1
|
Stillger L, Viau L, Holtmann D, Müller D. Antibiofilm assay for antimicrobial peptides combating the sulfate-reducing bacteria Desulfovibrio vulgaris. Microbiologyopen 2023; 12:e1376. [PMID: 37642483 PMCID: PMC10441178 DOI: 10.1002/mbo3.1376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
In medical, environmental, and industrial processes, the accumulation of bacteria in biofilms can disrupt many processes. Antimicrobial peptides (AMPs) are receiving increasing attention in the development of new substances to avoid or reduce biofilm formation. There is a lack of parallel testing of the effect against biofilms in this area, as well as in the testing of other antibiofilm agents. In this paper, a high-throughput screening was developed for the analysis of the antibiofilm activity of AMPs, differentiated into inhibition and removal of a biofilm. The sulfate-reducing bacterium Desulfovibrio vulgaris was used as a model organism. D. vulgaris represents an undesirable bacterium, which is considered one of the major triggers of microbiologically influenced corrosion. The application of a 96-well plate and steel rivets as a growth surface realizes real-life conditions and at the same time establishes a flexible, simple, fast, and cost-effective assay. All peptides tested in this study demonstrated antibiofilm activity, although these peptides should be individually selected depending on the addressed aim. For biofilm inhibition, the peptide DASamP1 is the most suitable, with a sustained effect for up to 21 days. The preferred peptides for biofilm removal are S6L3-33, in regard to bacteria reduction, and Bactenecin, regarding total biomass reduction.
Collapse
Affiliation(s)
- Lena Stillger
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
| | - Lucile Viau
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
- Institute of Process Engineering in Life SciencesKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Daniela Müller
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
- Institute of Pharmaceutical Technology and BiopharmacyPhilipps‐University MarburgMarburgGermany
| |
Collapse
|
2
|
10-mer and 9-mer WALK Peptides with Both Antibacterial and Anti-Inflammatory Activities. Antibiotics (Basel) 2022; 11:antibiotics11111588. [PMID: 36358242 PMCID: PMC9686928 DOI: 10.3390/antibiotics11111588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Natural antimicrobial peptides (AMPs) are multifunctional host defense peptides (HDPs) that are valuable for various therapeutic applications. In particular, natural and artificial AMPs with dual antibacterial immunomodulatory functions emerged as promising candidates for the development of therapeutic agents to treat infectious inflammation. In an effort to develop useful AMP variants with short lengths and simple amino acid composition, we devised a de novo design strategy to generate a series of model peptide isomer sequences, named WALK peptides, i.e., tryptophan (W)-containing amphipathic-helical (A) leucine (L)/lysine (K) peptides. Here, we generated two groups of WALK peptide isomers: W2L4K4 (WALK244.01~WALK244.10) and W2L4K3 (WALK243.01~WALK243.09). Most showed apparent antibacterial activities against both Gram-positive and Gram-negative bacteria at a concentration of approximately 4 μg/mL along with varied hemolytic activities against human red blood cells. In addition, some exhibited significant anti-inflammatory activities without any significant cytotoxicity in macrophages. Collectively, these results suggest that the two selected peptides, WALK244.04 and WALK243.04, showed promise for the development of antibacterial and anti-inflammatory agents.
