1
|
Payaka A, Kongdin M, Teepoo S, Sansenya S. Gamma Irradiation and Exogenous Proline Enhanced the Growth, 2AP Content, and Inhibitory Effects of Selected Bioactive Compounds against α-Glucosidase and α-Amylase in Thai Rice. Prev Nutr Food Sci 2024; 29:354-364. [PMID: 39371519 PMCID: PMC11450279 DOI: 10.3746/pnf.2024.29.3.354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 10/08/2024] Open
Abstract
Exogenous proline can improve the growth, aroma intensities, and bioactive compounds of rice. This study evaluated the effects of gamma irradiation under proline conditions on the 2-acetyl-1-pyrroline (2AP), phenolic, and flavonoid contents of rice. Moreover, the bioactive compounds of gamma-irradiated rice under proline conditions that inhibited α-glucosidase and α-amylase were evaluated by in silico study. A low gamma dose (40 Gy) induced the highest rice growth under 5 mM proline concentration. The highest 2AP content was stimulated at a gamma dose of 5-100 Gy under 10 mM proline concentration. At 500 and 1,000 Gy gamma dose, the highest flavonoid and phenolic contents of rice were stimulated. 1-(2-Hydroxy-5-methylphenyl)-ethanone, which had the highest binding affinity (-7.9 kcal/mol) against α-glucosidase, was obtained at 500 and 1,000 Gy gamma dose under 5 and 10 mM proline concentrations. Meanwhile, 6-amino-1,3,5-triazine-2,4(1H,3H)-dione, which had the highest binding affinity (-6.3 kcal/mol) against α-amylase, was obtained under 10 mM proline concentration in non-gamma-irradiated rice. The results indicate that using a combination of gamma irradiation and exogenous proline is suitable for producing new rice varieties. Moreover, the bioactive compounds that were obtained in new rice varieties exhibited health benefits, especially for diabetes mellitus treatment (inhibition of α-glucosidase and α-amylase).
Collapse
Affiliation(s)
- Apirak Payaka
- School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Manatchanok Kongdin
- Division of Crop Production, Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Sompong Sansenya
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| |
Collapse
|
2
|
Orimaye OE, Ekunseitan DA, Omaliko PC, Fasina YO. Mitigation Potential of Herbal Extracts and Constituent Bioactive Compounds on Salmonella in Meat-Type Poultry. Animals (Basel) 2024; 14:1087. [PMID: 38612326 PMCID: PMC11011123 DOI: 10.3390/ani14071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Herbal extracts have been widely evaluated in poultry production for their beneficial effects and potential substitute for antibiotics, which contribute to AMR and risks to human health through the consumption of infected meat. Salmonellosis is a systemic infection caused by Salmonella, an intracellular bacterium with the ability to cause systemic infections with significant implications for both the health and safety of farmers and consumers. The excessive use of antibiotics has escalated the incidence of antibiotic resistance bacteria in the poultry and livestock industry, highlighting the urgent need for alternatives especially in meat-type poultry. Both in vivo usage and in vitro studies of bioactive compounds from herbal extracts have demonstrated the effective antimicrobial activities against pathogenic bacteria, showing promise in managing Salmonella infections and enhancing poultry performance. Phytobiotic feed additives have shown promising results in improving poultry output due to their pharmacological properties, such as stimulating consumption, and enhancing antioxidant properties and preventing the increasing antimicrobial resistance threats. Despite potential for synergistic effects from plant-derived compounds, a further investigation into is essential to fully understand their role and mechanisms of action, for developing effective delivery systems, and for assessing environmental sustainability in controlling Salmonella in poultry production.
Collapse
Affiliation(s)
| | | | | | - Yewande O. Fasina
- Animal Sciences Department, North Carolina A&T State University, Greensboro, NC 27411, USA; (O.E.O.); (D.A.E.)
| |
Collapse
|
3
|
Li T, Lv Q, Liu C, Li C, Xie X, Zhang W. The Lipophilic Extract from Ginkgo biloba L. Leaves Promotes Glucose Uptake and Alleviates Palmitate-Induced Insulin Resistance in C2C12 Myotubes. Molecules 2024; 29:1605. [PMID: 38611884 PMCID: PMC11013672 DOI: 10.3390/molecules29071605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Ginkgo biloba L. (ginkgo) is a widely used medicinal plant around the world. Its leaves, which have been used as a traditional Chinese medicine, are rich in various bioactive components. However, most of the research and applications of ginkgo leaves have focused on terpene trilactones and flavonol glycosides, thereby overlooking the other active components. In this study, a lipophilic extract (GL) was isolated from ginkgo leaves. This extract is abundant in lipids and lipid-like molecules. Then, its effect and potential mechanism on glucose uptake and insulin resistance in C2C12 myotubes were investigated. The results showed that GL significantly enhanced the translocation of GLUT4 to the plasma membrane, which subsequently promoted glucose uptake. Meanwhile, it increased the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream targets. Both knockdown of AMPK with siRNA and inhibition with AMPK inhibitor compound C reversed these effects. Additionally, GL ameliorated palmitate-induced insulin resistance by enhancing insulin-stimulated glucose uptake, increasing the phosphorylation of protein kinase B (PKB/AKT), and restoring the translocation of GLUT4 from the cytoplasm to the membrane. However, pretreatment with compound C abolished these beneficial effects of GL. In conclusion, GL enhances basal glucose uptake in C2C12 myotubes and improves insulin sensitivity in palmitate-induced insulin resistant myotubes through the AMPK pathway.
Collapse
Affiliation(s)
- Tiantian Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Quanhe Lv
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chunhui Liu
- China National Institute of Standardization, 4 Zhichun Road, Beijing 100191, China
| | - Chunfei Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiaomin Xie
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
4
|
Cui J, Li X, Lu Z, Jin B. Plant secondary metabolites involved in the stress tolerance of long-lived trees. TREE PHYSIOLOGY 2024; 44:tpae002. [PMID: 38196002 DOI: 10.1093/treephys/tpae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
Ancient trees are natural wonders because of their longevity, having lived for hundreds or thousands of years, and their ability to withstand changing environments and a variety of stresses. These long-lived trees have sophisticated defense mechanisms, such as the production of specialized plant metabolites (SPMs). In this review, we provide an overview of the major biotic and abiotic stresses that long-lived trees often face, as well as an analysis of renowned ancient tree species and their unique protective SPMs against environmental stressors. We also discuss the synthesis and accumulation of defensive SPMs induced by environmental factors and endophytes in these trees. Furthermore, we conducted a comparative genomic analysis of 17 long-lived tree species and discovered significant expansions of SPM biosynthesis gene families in these species. Our comprehensive review reveals the crucial role of SPMs in high resistance in long-lived trees, providing a novel natural resource for plant defense, crop improvement and even the pharmaceutical industry.
Collapse
Affiliation(s)
- Jiawen Cui
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Xiang Li
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Zhaogeng Lu
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, 48 East Wenhui Road, Yangzhou, China
| |
Collapse
|
5
|
Boateng ID. Polyprenols in Ginkgo biloba; a review of their chemistry (synthesis of polyprenols and their derivatives), extraction, purification, and bioactivities. Food Chem 2023; 418:136006. [PMID: 36996648 DOI: 10.1016/j.foodchem.2023.136006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
The Ginkgo biloba L. (GB) contains high bioactive compounds. To date, flavonoids and terpene trilactone have received the majority of attention in GB studies, and the GB has been utilized globally in functional food and pharmacological firms, with sales > $10 billion since 2017, while the other active components, for instance, polyprenols (a natural lipid) with various bioactivities have received less attention. Hence, this review focused on polyprenols' chemistry (synthesis of polyprenols and their derivatives) extraction, purification, and bioactivities from GB for the first time. The various extractions and purification methods (nano silica-based adsorbent, bulk ionic liquid membrane, etc.) were delved into, and their advantages and limitations were discussed. Besides, numerous bioactivities of the extracted Ginkgo biloba polyprenols (GBP) were reviewed. The review showed that GB contains some polyprenols in acetic esters' form. Prenylacetic esters are free of adverse effects. Besides, the polyprenols from GB have numerous bioactivities such as anti-bacterial, anti-cancer, anti-viral activity, etc. The application of GBPs in the food, cosmetics, and drugs industries such as micelles, liposomes, and nano-emulsions was delved into. Finally, the toxicity of polyprenol was reviewed, and it was concluded that GBP was not carcinogenic, teratogenic, or mutagenic, giving a theoretical justification for using GBP as a raw material for functional foods. This article will aid researchers to better understand the need to explore GBP usage.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, 1406 E Rollins Street, Columbia, MO 65211, United States.
