase II recommended concentration is 440 μmol/L.
Collapse
Affiliation(s)
- Hanxi Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China.
| | - Wanqi Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China.
| | - Peng Xie
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China
| | - Huiqin Li
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China
| | - Xiqin Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaorong Sun
- Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
14
|
Zhang Q, Yang H, Wang J, Li A, Zhang W, Cui X, Wang K. Effect of green tea on reward learning in healthy individuals: a randomized, double-blind, placebo-controlled pilot study. Nutr J 2013; 12:84. [PMID: 23777561 PMCID: PMC3702504 DOI: 10.1186/1475-2891-12-84] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Both clinical and preclinical studies revealed that regular intake of green tea reduced the prevalence of depressive symptoms, as well as produced antidepressant-like effects in rodents. Evidence proposed that disturbed reward learning has been associated with the development of anhedonia, a core symptom of depression. However, the relationship between green tea and reward learning is poorly investigated. Our goal was to test whether chronic treatment with green tea in healthy subjects affects the process of reward learning and subsequently regulates the depressive symptoms. METHODS Seventy-four healthy subjects participated in a double-blind, randomized placebo-controlled study with oral administration of green tea or placebo for 5weeks. We used the monetary incentive delay task to evaluate the reward learning by measurement of the response to reward trial or no-reward trial. We compared the reaction time of reward responsiveness between green tea and placebo treatment. Furthermore, we selected Montgomery-Asberg depression rating scale (MADRS) and 17-item Hamilton Rating Scale for Depression (HRSD-17) to estimate the depressive symptoms in these two groups. RESULTS The results showed chronic treatment of green tea increased reward learning compared with placebo by decreasing the reaction time in monetary incentive delay task. Moreover, participants treated with green tea showed reduced scores measured in MADRS and HRSD-17 compared with participants treated with placebo. CONCLUSIONS Our findings reveal that chronic green tea increased the reward learning and prevented the depressive symptoms. These results also raised the possibility that supplementary administration of green tea might reverse the development of depression through normalization of the reward function.
Collapse
Affiliation(s)
- Qiangye Zhang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Scalia S, Marchetti N, Bianchi A. Comparative evaluation of different co-antioxidants on the photochemical- and functional-stability of epigallocatechin-3-gallate in topical creams exposed to simulated sunlight. Molecules 2013; 18:574-87. [PMID: 23292326 PMCID: PMC6270548 DOI: 10.3390/molecules18010574] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/19/2012] [Accepted: 12/28/2012] [Indexed: 11/16/2022] Open
Abstract
The catechin (−)-epigallocatechin-3-gallate (EGCG) exhibits high antioxidant activity and it has been reported to provide protection of the skin against damage induced by solar UV radiation. However, EGCG is highly unstable under sunlight. The present study aimed to compare the effectiveness of the co-antioxidant agents vitamin E, butylated hydroxytoluene, vitamin C and α-lipoic acid for their potential to protect the catechin from photochemical degradation. Model creams (oil-in-water emulsions) containing EGCG (1%, w/w) alone or combined with equimolar concentrations of co-antioxidant were exposed to a solar simulator at an irradiance corresponding to natural sunlight. Photodegradation was evaluated by HPLC-UV and HPLC-ESI-MS/MS. Addition of the co-antioxidants vitamin C and α-lipoic acid to the formulation significantly reduced the light-induced decomposition of EGCG from 76.9 ± 4.6% to 20.4 ± 2.7% and 12.6 ± 1.6%, respectively. Conversely, butylated hydroxytoluene had no effect (EGCG loss, 78.1 ± 4.6%) and vitamin E enhanced the EGCG photolysis to 84.5 ± 3.4%. The functional stability of the catechin in the creams exposed to the solar simulator was also evaluated by measuring the in vitro antioxidant activity. Following irradiation, the reduction of the EGCG formulation antioxidant power was lower (21.8%) than the extent of degradation (76.9%), suggesting the formation of photoproducts with antioxidant properties. The influence of the examined co-antioxidants on the functional stability of the catechin under simulated sunlight paralleled that measured for the EGCG photodecomposition, α-lipoic acid exerting the greatest stabilising effect (antioxidant activity decrease, 1.4%). These results demonstrated that α-lipoic acid is an effective co-antioxidant agent for the stabilization of EGCG in dermatological products for skin photoprotection.
Collapse
Affiliation(s)
- Santo Scalia
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | | | | |
Collapse
|