Collapse
|
3
|
Zhang J, Zhang J, Wang Y, Zhang X, Nie T, Liu Y. Strategies to Improve the Activity and Biocompatibility: Modification of Peptide Antibiotics. Foodborne Pathog Dis 2022; 19:376-385. [PMID: 35713924 DOI: 10.1089/fpd.2021.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
As host defense peptides, peptide antibiotics exist in almost all organisms. Many of their activities come from their inactivation of bacteria, yeast, fungi, and even cancer cells. However, natural peptide antibiotics are relatively poor in stability and penetration, and have high hemolytic properties, which makes them difficult to directly apply. Therefore, natural peptide antibiotics can be modified to enhance their activity and biocompatibility. Based on the characteristics of amino acids, amino acid substitutions can be performed to study the effect of amino acid types on the activity of peptide antibiotics. The design of ultrashort peptides, cyclic peptides, and self-assembling peptides is also a way to improve the activity of peptide antibiotics. In addition, antibacterial peptides can also be conjugated with antibiotics, lipids, or metal ions to prepare antibacterial peptides with special activities. This review introduces several methods for modifying peptide antibiotics and their specific applications, providing a theoretical basis for the further application of peptide antibiotics.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Jin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yitong Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Ting Nie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Chang L, Bao H, Yao J, Liu H, Gou S, Zhong C, Zhang Y, Ni J. New designed pH-responsive histidine-rich peptides with antitumor activity. J Drug Target 2021; 29:651-659. [PMID: 33428507 DOI: 10.1080/1061186x.2021.1873351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Anticancer peptides have received widespread attention as alternative antitumor therapeutics due to their unique action mode. However, the systemic toxicity hampers their successful utilisation in tumour therapy. Here, the tumour acidic environment was used as a trigger to design a series of histidine-rich peptides by optimising the distribution of histidine and leucine based on the amphiphilic peptide LK, in hoping to achieve desirable acid-activate anticancer peptides. Among all the obtained peptides, L9H5-1 showed enhanced antitumor activity at acidic pH concomitant with low toxicity at normal pH, exhibiting excellent pH-response. At acidic pH, protonated L9H5-1 could rapidly kill tumour cells by efficient membrane disruption as evidenced by in vitro experiments, including increasing intracellular PI uptake and LDH release, dramatic membrane damage and increase of later apoptotic/necrotic cells. Moreover, no cell cycle arrest was observed after treated with L9H5-1. Interestingly, this study found that the new peptides with the same number of histidines and leucines displayed different pH-dependent antitumor activity, indicating that the position of amino acid alteration is extremely important for the design of acid-activated histidine-rich peptides. In short, our work provides a new avenue to develop new acid-activated anticancer peptides as promising antitumor drugs with high efficiency and good selectivity.
Collapse
Affiliation(s)
- Linlin Chang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hexin Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Hospital, Lanzhou University, Lanzhou, China
| | - Hui Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yun Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| |
Collapse
|
5
|
Pandit G, Biswas K, Ghosh S, Debnath S, Bidkar AP, Satpati P, Bhunia A, Chatterjee S. Rationally designed antimicrobial peptides: Insight into the mechanism of eleven residue peptides against microbial infections. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183177. [PMID: 31954105 DOI: 10.1016/j.bbamem.2020.183177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023]
Abstract
The widespread abuse of antibiotics has led to the use of antimicrobial peptides (AMPs) as a replacement for the existing conventional therapeutic agents for combating microbial infections. The broad-spectrum activity and the resilient nature of AMPs has mainly aggrandized their utilization. Here, we report the design of non-toxic, non-hemolytic and salt tolerant undecapeptides (AMP21-24), derived by modification of a peptide P5 (NH2-LRWLRRLCONH2) reported earlier by our group. Our results depict that the designed peptides show potency against several bacterial as well as fungal strains. Circular dichroism (CD) spectroscopy in combination with molecular dynamic (MD) simulations confirm that the peptides are unstructured. Intrinsic tryptophan fluorescence quenching as well as interaction studies using isothermal calorimetry (ITC) of these peptides in the presence of biological microbial membrane mimics establish the strong microbial membrane affinity of these AMPs. Membrane permeabilization assay and cytoplasmic membrane depolarization studies of Pseudomonas aeruginosa and Candida albicans in the presence of AMPs also hint towards the AMP-membrane interactions. Leakage of calcein dye from membrane mimic liposomes, live cell NMR and field emission scanning electron microscopy (FESEM) studies suggest that the AMPs may be primarily involved in membrane perturbation leading to release of intracellular substances resulting in subsequent microbial cell death. Confocal laser scanning microscopy (CLSM) shows localization of the peptides throughout the cell, indicating the possibility of secondary mode of actions. Electrostatic interactions seem to govern the preferential binding of the AMPs to the microbial membranes in comparison to the mammalian membranes as seen from the MD simulations.
Collapse
Affiliation(s)
- Gopal Pandit
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, India
| | - Karishma Biswas
- Department of Biophysics, Bose Institute, P-1/12 CIT scheme, VII (M), Kolkata, India
| | - Suvankar Ghosh
- Department of Biosciences and bioengineering, IIT Guwahati, Guwahati, India
| | - Swapna Debnath
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, India
| | - Anil P Bidkar
- Department of Biosciences and bioengineering, IIT Guwahati, Guwahati, India
| | - Priyadarshi Satpati
- Department of Biosciences and bioengineering, IIT Guwahati, Guwahati, India.