| |
Collapse
|
6
|
Formation of βs-Cu Complexes Via pH-Metric Titration for Antimicrobial Studies. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
7
|
Anyamele T, Onwuegbuchu PN, Ugbogu EA, Ibe C. Phytochemical composition, bioactive properties, and toxicological profile of Tetrapleura tetraptera. Bioorg Chem 2023; 131:106288. [PMID: 36470194 DOI: 10.1016/j.bioorg.2022.106288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The use of medicinal plants has gained renewed wide popularity in Africa, Asia, and most parts of the world because of the decreasing efficacy of synthetic drugs. Thus, natural products serve as a potent source of alternative remedy. Tetrapleura tetraptera is a medicinal plant with cultural and traditional significance in West Africa. In addition to the plant being commonly used as a spice in the preparation of traditional spicy food for postpartum care it is also widely used to constitute herbal concoctions and decoctions for treatment of diseases. This review aimed to provide an up-to-date information on the ethnomedicinal uses, pharmacological activities and phytoconstituents of T. tetraptera. Preclinical studies regarding the plant's toxicity profile were also reviewed. For this updated review, literature search was done on PubMed, Science Direct, Wiley, and Google Scholar databases using the relevant keywords. The review used a total of 106 papers that met the inclusion criteria from January 1989 - February 2022 and summarised the bioactivities that have been reported for the rich phytoconstituents of T. tetraptera studied using various chemical methods. Considering the huge report, the review focused on the antimicrobial and antiinflammatory activities of the plant extracts and isolated compounds. Aridan, aridanin and several bioactive compounds of T. tetraptera have shown pharmacological activities though their mechanisms of action are yet to be fully understood. This study also highlighted the influence of plant parts and extraction solvents on its biological activities. It also presented data on the toxicological profile of the plant extracts using different models. From cultural uses to modern pharmacological research the bioactive compounds of T. tetraptera have proved effective in infectious disease management. We hope that this paper provided a robust summary of the biological activities and toxicological profile of T. tetraptera, thus calling for more research into the pharmacological and pharmacokinetic activities of natural products to help combat the growing threat of drug resistance and provide guidelines for their ethnomedicinal uses.
Collapse
Affiliation(s)
- ThankGod Anyamele
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | | | - Eziuche Amadike Ugbogu
- Department of Biochemistry, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | - Chibuike Ibe
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria.
| |
Collapse
|
8
|
Parvez S, Karole A, Mudavath SL. Fabrication, physicochemical characterization and In vitro anticancer activity of nerolidol encapsulated solid lipid nanoparticles in human colorectal cell line. Colloids Surf B Biointerfaces 2022; 215:112520. [PMID: 35489319 DOI: 10.1016/j.colsurfb.2022.112520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
Nerolidol is a sesquiterpene that occurs naturally and possesses a diverse set of biological characteristics including anticancer activity but has limited solubility, bioavailability, and fast hepatic metabolism. The goal of this study was to develop a nanocarrier system encapsulating a bioactive as well as to evaluate its efficacy in Human Colorectal Cell Line. Solid lipid nanoparticles were fabricated by the emulsion solvent evaporation method and determined the particle size, polydispersity index (PDI), zeta potential, % entrapment efficiency, scanning electron microscopy (SEM), transmission electron microscopy (TEM), drug-excipient interaction study of developed nanoparticles. MTT assay was used to assess the cytotoxicity of formulations in vitro. Nerolidol loaded solid lipid nanoparticles (NR-LNPs) have presented satisfactory properties: mean particles diameter of 159 ± 4.89 nm, PDI of 0.32 ± 0.01, the zeta potential value was found to be -10 ± 1.97 and % entrapment efficiency 71.3% ± 6.11. The formulations demonstrated enhanced biological activity due to enhanced solubility and stability of the bioactive after loading into a nanoformulation along with the better internalization inside the cells.
Collapse
Affiliation(s)
- Shabi Parvez
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Archana Karole
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
9
|
Sillapachaiyaporn C, Chuchawankul S, Nilkhet S, Moungkote N, Sarachana T, Ung AT, Joon Baek S, Tencomnao T. Ergosterol isolated from cloud ear mushroom (Auricularia polytricha) attenuates bisphenol A-induced BV2 microglial cell inflammation. Food Res Int 2022; 157:111433. [DOI: 10.1016/j.foodres.2022.111433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
|
10
|
Selective terpene based therapeutic deep eutectic systems against colorectal cancer. Eur J Pharm Biopharm 2022; 175:13-26. [PMID: 35483600 DOI: 10.1016/j.ejpb.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 01/20/2023]
Abstract
Cancer remains a major health problem worldwide, with colorectal cancer (CRC) being the third most incident and the second most lethal. Inflammation, on the other hand, has been highly associated with cancer development and maintenance, therefore, the reduction of the inflammatory microenvironment represents a promising therapeutic strategy. Deep eutectic systems (DES) are based on the combination of different components which together, at a certain molar ratio, present a deep decrease in their melting point compared with the individual compounds. When an active pharmaceutical ingredient is part of a DES it is designated by therapeutic deep eutectic system (THEDES). New THEDES combining terpenes with anticancer properties, such as safranal, menthol and linalool, with nonsteroidal anti-inflammatory drugs (NSAIDs), like ibuprofen, ketoprofen and flurbiprofen were produced. To evaluate THEDES anti-CRC therapeutic potential, their physico-chemical properties, bioavailability and bioactivity, were explored. Our results show that safranal:ibuprofen (3:1), safranal:ibuprofen (4:1) and menthol:ibuprofen (3:1) present promising therapeutic activity towards CRC cells due to a selective cytotoxic action towards cancer cells. menthol:ibuprofen (3:1) anti-proliferative action seems to be related with cell membrane disruption, reduction of the inflammation through the reduction of reactive oxygen species (ROS) production, and induction of apoptosis via caspase-3. On the other hand, safranal:ibuprofen (3:1) and safafranal:ibuprofen (4:1) seem to prevent tumour expansion only through the induction of apoptosis via caspase-3. Besides, these systems present an increase in ibuprofen permeability, with menthol:ibuprofen (3:1) increasing also ibuprofen's solubility thus its overall bioavailability. Knowing that cancer is a huge problematic situation that requires alternative therapies with less side effects, improved efficacy, associated with less costs and environmentally friendly, a new opportunity emerges for DES to be part of the pharmaceutical industry.
Collapse
|
11
|
Noor-E-Tabassum, Das R, Lami MS, Chakraborty AJ, Mitra S, Tallei TE, Idroes R, Mohamed AAR, Hossain MJ, Dhama K, Mostafa-Hedeab G, Emran TB. Ginkgo biloba: A Treasure of Functional Phytochemicals with Multimedicinal Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8288818. [PMID: 35265150 PMCID: PMC8901348 DOI: 10.1155/2022/8288818] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
Ginkgo biloba is an ancient plant species that is thought to provide a variety of health benefits to living organisms and contains plenty of bioactive components, making it a chemically diversified plant. G. biloba has been shown to have a variety of medicinal and pharmacological properties, including anticancer, antidementia, antidiabetic, antiobesity, antilipidemic, antimicrobial, antioxidant, antilipid peroxidation, antiplatelet, anti-inflammatory, hepatoprotective, antidepressant, antiaging, immunomodulatory, antihypertensive, and neuroprotective effects and is frequently used to treat neurological, cardiovascular, and respiratory diseases, such as tardive dyskinesia. Therefore, this review described the therapeutic applications of G. biloba. In addition to describing the therapeutic potential, this review also evaluates the chemical constituents, toxicity, adverse effect, synergistic effect, and the clinical studies of this plant which have been utilized for therapeutic benefits but have demonstrated other consequences. The capacity of G. biloba components to act as free radical scavengers is critical, and combining its extract with other plant extracts has been shown to synergistically boost antioxidant properties. G. biloba used long-term or at high doses that resulted in some adverse effects. Severe drug interactions have also been reported in both animals and humans when combined with other medications. The available data established from both preclinical and clinical studies confirm the potential of G. biloba plant extract in various diseases. Besides, the safety and efficacy of G. biloba continue to require verification through additional experimentation to guide medicinal use.
Collapse
Affiliation(s)
- Noor-E-Tabassum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mashia Subha Lami
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Arka Jyoti Chakraborty
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
- The University Centre of Excellence for Biotechnology and Conservation of Wallacea, Institute for Research and Community Services, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | | | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department, Health Sciences Research Unit, Medical College, Jouf University, Sakaka, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
12
|
Saleh-E-In MM, Choi YE. Anethum sowa Roxb. ex fleming: A review on traditional uses, phytochemistry, pharmacological and toxicological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:113967. [PMID: 33640440 DOI: 10.1016/j.jep.2021.113967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum sowa Roxb. ex Fleming (Syn. Peucedanum sowa Roxb. ex Fleming, Family: Apiaceae) is a pharmacologically important as aromatic and medicinal plant. Various parts of this plant are used in traditional medicine systems for carminative, uterine and colic pain, digestion disorder, flatulence in babies, appetite-stimulating agent and used to treat mild flue and cough. The essential oil is used for aromatherapy. It is also used as a spice for food flavouring and culinary preparations in many Asian and European countries. AIM OF THE REVIEW This review aims to provide a comprehensive and critical assessment from the reported traditional and pharmaceutical uses and pharmacological activities of the extracts, essential oil and phytoconstituents with emphasis on its therapeutic potential as well as toxicological evaluation of A. sowa. MATERIALS AND METHODS Online search engines such as SciFinder®, GoogleScholar®, ResearchGate®, Web of Science®, Scopus®, PubMed and additional data from books, proceedings and local prints were searched using relevant keywords and terminologies related to A. sowa for critical analyses. RESULTS The literature studies demonstrated that A. sowa possesses several ethnopharmacological activities, including pharmaceutical prescriptions, traditional applications, and spice in food preparations. The phytochemical investigation conducted on crude extracts has been characterized and identified various classes of compounds, including coumarins, anthraquinone, terpenoids, alkaloid, benzodioxoles, phenolics, polyphenols, phenolic and polyphenols, fatty acids, phthalides and carotenoids. The extracts and compounds from the different parts of A. sowa showed diverse in vitro and in vivo biological activities including antioxidant, antiviral, antibacterial, analgesic and anti-inflammatory, Alzheimer associating neuromodulatory, cytotoxic, anticancer, antidiabetes, insecticidal and larvicidal. CONCLUSION A. sowa is a valuable medicinal plant which is especially used in food flavouring and culinary preparations. This review summarized the pertinent information on A. sowa and its traditional and culinary uses, as well as potential pharmacological properties of essential oils, extracts and isolated compounds. The traditional uses of A. sowa are supported by in vitro/vivo pharmacological studies; however, further investigation on A. sowa should be focused on isolation and identification of more active compounds and establish the links between the traditional uses and reported pharmacological activities with active compounds, as well as structure-activity relationship and in vivo mechanistic studies before integrated into the medicine. The toxicological report confirmed its safety. Nonetheless, pharmacokinetic evaluation tests to validate its bioavailability should be encouraged.
Collapse
Affiliation(s)
- Md Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea.
| |
Collapse
|
13
|
Liu XG, Lu X, Gao W, Li P, Yang H. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat Prod Rep 2021; 39:474-511. [PMID: 34581387 DOI: 10.1039/d1np00026h] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 1928-2021Ginkgo biloba L. is one of the most distinctive plants to have emerged on earth and has no close living relatives. Owing to its phylogenetic divergence from other plants, G. biloba contains many compounds with unique structures that have served to broaden the chemical diversity of herbal medicine. Examples of such compounds include terpene trilactones (ginkgolides), acylated flavonol glycosides (ginkgoghrelins), biflavones (ginkgetin), ginkgotides and ginkgolic acids. The extract of G. biloba leaf is used to prevent and/or treat cardiovascular diseases, while many ginkgo-derived compounds are currently at various stages of preclinical and clinical trials worldwide. The global annual sales of G. biloba products are estimated to total US$10 billion. However, the content and purity of the active compounds isolated by traditional methods are usually low and subject to varying environmental factors, making it difficult to meet the huge demand of the international market. This highlights the need to develop new strategies for the preparation of these characteristic compounds from G. biloba. In this review, we provide a detailed description of the structures and bioactivities of these compounds and summarize the recent research on the development of strategies for the synthesis, biosynthesis, and biotechnological production of the characteristic terpenoids, flavonoids, and alkylphenols/alkylphenolic acids of G. biloba. Our aim is to provide an important point of reference for all scientists who research ginkgo-related compounds for medicinal or other purposes.
Collapse
Affiliation(s)
- Xin-Guang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
14
|
Lamarra J, Bucci P, Giannuzzi L, Montanari J, Rivero S, Pinotti A. Biomaterial-based dressings as vehicle for chitosan-encapsulated cabreuva essential oil: Cytotoxicity and regenerative activity. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Marrelli M, Amodeo V, Perri MR, Conforti F, Statti G. Essential Oils and Bioactive Components against Arthritis: A Novel Perspective on Their Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9101252. [PMID: 32977657 PMCID: PMC7598204 DOI: 10.3390/plants9101252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Essential oils (EOs) are known to possess a number of beneficial properties. Their antimicrobial, anti-inflammatory, antioxidant, antidiabetic, and cancer-preventing activities have been extensively reported. Due to their wide use as food preservers and additives, as well as their use in agriculture, perfumes, and make-up products, these complex mixtures of volatile compounds have gained importance from a commercial point of view, not only in the pharmaceutical industry, but also in agronomic, food, cosmetic, and perfume industries. An analysis of the recent scientific literature allowed us to highlight the presence of an increasing number of studies on the potential antiarthritic properties of EOs and their main constituents, which seems to suggest a new interesting potential therapeutic application. The aim of this review is to examine the current knowledge on the beneficial effects of essential oils in the treatment of arthritic diseases, providing an overview of the reports on the in vivo and in vitro effects of EOs. Furthermore, this review critically examines the recent findings on the potential roles of the main components of EOs in the exerted beneficial effects. Obtained negative results are also reported.
Collapse
|
16
|
Kobus-Cisowska J, Dziedziński M, Szczepaniak O, Kusek W, Kmiecik D, Ligaj M, Telichowska A, Byczkiewicz S, Szulc P, Szwajgier D. Phytocomponents and evaluation of acetylcholinesterase inhibition by Ginkgo biloba L. leaves extract depending on vegetation period. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1804462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Joanna Kobus-Cisowska
- Department of Gastronomy Sciences and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | - Marcin Dziedziński
- Department of Gastronomy Sciences and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | - Oskar Szczepaniak
- Department of Gastronomy Sciences and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | - Weronika Kusek
- Earth, Environmental and Geographical Sciences Department, Northern Michigan University, Marquette, MI, USA
| | - Dominik Kmiecik
- Department of Gastronomy Sciences and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | - Marta Ligaj
- Department of Industrial Product Quality and Ecology, Poznan University of Economics and Business, Poznan, Poland
| | - Aleksandra Telichowska
- Foundation for the Education of Innovation and Implementation of Modern Technologies, Dabrowka, Poland
| | - Szymon Byczkiewicz
- Department of Gastronomy Sciences and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznan University of Life Sciences, Poznan, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
17
|
Antifungal Properties of Nerolidol-Containing Liposomes in Association with Fluconazole. MEMBRANES 2020; 10:membranes10090194. [PMID: 32825411 PMCID: PMC7558210 DOI: 10.3390/membranes10090194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
(1) Background: Infections by Candida species represent a serious threat to the health of immunocompromised individuals. Evidence has indicated that nerolidol has significant antifungal properties. Nonetheless, its use is restricted due to a low water solubility and high photosensitivity. The incorporation into liposomes may represent an efficient alternative to improve the physicochemical and biopharmaceutical properties of this compound. The present study aimed to characterize the antifungal properties of liposomal nerolidol, alone or in combination with fluconazole. Of note, this is the first study reporting the antifungal activity of liposomal nerolidol and its potentiating effect in association with fluconazole. (2) Methods: The Inhibitory Concentration 50%-IC50 and minimum fungicide concentrations (MFC) of the substances against Candida albicans (CA), Candida tropicalis (CT), and Candida krusei (CK) were established by subculture in a solid medium. To evaluate the antifungal-enhancing effect, the MFC of fluconazole was determined in the presence or absence of subinhibitory concentrations of nerolidol (free or liposomal). The analysis of fungal dimorphism was performed through optical microscopy and the characterization of liposomes was carried out considering the vesicular size, polydispersion index, and zeta medium potential, in addition to a scanning electron microscopy analysis. (3) Results: The physicochemical characterization revealed that liposomes were obtained as homogenous populations of spherical vesicles. The data obtained in the present study indicate that nerolidol acts as an antifungal agent against Candida albicans and Candida tropicalis, in addition to potentiating (only in the liposomal form) the effect of fluconazole. However, the compound had little inhibitory effect on fungal dimorphism. (4) Conclusions: The incorporation of nerolidol into liposomes improved its antifungal-modulating properties.