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT scheme, VII (M), Kolkata, India.
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, India.
| |
Collapse
|
6
|
Zhang Y, Li L, Chang L, Liu H, Song J, Liu Y, Bao H, Liu B, Wang R, Ni J. Design of a new pH-activatable cell-penetrating peptide for drug delivery into tumor cells. Chem Biol Drug Des 2019; 94:1884-1893. [PMID: 31062442 DOI: 10.1111/cbdd.13537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/31/2023]
Abstract
Cell-penetrating peptides (CPPs) have been considered as potential drug delivery vectors due to their remarkable membrane translocation capacity. However, lack of specificity and extreme systemic toxicity hamper their successful application for drug delivery. Here, we designed a new pH-activatable CPP, LHHLLHHLHHLLHH-NH2 (LH), by substitution of all lysines and two leucines of LKKLLKLLKKLLKL-NH2 (LK) with histidines. As expected, histidine-rich LH could be activated and penetrate into cells at pH 6.0, whereas its membrane transduction activity could be shielded at pH 7.4. In contrast, LK showed no obviously different cellular uptake at both pH conditions. Importantly, LH was significantly less cytotoxicity compared with LK at both pH values, suggesting a better safety for further application. In addition, after conjugation of camptothecin (CPT) with LH, this conjugate displayed remarkably pH-dependent antitumor activity than free CPT and LK-CPT. This study provides a new tumor pH-responsive CPP with low toxicity for selective anticancer drug delivery.
Collapse
Affiliation(s)
- Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Li Li
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Army Medical University, Chongqin, China
| | - Linlin Chang
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yue Liu
- Department of Pharmacy, Lanzhou General Hospital of People's Liberation Army, Lanzhou, China
| | - Hexin Bao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Beijun Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Faya M, Kalhapure RS, Dhumal D, Agrawal N, Omolo C, Akamanchi KG, Govender T. Antimicrobial cell penetrating peptides with bacterial cell specificity: pharmacophore modelling, quantitative structure activity relationship and molecular dynamics simulation. J Biomol Struct Dyn 2018; 37:2370-2380. [PMID: 30047310 DOI: 10.1080/07391102.2018.1484814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Current research has shown cell-penetrating peptides and antimicrobial peptides (AMPs) as probable vectors for use in drug delivery and as novel antibiotics. It has been reported that the higher the therapeutic index (TI) the higher would be the bacterial cell penetrating ability. To the best of our knowledge, no in-silico study has been performed to determine bacterial cell specificity of the antimicrobial cell penetrating peptides (aCPP's) based on their TI. The aim of this study was to develop a quantitative structure activity relationship (QSAR) model, which can estimate antimicrobial potential and cell-penetrating ability of aCPPs against S. aureus, to confirm the relationship between the TI and aCPPs and to identify specific descriptors responsible for aCPPs penetrating ability. Molecular dynamics (MD) simulation was also performed to confirm the membrane insertion of the most active aCPPs obtained from the QSAR study. The most appropriate pharmacophore was identified to predict the aCPP's activity. The statistical results confirmed the validity of the model. The QSAR model was successful in identifying the optimal aCPP with high activity prediction and provided insights into the structural requirements to correlate their TI to cell penetrating ability. MD simulation of the best aCPP with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer confirmed its interaction with the membrane and the C-terminal residues of the aCPP played a key role in membrane penetration. The strategy of combining QSAR and molecular dynamics, allowed for optimal estimation of ligand-target interaction and confirmed the importance of Trp and Lys in interacting with the POPC bilayer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mbuso Faya
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| | - Rahul S Kalhapure
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| | - Dinesh Dhumal
- b Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology , Mumbai , India
| | - Nikhil Agrawal
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| | - Calvin Omolo
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| | - Krishnacharya G Akamanchi
- b Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology , Mumbai , India
| | - Thirumala Govender
- a Department of Pharmaceutical Sciences , University of KwaZulu-Natal , Private Bag , Durban , South Africa
| |
Collapse
|
8
|
Pandit G, Ilyas H, Ghosh S, Bidkar AP, Mohid SA, Bhunia A, Satpati P, Chatterjee S. Insights into the Mechanism of Antimicrobial Activity of Seven-Residue Peptides. J Med Chem 2018; 61:7614-7629. [DOI: 10.1021/acs.jmedchem.8b00353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gopal Pandit
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Humaira Ilyas
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme, VII (M), Kolkata 700054, India
| | - Suvankar Ghosh
- Department of Biosciences and Bioengineering, IIT, Guwahati 781039, India