Collapse
|
18
|
Properties of Ginkgo biloba L.: Antioxidant Characterization, Antimicrobial Activities, and Genomic MicroRNA Based Marker Fingerprints. Int J Mol Sci 2020; 21:ijms21093087. [PMID: 32349345 PMCID: PMC7247675 DOI: 10.3390/ijms21093087] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to characterize extracts from the leaves of Ginkgo biloba L. from selected Slovakian localities in terms of the content of bioactive constituents, antioxidants and their antimicrobial properties. The results indicated that the content of antioxidants was sample-specific, and this specificity was statistically significant. Ginkgo biloba L. from the locality of Košice had the best activity determined by the free radical scavenging activity (DPPH) (1.545 mg Trolox equivalent antioxidant capacity (TEAC)/g fresh matter (FM)) as well as the molybdenum-reducing antioxidant power (35.485 mg TEAC/g FM) methods. The highest content of total polyphenols (2.803 mg gallic acid equivalent (GAE)/g FM) and flavonoids (4.649 μg quercetin equivalent (QE)/g FM) was also detected in this sample. All samples of G. biloba leaf extracts showed significant antimicrobial activity against one or more of the examined bacterial species, and Staphylococcus aureus subsp. aureus CCM 2461 was found to be the most susceptible (minimal inhibition concentration MIC50 and MIC90 values of 64.2 and 72.2 µg/mL, respectively). Based on the results it was concluded that Ginkgo biloba L. extracts can be used as antimicrobial and antioxidant additives. Selected miRNA-based molecular markers were used to examine the environmental adaptability of Ginkgo biloba L. An almost-complete genotype clustering pattern based on locality was determined in the analysis that involved a species-specific gb-miR5261 marker. Morphologically specific exemplar, cv. Ohatsuki, was excluded.
Collapse
|
19
|
Tao R, Wang C, Lu Y, Zhang C, Zhou H, Chen H, Li W. Characterization and Cytotoxicity of Polyprenol Lipid and Vitamin E-TPGS Hybrid Nanoparticles for Betulinic Acid and Low-Substituted Hydroxyl Fullerenol in MHCC97H and L02 Cells. Int J Nanomedicine 2020; 15:2733-2749. [PMID: 32368052 PMCID: PMC7184125 DOI: 10.2147/ijn.s249773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study demonstrated an innovative formulation including the polyprenol (GBP) lipid and vitamin E-TPGS hybrid nanoparticles (NPs) which was aimed to control the transfer of betulinic acid (BA) and low-substituted hydroxyl fullerenol (C60(OH)n). Additionally, it developed BA-C60(OH)n-GBP-TPGS-NPs delivery system and researched the anti-hepatocellular carcinoma (HCC) effects. Materials and Methods The NPs were prepared by nanoprecipitation with ultrasonic-assisted emulsification (UAE) method. It was characterized by scanning electronic microscopy (SEM), transmission electron microscopy (TEM), FTIR spectrum, size distribution and zeta potential. Physical and chemical properties were evaluated through measurement of drug release, stability studies, drug loading efficiency (DE) and encapsulation efficiency (EE). Biological activities were evaluated through measurement of MTT assay, lactate dehydrogenase leakage assay (LDH), cell proliferation assays, cell apoptosis analysis, comet assay, wound healing assay, cell invasion and Western blot analysis. Results and Conclusions The NPs exhibited clear distribution characteristics, improved solubility and stability. BA and C60(OH)n for the NPs displayed a biphasic release pattern with sustained drug release properties. The mixture of C60(OH)n with different hydroxyl groups may have a certain effect on the stability of the NPs system itself. The NPs could effectively inhibit MHCC97H cell proliferation, migration and invasion in vitro. Combined use of C60(OH)n and BA in GBP lipids may improve the inhibit effect of C60(OH)n or BA against HCC cells and reduce cytotoxicity and genotoxicity of C60(OH)n for normal cells. We concluded that one of the important mechanisms of BA-C60(OH)n-GBP-TPGS-NPs inhibiting MHCC97H cells is achieved by up-regulating the expression of Caspase-3, Caspase-8 and Caspase-9.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China.,Research Institute of Forestry New Technology, CAF, Beijing 100091, People's Republic of China
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China.,Research Institute of Forestry New Technology, CAF, Beijing 100091, People's Republic of China
| | - Yin Lu
- General Hospital of Eastern Theater Command, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Changwei Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China.,Research Institute of Forestry New Technology, CAF, Beijing 100091, People's Republic of China
| | - Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China
| | - WenJun Li
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China
| |
Collapse
|
20
|
Oladipupo SO, Hu XP, Appel AG. Topical Toxicity Profiles of Some Aliphatic and Aromatic Essential Oil Components Against Insecticide-Susceptible and Resistant Strains of German Cockroach (Blattodea: Ectobiidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:896-904. [PMID: 31820778 DOI: 10.1093/jee/toz323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Toxicity profiles of four aliphatic (α-pinene, cyclononanone, limonene, nerolidol), four aromatic (β-thujaplicin, carvacrol, eugenol, tropolone) essential oil components (EOCs), and permethrin were investigated against three strains of German cockroach, Blattella germanica (L.). The strains include a susceptible strain (S), and two multi-resistant strains - strains D and E. Also, a synergism bioassay, using piperonyl butoxide (PBO) was conducted. The most toxic EOCs were aromatic EOCs carvacrol, eugenol, and tropolone, followed by aliphatic EOC limonene; all had LD50 values of <0.7 mg/µl. Four of the EOCs were equally toxic against all the strains, with carvacrol being the most toxic, followed by eugenol, tropolone, and α-pinene. The other four EOCs were more toxic against strain S than against the two resistant strains. Permethrin was significantly more toxic to strain S (LD50 = 0.056 µg/µl) compared with the resistant strains (D = 2.138 µg/µl, E = 1.730 µg/µl). Toxicity of aliphatic EOCs correlated positively with their molecular weight against strain E only, whereas both molecular weight and vapor pressure of aromatic EOCs correlated significantly with toxicity in all strains. Strain D exhibited the greatest resistance (RR of 6.7) to EOCs, and synergism to the aliphatic EOC cyclononanone. Clear synergism with PBO was observed in permethrin against resistant strains, but not in all of the EOCs, suggesting multiple resistance mechanisms in the resistant cockroaches. These findings give insight on the potential of EOCs to be incorporated as parts of an IPM approach to managing insecticide resistant German cockroaches.
Collapse
Affiliation(s)
- S O Oladipupo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - X P Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - A G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| |
Collapse
|
21
|
Sillapachaiyaporn C, Nilkhet S, Ung AT, Chuchawankul S. Anti-HIV-1 protease activity of the crude extracts and isolated compounds from Auricularia polytricha. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:351. [PMID: 31805905 PMCID: PMC6896332 DOI: 10.1186/s12906-019-2766-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/21/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Acquired immunodeficiency syndrome (AIDS) is caused by the Human immunodeficiency virus type-1 (HIV-1). HIV-1 protease (HIV-1 PR) is an essential enzyme for the HIV replication, and therefore, it is an important target for antiretroviral drugs development, particularly from natural products. Auricularia polytricha (AP) is an edible mushroom with several important therapeutic properties. These properties will be investigated as HIV-1 PR inhibitors. METHODS The sequential hexane (APH), ethanol (APE) and water (APW) extracts from AP were screened for inhibitory activity against HIV-1 PR. The extract that consistently showed the strong HIV-1 PR inhibition was further investigated for its phytochemical constituents. The compounds were purified by column chromatography. The isolated compounds were structurally elucidated using 1D and 2D NMR, HRMS, FTIR, and GC/MS techniques. Each compound was screened against HIV-1 PR to determine its inhibitory activity and to provide an explanation for the activity found in the extract. RESULTS Hexane crude extract of AP (APH) exhibited significant inhibition on HIV-1 PR activity. Four major compounds isolated from APH fraction were identified to be two triacylglycerols, linoleic acid and ergosterol. Moreover, all four compounds showed significant inhibition of HIV-1 PR activity. CONCLUSION The findings from this study suggest that AP is a good source of fatty esters, fatty acids and ergosterol. These natural products exhibit anti-HIV-1 properties by blocking HIV-1 PR. These important biological results warrant further development of AP as an alternative antiretroviral drug.
Collapse
Affiliation(s)
- Chanin Sillapachaiyaporn
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sunita Nilkhet
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Alison T. Ung
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
- Immunomodulation of Natural Products Research Group, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
22
|
Bao L, Chen Y, Li H, Zhang J, Wu P, Ye K, Ai H, Chu W. Dietary Ginkgo biloba leaf extract alters immune-related gene expression and disease resistance to Aeromonas hydrophila in common carp Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2019; 94:810-818. [PMID: 31546037 DOI: 10.1016/j.fsi.2019.09.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Ginkgo biloba leaf is widely used in traditional medicine in China. The present study aimed to illustrate the effects of dietary Ginkgo biloba leaf extract (GBLE) on growth performance and immune responses in common carp infected by Aeromonas hydrophila. Six different diets either not treated (control) or treated with 0.5, 1, 2, 5 and 10 g/kg of GBLE were designed to feed the fishes for 8 weeks. The results indicated that, compared to the control groups, 10 g/kg dietary GBLE significantly increased body growth and feed utilization. In GBLE dietary groups, red blood cell levels, white blood cells, hematocrit, hemoglobin, total protein, albumin and globulin were significantly increased relative to the control groups. Dietary supplementation with 5 g/kg GBLE increased the phagocytic ratio, and phagocytic indexes increased in the 2, 5 and 10 g/kg groups relative to the control groups. Moreover, 2, 5 and 10 g/kg GBLE diets increased O2- production compared to the control groups. Additionally, GBLE diets stimulated lysozyme activity (in 10 g/kg group) and inhibited bactericidal activity (in 0.5, 2, 5 and 10 g/kg group). Quantitative real-time PCR showed that IL1β, IL8, TNF-α, IL10, TGFβ, and inducible enzyme genes were prone to decrease while SAA, hepcidin and GPX1 were increased due to the GBLE diet in the intestine. In the head-kidney, the GBLE treatment decreased IL1β, IL8, TNF-α, IL10, TGFβ, INOS and arginase gene expressions, whereas SOD upregulation was found in the GBLE condition. The mRNA expressions of IL1β, IL8, TNF-α, IL10 and INOS were decreased, but SAA, hepcidin, GPX1 and SOD mRNA levels were increased in the spleen in the GBLE diet compared to the control. Additionally, diet supplemented with GBLE improved the survival rate infected with A. hydrophila. Our observations suggest that GBLE effectively enhanced growth performance, modulated immune-related gene expression. It improved survival rate of common carp after A. hydrophila infection and the optimum concentration we recommend is 10 g/kg of GBLE.
Collapse
Affiliation(s)
- Lingsheng Bao
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410003, China
| | - Yuanhua Chen
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410003, China
| | - Honghui Li
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410003, China
| | - Jianshe Zhang
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410003, China
| | - Ping Wu
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410003, China
| | - Ke Ye
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Honglian Ai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, China.
| | - Wuying Chu
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410003, China.
| |
Collapse
|
23
|
Nath K, Talukdar AD, Bhattacharya MK, Bhowmik D, Chetri S, Choudhury D, Mitra A, Choudhury NA. Cyathea gigantea (Cyatheaceae) as an antimicrobial agent against multidrug resistant organisms. Altern Ther Health Med 2019; 19:279. [PMID: 31640666 PMCID: PMC6805519 DOI: 10.1186/s12906-019-2696-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Rapid emergence of multidrug resistant (MDR) organisms in hospital and community settings often result into treatment failure, thus leading the clinicians with fewer treatment options. Cyathea gigantea, an ethnomedicinally important fern used in cuts and wound infections. So, if this medicinal plant is used in treating the MDR infections then it might bring certain relief in future treatment options. METHODS Antibacterial activity of C. gigantea against MDR bacteria was assed using well diffusion and broth microdilution methods to determine the diameters of growth inhibition zones, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Synergistic activity was also determined with the conventional antibiotics by disc diffusion method followed by FIC index of each of the tested antibiotic was calculated. The active extract was then subjected to fractionation by column chromatography and antibacterial activity was done with each of the collected fractions. RESULTS Crude extract of C. gigantea was found to be active against all the tested organisms. The MIC was 200 μg/ml against Gram-positive i.e., Staphylococcus aureus ATCC 25923 and 400 μg/ml against Gram-negative i.e., Escherichia coli ATCC 25922 and Pseudomonas aeruginosa PAO1, while the MBC was 400 μg/ml in case of Gram-positive and 800 μg/ml for Gram-negative. The synergistic activity revealed that the plant extract increased the antibacterial property of the studied antibiotics and the FIC index showed that significant synergistic activity was shown by ciprofloxacin followed by tetracycline, ampicillin and oxacillin. Antibacterial activity with the fractionated extract showed that the FR II, FR III and FR IV were active against both Gram-positive and Gram-negative bacteria, whereas FR I, FR V and FR VI did not show antibacterial property against any of the tested bacteria. CONCLUSIONS Extracts of C. gigantea was found active against both selected Gram-positive and Gram-negative organisms and thus offers the scientific basis for the traditional use of the fern. The present study also provides the basis for future study to validate the possible use against multidrug resistant organisms.
Collapse
|
24
|
Hechtia glomerata Zucc: Phytochemistry and Activity of Its Extracts and Major Constituents Against Resistant Bacteria. Molecules 2019; 24:molecules24193434. [PMID: 31546651 PMCID: PMC6804149 DOI: 10.3390/molecules24193434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Hechtia glomerata Zucc. is used both as a source of food and in ethnomedicine to treat various diseases derived from bacterial infections such as bronchitis, laryngitis, nephritis, whooping cough, urethritis, and sepsis. There are no previous reports about its chemistry and biological activities. Therefore, the aims of this study were to identify components from organic and aqueous extracts of H. glomerata and test the extracts and major isolate compounds against resistant bacteria. Hexane, CHCl3/MeOH, and aqueous extracts were prepared and analyzed by different chromatographic techniques. Structural elucidation was carried out by NMR spectroscopy and X-ray diffraction. The antibacterial activities of extracts, phytochemicals, and semisynthetic derivatives against resistant bacteria were determined by the broth micro-dilution method. From the hexane extract nonacosane (1), hexatriacontanyl stearate (2), hexacosanol (3), oleic acid (4), and β-sitosterol (5) were isolated and characterized. From the CHCl3/MeOH extract, p-coumaric acid (6), margaric acid (7), caffeic acid (8), daucosterol (9), and potassium chloride (10) were isolated and characterized. A total of 58 volatile compounds were identified by GC-MS from the hexane extract and two solids were isolated from the CHCl3/MeOH extract. The UPLC-QTOF-MS analysis of the aqueous extract allowed the identification of 55 polar compounds. Hexane and aqueous extracts showed antibacterial activity against ESBL Escherichia coli, and three strains of Klebsiella pneumoniae ESBL, NDM-1 +, and OXA-48 with MIC values of 500 µg/mL. The CHCl3/MeOH extract was devoid of activity. The activity of phytocompounds and their semisynthetic derivatives toward resistant bacteria was weak. The most active compound was β-sitosterol acetate, with a MIC value of 100 µg/mL against carbapenem-resistant A. baumannii. This is the first report of the secondary metabolites of H. glomerata Zucc. and the activity of its extracts and major pure compounds against resistant bacterial strains.