| | - Anil P. Bidkar
- Department of Biosciences and Bioengineering, IIT, Guwahati 781039, India
| | - Sk. Abdul Mohid
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme, VII (M), Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme, VII (M), Kolkata 700054, India
| | | | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| |
Collapse
|
9
|
The Road from Host-Defense Peptides to a New Generation of Antimicrobial Drugs. Molecules 2018; 23:molecules23020311. [PMID: 29389911 PMCID: PMC6017364 DOI: 10.3390/molecules23020311] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
Host-defense peptides, also called antimicrobial peptides (AMPs), whose protective action has been used by animals for millions of years, fulfill many requirements of the pharmaceutical industry, such as: (1) broad spectrum of activity; (2) unlike classic antibiotics, they induce very little resistance; (3) they act synergically with conventional antibiotics; (4) they neutralize endotoxins and are active in animal models. However, it is considered that many natural peptides are not suitable for drug development due to stability and biodisponibility problems, or high production costs. This review describes the efforts to overcome these problems and develop new antimicrobial drugs from these peptides or inspired by them. The discovery process of natural AMPs is discussed, as well as the development of synthetic analogs with improved pharmacological properties. The production of these compounds at acceptable costs, using different chemical and biotechnological methods, is also commented. Once these challenges are overcome, a new generation of versatile, potent and long-lasting antimicrobial drugs is expected.
Collapse
|
10
|
Liu D, Liu J, Wang W, Xia L, Yang J, Sun S, Zhang F. Computational and Experimental Investigation of the Antimicrobial Peptide Cecropin XJ and its Ligands as the Impact Factors of Antibacterial Activity. FOOD BIOPHYS 2016. [DOI: 10.1007/s11483-016-9445-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Dubovskii PV, Vassilevski AA, Kozlov SA, Feofanov AV, Grishin EV, Efremov RG. Latarcins: versatile spider venom peptides. Cell Mol Life Sci 2015; 72:4501-22. [PMID: 26286896 PMCID: PMC11113828 DOI: 10.1007/s00018-015-2016-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.
Collapse
Affiliation(s)
- Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Eugene V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Higher School of Economics, 20 Myasnitskaya, Moscow, 101000, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
| |
Collapse
|
12
|
Shim DW, Heo KH, Kim YK, Sim EJ, Kang TB, Choi JW, Sim DW, Cheong SH, Lee SH, Bang JK, Won HS, Lee KH. Anti-Inflammatory Action of an Antimicrobial Model Peptide That Suppresses the TRIF-Dependent Signaling Pathway via Inhibition of Toll-Like Receptor 4 Endocytosis in Lipopolysaccharide-Stimulated Macrophages. PLoS One 2015; 10:e0126871. [PMID: 26017270 PMCID: PMC4446091 DOI: 10.1371/journal.pone.0126871] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/08/2015] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial peptides (AMPs), also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4)- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation.
Collapse
Affiliation(s)
- Do-Wan Shim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Kang-Hyuck Heo
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Young-Kyu Kim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Eun-Jeong Sim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Tae-Bong Kang
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Jae-Wan Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Dae-Won Sim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Sun-Hee Cheong
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Seung-Hong Lee
- Division of Food Bioscience, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
| | - Jeong-Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
- * E-mail: (HW); (KL)
| | - Kwang-Ho Lee
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Republic of Korea
- * E-mail: (HW); (KL)
| |
Collapse
|
13
|
Ong ZY, Wiradharma N, Yang YY. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev 2014; 78:28-45. [PMID: 25453271 DOI: 10.1016/j.addr.2014.10.013] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/30/2022]
Abstract
Antimicrobial peptides (AMPs) which predominantly act via membrane active mechanisms have emerged as an exciting class of antimicrobial agents with tremendous potential to overcome the global epidemic of antibiotics-resistant infections. The first generation of AMPs derived from natural sources as diverse as plants, insects and humans has provided a wealth of compositional and structural information to design novel synthetic AMPs with enhanced antimicrobial potencies and selectivities, reduced cost of production due to shorter sequences and improved stabilities under physiological conditions. In this review, we will first discuss the common strategies employed in the design and optimization of synthetic AMPs, followed by highlighting the various approaches utilized to enhance the therapeutic potentials of designed AMPs under physiological conditions. Lastly, future perspectives on the development of improved AMPs for therapeutic applications will be presented.