Collapse
|
25
|
Yu S, Li J, Guo L, Di C, Qin X, Li Z. Integrated liquid chromatography-mass spectrometry and nuclear magnetic resonance spectra for the comprehensive characterization of various components in the Shuxuening injection. J Chromatogr A 2019; 1599:125-135. [DOI: 10.1016/j.chroma.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/21/2019] [Accepted: 04/06/2019] [Indexed: 10/27/2022]
|
26
|
16-Hydroxy-Lycopersene, a Polyisoprenoid Alcohol Isolated from Tournefortia hirsutissima, Inhibits Nitric Oxide Production in RAW 264.7 Cells and Induces Apoptosis in Hep3B Cells. Molecules 2019; 24:molecules24132366. [PMID: 31248041 PMCID: PMC6651038 DOI: 10.3390/molecules24132366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023] Open
Abstract
Three polyisoprenoid alcohols were isolated from the leaves of Tournefortia hirsutissima by a bioassay-guided phytochemical investigation. The compounds were identified as 16-hydroxy-lycopersene (Compound 1), (Z8,E3,ω)-dodecaprenol (Compound 2) and (Z9,E3,ω)-tridecaprenol (Compound 3). Compound 1, an unusual polyisoprenoid, was characterized by 1D and 2D NMR. We also determined the absolute configuration at C-16 by the modified Mosher’s method. The in vitro antiproliferative and anti-inflammatory activities of the isolated compounds were evaluated. Among isolates, Compound 1 moderately inhibited the nitric oxide production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. On the other hand, Compound 1 displayed selective antiproliferative activity against HeLa, PC3, HepG2 and Hep3B cancer cells and was less potent against IHH non-cancerous cells. Compound 1 in Hep3B cells showed significant inhibition of cell cycle progression increasing the sub-G1 phase, suggesting cell death. Acridine orange/ethidium bromide staining and Annexin V-FITC/PI staining demonstrated that cell death induced by Compound 1 in cells Hep3B was by apoptosis. Further study showed that apoptosis induced by Compound 1 in Hep3b cells is associated with the increase of the ratio of Bax/Bcl-2, and caspase 3/7 activation. These results suggest that Compound 1 induce apoptotic cell death by the mitochondrial pathway. To our knowledge, this is the first report about the presence of polyprenol Compounds 1–3 in T. hirsutissima, and the apoptotic and anti-inflammatory action of Compound 1.
Collapse
|
27
|
Ephrem E, Najjar A, Charcosset C, Greige-Gerges H. Selection of nerolidol among a series of terpenic and phenolic compounds for its potent activity against Lactobacillus fermentum ATCC 9338. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Chassagne F, Huang X, Lyles JT, Quave CL. Validation of a 16th Century Traditional Chinese Medicine Use of Ginkgo biloba as a Topical Antimicrobial. Front Microbiol 2019; 10:775. [PMID: 31057504 PMCID: PMC6478001 DOI: 10.3389/fmicb.2019.00775] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
In the search for new therapeutic solutions to address an increasing number of multidrug-resistant bacterial pathogens, secondary metabolites from plants have proven to be a rich source of antimicrobial compounds. Ginkgo biloba, a tree native to China, has been spread around the world as an ornamental tree. Its seeds have been used as snacks and medical materials in Traditional Chinese Medicine (TCM), while over the last century its leaf extracts emerged as a source of rising pharmaceutical commerce related to brain health in Western medicine. Besides studies on the neuro-protective effects of Ginkgo, its antibacterial activities have gained more attention from researchers in the past decades, though its leaves were the main focus. We reviewed a 16th-century Chinese text, the Ben Cao Gang Mu by Li Shi-Zhen, to investigate the ancient prescription of Ginkgo seeds for skin infections. We performed antibacterial assays on various Ginkgo seed extracts against pathogens (Staphylococcus aureus, Cutibacterium acnes, Klebsiella pneumoniae, Acinetobacter baumannii, Streptococcus pyogenes) relevant to skin and soft tissue infections (SSTIs). We demonstrate here that Ginkgo seed coats and immature seeds exhibit antibacterial activity against Gram-positive skin pathogens (C. acnes, S. aureus, and S. pyogenes), and thus validated its use in TCM. We also identified one compound tied to the antibacterial activity observed, ginkgolic acid C15:1, and examine its toxicity to human keratinocytes. These results highlight the relevance of ancient medical texts as leads for the discovery of natural products with antimicrobial activities.
Collapse
Affiliation(s)
- François Chassagne
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Xinyi Huang
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - James T Lyles
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Cassandra L Quave
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States.,Department of Dermatology, Emory University, Atlanta, GA, United States
| |
Collapse
|
29
|
Steroids from the Deep-Sea-Derived Fungus Penicillium granulatum MCCC 3A00475 Induced Apoptosis via Retinoid X Receptor ( RXR)-α Pathway. Mar Drugs 2019; 17:md17030178. [PMID: 30893778 PMCID: PMC6472029 DOI: 10.3390/md17030178] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022] Open
Abstract
Five new ergostanes, penicisteroids D−H (1−5), were isolated from the liquid culture of the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475, along with 27 known compounds. The structures of the new steroids were established mainly on the basis of extensive analysis of 1D and 2D NMR as well as HRESIMS data. Moreover, the absolute configurations of 1 were confirmed unambiguously by the single-crystal X-ray crystallography. Compounds 2 and 4–7 showed moderate antiproliferative effects selectively against 12 different cancer cell lines with IC50 values of around 5 μM. Compounds 2 and 6, potent RXRα binders with Kd values of 13.8 and 12.9 μM, respectively, could induce apoptosis by a Retinoid X Receptor (RXR)-α-dependent mechanism by regulating RXRα transcriptional expression and promoting the poly-ADP-ribose polymerase (PARP) cleavage. Moreover, they could inhibit proliferation by cell cycle arrest at the G0/G1 phase.
Collapse
|
30
|
Pino-Otín MR, Ballestero D, Navarro E, González-Coloma A, Val J, Mainar AM. Ecotoxicity of a novel biopesticide from Artemisia absinthium on non-target aquatic organisms. CHEMOSPHERE 2019; 216:131-146. [PMID: 30366267 DOI: 10.1016/j.chemosphere.2018.09.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Biopesticides are increasingly being used to replace synthetic pesticides for pest control. This change raises concern for its environmental impacts, especially on non-target organisms. In this study, the ecotoxicological effects of a potential nematicide from Spanish populations of Artemisia absinthium (var. Candial) were evaluated on freshwater and aquatic non-target organisms. The study focused on the aqueous extract (hydrolate), the principal component of which ((-) -(Z) -2,6-dimethylocta-5,7-diene-2,3-diol) is responsible for its nematicidal effect. Until now, the hydrolate has been considered a byproduct of the process used to obtain essential oils, and there are no studies on its ecotoxicity from any plant with biopesticide properties. Our results indicated that A. absinthium hydrolate caused acute toxicity for non-target organisms at dilutions as low as 0.2%. The sensitivity of the organisms, from the most to the least sensitive, was: Daphnia magna (LC50 = 0,236%) > Vibrio fisheri (LC50 = 1,85%) > Chlamydomonas reinhardtii (LC50 = 16,49). Moreover, the A. absinthium organic extract was highly toxic to D. magna (LC50 = 0,093 mg/L). A. absinthium hydrolate toxicity was also tested on a natural river microbial community. Bacterial growth was not affected; the physiology of the community was only slightly modified, namely through an increased ability to degrade different substrates, mainly carbohydrates. This study provides for the first time an exhaustive assessment of the environmental exposure of a plant-derived biopesticide and shows that these products may cause a broad range of toxicity on non-target aquatic organisms.
Collapse
Affiliation(s)
- Ma Rosa Pino-Otín
- Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain.
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain.
| | - Enrique Navarro
- Instituto Pirenaico de Ecología, CSIC, Av. Montañana 1005, 50059 Zaragoza, Spain.
| | | | - Jonatan Val
- Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain.
| | - Ana M Mainar
- I3A, Universidad de Zaragoza, c/ Mariano Esquillor s/n, 50018 Zaragoza, Spain.
| |
Collapse
|
31
|
Thang PT, Dung NA, Giap TH, Oanh VTK, Hang NTM, Huong TT, Thanh LN, Huong DTM, Van Cuong P. Preliminary study on the chemical constituents of the leaves of Macaranga balansae
Gagnep. VIETNAM JOURNAL OF CHEMISTRY 2018. [DOI: 10.1002/vjch.201800061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pham Toan Thang
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
- School of Chemical Engineering; Hanoi University of Science and Technology; 1 Dai Co Viet, Hai Ba Trung, Hanoi Viet Nam
| | - Nguyen Anh Dung
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| | - Tran Huu Giap
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| | - Vu Thi Kim Oanh
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| | - Nguyen Thi Minh Hang
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| | - Tran Thu Huong
- School of Chemical Engineering; Hanoi University of Science and Technology; 1 Dai Co Viet, Hai Ba Trung, Hanoi Viet Nam
| | - Le Nguyen Thanh
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| | - Doan Thi Mai Huong
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| | - Pham Van Cuong
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| |
Collapse
|
32
|
Souilem F, El Ayeb A, Djlassi B, Ayari O, Chiboub W, Arbi F, Ascrizzi R, Flamini G, Harzallah-Skhiri F. Chemical Composition and Activity of Essential Oils ofCarissa macrocarpa(Eckl.) A.DC. Cultivated in Tunisia and Its Anatomical Features. Chem Biodivers 2018; 15:e1800188. [DOI: 10.1002/cbdv.201800188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/13/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Fedia Souilem
- Laboratory of Bioresources, Integrative Biology and Valorization (LR14-ES06); High Institute of Biotechnology of Monastir; University of Monastir; Tahar Haddad Street Monastir 5000 Tunisia
| | - Asma El Ayeb
- Laboratory of Bioresources, Integrative Biology and Valorization (LR14-ES06); High Institute of Biotechnology of Monastir; University of Monastir; Tahar Haddad Street Monastir 5000 Tunisia
| | - Brahim Djlassi
- Laboratory of Transmissible Diseases and Biologically Active Substances; Faculty of Pharmacy; University of Monastir; Avicenne Avenue Monastir 5019 Tunisia
| | - Olfa Ayari
- Laboratory of Bioresources, Integrative Biology and Valorization (LR14-ES06); High Institute of Biotechnology of Monastir; University of Monastir; Tahar Haddad Street Monastir 5000 Tunisia
| | - Wiem Chiboub
- Laboratory of Bioresources, Integrative Biology and Valorization (LR14-ES06); High Institute of Biotechnology of Monastir; University of Monastir; Tahar Haddad Street Monastir 5000 Tunisia
| | - Faten Arbi
- Laboratory of Bioresources, Integrative Biology and Valorization (LR14-ES06); High Institute of Biotechnology of Monastir; University of Monastir; Tahar Haddad Street Monastir 5000 Tunisia
| | - Roberta Ascrizzi
- Dipartimento di Farmacia; Università di Pisa; Via Bonanno 6 IT-56126 Pisa Italy
| | - Guido Flamini
- Dipartimento di Farmacia; Università di Pisa; Via Bonanno 6 IT-56126 Pisa Italy
| | - Fethia Harzallah-Skhiri
- Laboratory of Bioresources, Integrative Biology and Valorization (LR14-ES06); High Institute of Biotechnology of Monastir; University of Monastir; Tahar Haddad Street Monastir 5000 Tunisia
| |
Collapse
|
33
|
Tao R, Wang C, Zhang C, Li W, Zhou H, Chen H, Ye J. Characterization, Cytotoxicity, and Genotoxicity of TiO 2 and Folate-Coupled Chitosan Nanoparticles Loading Polyprenol-Based Nanoemulsion. Biol Trace Elem Res 2018; 184:60-74. [PMID: 28993980 DOI: 10.1007/s12011-017-1184-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/02/2017] [Indexed: 01/31/2023]
Abstract
The structure and bioactivity of Ginkgo biloba leaves polyprenol (GBP) are similar to that of dolichol which widely exists in human and mammalian organs. GBP possesses potential pharmacological activities against cancer. This study involved oil-in-water type nanoemulsion (NE) loading GBP was prepared by dissolving polyprenol in nanoemulsion of sodium tripolyphosphate (TPP)/TiO2 solution, Triton X-100, and 1-octanol by inversed-phase emulsification (EIP) and ultrasonic emulsification (UE) method. Folic acid (FA)-coupled chitosan (CS) nanoparticles (NPs), GBP-FA-CS-NPs and GBP-TiO2-FA-CS-NPs, were fabricated by ionic cross-linking of positively charged FA-CS conjugates and negatively charged nanoemulsion with TPP/TiO2. And characterizations of them were investigated by TEM, SEM, FTIR, particle size, and zeta potential. The cytotoxic and genotoxic effects of GBP-TiO2-FA-CS-NP treatment were higher than GBP-NE, GBP-FA-CS-NPs, TiO2-NE, GBP-TiO2-NE, TiO2-FA-CS-NPs, and GBP-TiO2-FA-CS-NP treatment at the same tested concentrations in HepG2 cells. GBP-TiO2-FA-CS-NPs at low TiO2 concentration (from 1 to 2.5 μg/ml) showed good inhibition capacity on HepG2 cells and low cytotoxic and genotoxic effects on HL-7702 cells. The possible mechanism of cytotoxicity on GBP-TiO2-FA-CS-NPs against HepG2 cells is by preventing excessive intracellular Ca2+ into extracellular spaces via inhibiting Ca2+-ATPase and Ca2+/Mg2+-ATPase.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China.
- Research Institute of Forestry New Technology, CAF, Xiangshan Road, Beijing, 100091, China.
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China.
- Research Institute of Forestry New Technology, CAF, Xiangshan Road, Beijing, 100091, China.
| | - Changwei Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China
| | - WenJun Li
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China
- Research Institute of Forestry New Technology, CAF, Xiangshan Road, Beijing, 100091, China
| | - Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China
| | - Jianzhong Ye
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China
| |
Collapse
|
34
|
Wang J, Cao F, Su E, Zhao L, Qin W. Improvement of Animal Feed Additives of Ginkgo Leaves through Solid-state Fermentation using Aspergillus niger. Int J Biol Sci 2018; 14:736-747. [PMID: 29910684 PMCID: PMC6001676 DOI: 10.7150/ijbs.24523] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/29/2018] [Indexed: 12/03/2022] Open
Abstract
To improve the quality of Ginkgo biloba leaves as biological feed additives, twelve Aspergillus niger strains were evaluated for their growth in the moisture ginkgo leaf meal media through solid-state fermentation. The results relating to flavor, flavonoids, enzymes, crude protein, and reducing sugars showed A. niger Gyx086 strain was capable of efficiently fermenting ginkgo leaves. The optimal cultural conditions were three loops of spores inoculation to every 75 g medium containing 60 % water, grew at 28˚C for 48 h. The Gyx086 grew well in the medium. The fermented leaves generated a strong sweet-smelling odor, could be identified by electronic nose equipment using a cluster analysis, other than the original offensive smell from non-fermented ginkgo leaves. Each gram dried culture with Gyx086 showed 2.83 × 109 CFU of A. niger; 3.19 ± 0.37 FPU of acid-resistant filter paper activity. Its total contents of flavonoids, reducing sugars, and crude proteins were 19.95 ± 0.23 mg, 24.28 ± 2.35 mg, and 162.81 ± 3.46 mg in each gram of leaves, 26.03 %, 62.73 %, and 14.58 % higher than the controls, respectively. The essential amino acids and total amino acids contents were 96.41 % and 16.49 % higher than the controls.
Collapse
Affiliation(s)
- Jiahong Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.,Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,Department of Biology, Lakehead University, Ontario, P7B 5E1, Canada
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.,Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Linguo Zhao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Ontario, P7B 5E1, Canada
| |
Collapse
|
35
|
First evaluation of drug-in-cyclodextrin-in-liposomes as an encapsulating system for nerolidol. Food Chem 2018; 255:399-404. [PMID: 29571492 DOI: 10.1016/j.foodchem.2018.02.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/25/2017] [Accepted: 02/11/2018] [Indexed: 11/20/2022]
Abstract
Nerolidol, a naturally occurring sesquiterpene with antimicrobial activities, is a promising candidate as a natural alternative for synthetic preservatives in food. However, its application is limited by low aqueous solubility and stability. In this study, conventional liposomes and drug-in-cyclodextrin-in-liposomes (DCLs) were evaluated for the first time as encapsulating materials for nerolidol. The size, encapsulation efficiency (EE%), loading rate (LR%), photo- and storage stabilities of both systems were characterized. Moreover, the in vitro release of nerolidol from liposomes and DCLs was investigated over time. Nerolidol was efficiently entrapped in both carriers with high EE% and LR% values. In addition, DCLs prolonged the release of nerolidol over one week and enhanced the photostability more effectively than conventional liposomes. Finally, all formulations were stable after 12 months of storage at 4 °C (>60% incorporated nerolidol). Therefore, DCLs are promising carriers for new applications of sesquiterpenes in the pharmaceutical and food industries.