Collapse
|
14
|
Ragioto DAMT, Carrasco LDM, Carmona-Ribeiro AM. Novel gramicidin formulations in cationic lipid as broad-spectrum microbicidal agents. Int J Nanomedicine 2014; 9:3183-92. [PMID: 25061295 PMCID: PMC4085336 DOI: 10.2147/ijn.s65289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dioctadecyldimethylammonium bromide (DODAB) is an antimicrobial lipid that can be dispersed as large closed bilayers (LV) or bilayer disks (BF). Gramicidin (Gr) is an antimicrobial peptide assembling as channels in membranes and increasing their permeability towards cations. In mammalian cells, DODAB and Gr have the drawbacks of Gram-positive resistance and high toxicity, respectively. In this study, DODAB bilayers incorporating Gr showed good antimicrobial activity and low toxicity. Techniques employed were spectroscopy, photon correlation spectroscopy for sizing and evaluation of the surface potential at the shear plane, turbidimetric detection of dissipation of osmotic gradients in LV/Gr, determination of bacterial cell lysis, and counting of colony-forming units. There was quantitative incorporation of Gr and development of functional channels in LV. Gr increased the bilayer charge density in LV but did not affect the BF charge density, with localization of Gr at the BF borders. DODAB/Gr formulations substantially reduce Gr toxicity against eukaryotic cells and advantageously broaden the antimicrobial activity spectrum, effectively killing Escherichia coli and Staphylococcus aureus bacteria with occurrence of cell lysis.
Collapse
Affiliation(s)
- Danielle A M T Ragioto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Letícia D M Carrasco
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana M Carmona-Ribeiro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Jacob B, Park IS, Bang JK, Shin SY. Short KR-12 analogs designed from human cathelicidin LL-37 possessing both antimicrobial and antiendotoxic activities without mammalian cell toxicity. J Pept Sci 2013; 19:700-7. [PMID: 24105706 DOI: 10.1002/psc.2552] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 11/08/2022]
Abstract
KR-12 (residues 18-29 of LL-37) was known to be the smallest peptide of human cathelicidin LL-37 possessing antimicrobial activity. In order to optimize α-helical short antimicrobial peptides having both antimicrobial and antiendotoxic activities without mammalian cell toxicity, we designed and synthesized a series of KR-12 analogs. Highest hydrophobic analogs KR-12-a5 and KR-12-a6 displayed greater inhibition of lipopolysaccharide (LPS)-stimulated tumor necrosis factor-α production and higher LPS-binding activity. We have observed that antimicrobial activity is independent of charge, but LPS neutralization requires a balance of hydrophobicity and net positive charge. Among KR-12 analogs, KR-12-a2, KR-12-a3 and KR-12-a4 showed much higher cell specificity for bacteria over erythrocytes and retained antiendotoxic activity, relative to parental LL-37. KR-12-a5 displayed the strongest antiendotoxic activity but almost similar cell specificity as compared with LL-37. Also, these KR-12 analogs (KR-12-a2, KR-12-a3, KR-12-a4 and KR-12-a5) exhibited potent antimicrobial activity (minimal inhibitory concentration: 4 μM) against methicillin-resistant Staphylococcus aureus. Taken together, these KR-12 analogs have the potential for future development as a novel class of antimicrobial and anti-inflammatory therapeutic agents.
Collapse
Affiliation(s)
- Binu Jacob
- Department of Bio-Materials, Graduate School, Chosun University, Gwangju, 501-759, Korea
| | | | | | | |
Collapse
|