Collapse
|
36
|
Sati P, Dhyani P, Bhatt ID, Pandey A. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. J Tradit Complement Med 2018; 9:15-23. [PMID: 30671362 PMCID: PMC6335473 DOI: 10.1016/j.jtcme.2017.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 12/01/2022] Open
Abstract
The present study aims to investigate the effect of extraction method on the recovery of flavonoid glycosides, antimicrobials and antioxidants from Ginkgo leaves collected from six different locations in Uttarakhand, Indian Himalaya. Four extraction methods, namely maceration, reflux, shaker and soxhlet were considered, where reflux extracts showed higher antimicrobial antioxidant activity and higher content of flavonoid glycosides. The reference standards of Ginkgo flavonoid glycosides (quercetin, kaempferol and isorhamnetin) and crude extracts were tested for their antimicrobial activity against gram positive and gram negative bacteria and fungi following disc diffusion method and minimum inhibitory concentration (MIC). All the test microorganisms were observed to be inhibited significantly by Ginkgo flavonoids in plate based assays. Correlation coefficients exhibited the extent of contribution of flavonoid glycosides in antimicrobial activity and confirmed the reflux method as a potential method for extraction. Moreover, antioxidant activity as measured by DPPH assay was also found to be higher in reflux method. Significant variation (p < 0.05) in the flavonoid glycosides among the locations was also observed and sample collected from GB6 location was found to be the best for quercetin and isorhamnetin, while GB5 for kaempferol. Significant correlation (r < 0.05, r < 0.001) was obtained while developing the relationship between total flavonoid glycosides and antimicrobials. The present study, thus suggests the reflux method of extraction to be the best for maximum recovery of flavonoid glycosides with higher antioxidant and antimicrobial activities from Ginkgo extract.
Collapse
Affiliation(s)
- Priyanka Sati
- Biotechnological Applications, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Praveen Dhyani
- Biotechnological Applications, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Indra Dutt Bhatt
- Biotechnological Applications, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Anita Pandey
- Biotechnological Applications, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| |
Collapse
|
37
|
Shukla S, Park J, Park JH, Kim MK, Park S, Dubey A, Jeon J, Khang Y, Kim M. Evaluation of fungal microflora for aflatoxin producing possibility in novel quality Meju
fermented with single and/or multiple additions of Nelumbo nucifera
, Ginkgo biloba
, and Allium sativum
extracts. J Food Saf 2017. [DOI: 10.1111/jfs.12368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shruti Shukla
- Department of Food Science and Technology; Yeungnam University; Gyeongsan-si Gyeongsangbuk-do Republic of Korea
- Department of Energy and Materials Engineering; Dongguk University-Seoul; Seoul Republic of Korea
| | - Juyeon Park
- Department of Food Science and Technology; Yeungnam University; Gyeongsan-si Gyeongsangbuk-do Republic of Korea
| | - Jung Hyun Park
- Department of Food Science and Technology; Yeungnam University; Gyeongsan-si Gyeongsangbuk-do Republic of Korea
| | - Min Kyeong Kim
- Department of Food Science and Technology; Yeungnam University; Gyeongsan-si Gyeongsangbuk-do Republic of Korea
| | - Sangje Park
- Department of Applied Microbiology and Biotechnology; Yeungnam University; Gyeongsan-si Gyeongsangbuk-do Republic of Korea
| | - Akanksha Dubey
- Department of Applied Microbiology and Biotechnology; Yeungnam University; Gyeongsan-si Gyeongsangbuk-do Republic of Korea
| | - Junhyun Jeon
- Department of Applied Microbiology and Biotechnology; Yeungnam University; Gyeongsan-si Gyeongsangbuk-do Republic of Korea
| | - Yongho Khang
- Department of Applied Microbiology and Biotechnology; Yeungnam University; Gyeongsan-si Gyeongsangbuk-do Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology; Yeungnam University; Gyeongsan-si Gyeongsangbuk-do Republic of Korea
| |
Collapse
|
38
|
Mendanha SA, Marquezin CA, Ito AS, Alonso A. Effects of nerolidol and limonene on stratum corneum membranes: A probe EPR and fluorescence spectroscopy study. Int J Pharm 2017; 532:547-554. [DOI: 10.1016/j.ijpharm.2017.09.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 02/01/2023]
|
39
|
Ušjak L, Petrović S, Drobac M, Soković M, Stanojković T, Ćirić A, Niketić M. Edible wild plant Heracleum pyrenaicum subsp. orsinii as a potential new source of bioactive essential oils. Journal of Food Science and Technology 2017; 54:2193-2202. [PMID: 28740275 DOI: 10.1007/s13197-017-2610-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/25/2016] [Accepted: 03/24/2017] [Indexed: 11/26/2022]
Abstract
Many Heracleum L. taxa (Apiaceae) are used as food and spices, and in traditional medicine. In this work, the chemical composition of Heracleum pyrenaicum subsp. orsinii (Guss.) F. Pedrotti and Pignatti root, leaf and fruit essential oils, their antimicrobial activity and cytotoxic effect on malignant and normal cells were investigated for the first time. The composition of the oils was analyzed by GC and GC-MS. Monoterpenes prevailed in the root oil, with β-pinene (38.6%) being dominant, while in the leaf oil, sesquiterpenes, mostly (E)-nerolidol (20.5%) and (E)-caryophyllene (17.0%), were the most abundant constituents. The fruit oil contained the majority of aliphatic esters, mainly octyl acetate (36.8%) and octyl hexanoate (22.1%). The antimicrobial activity was determined by microdilution method against eight bacteria and eight fungi (standard strains, clinical or food isolates). The best antibacterial activity, better than the activity of ampicillin, was shown by the root oil against Salmonella typhimurium, Escherichia coli and Pseudomonas aeruginosa. The strongest antifungal activity, stronger than the activity of ketoconazole, was exhibited by the leaf and root oils against Trichoderma viride, and by the root oil against Aspergillus ochraceus. The cytotoxic effect of the oils, determined by MTT test, was prominent against malignant HeLa, LS174 and A549 cells (IC50 = 6.49-14.56 μg/mL). On the other hand, the oils did not show toxicity against normal MRC-5 cells at tested concentrations (IC50 > 200.00 μg/mL). It can be concluded that investigated H. pyrenaicum subsp. orsinii oils represent potential new raw materials for food and pharmaceutical industry.
Collapse
Affiliation(s)
- Ljuboš Ušjak
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Silvana Petrović
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Milica Drobac
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Tatjana Stanojković
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Ana Ćirić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marjan Niketić
- Natural History Museum, Njegoševa 51, 11000 Belgrade, Serbia
| |
Collapse
|
40
|
Azzi J, Danjou PE, Landy D, Ruellan S, Auezova L, Greige-Gerges H, Fourmentin S. The effect of cyclodextrin complexation on the solubility and photostability of nerolidol as pure compound and as main constituent of cabreuva essential oil. Beilstein J Org Chem 2017; 13:835-844. [PMID: 28546841 PMCID: PMC5433144 DOI: 10.3762/bjoc.13.84] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/07/2017] [Indexed: 12/03/2022] Open
Abstract
Nerolidol (Ner), a major component of many plant essential oils, is known for its various biological properties. However, the low solubility of Ner in water and its susceptibility to degradation limit its application. The aim of our study was to improve the solubility and photostability of Ner through its encapsulation in different cyclodextrins (CDs). The formation constants of cis-, trans-Ner and their commercial mixture with various CDs (α-CD, β-CD, γ-CD, HP-β-CD, RAMEB, CRYSMEB and SBE-β-CD) were determined by phase solubility studies and confirmed by the spectral displacement UV-visible method. The solubility of cabreuva essential oil (EO) rich in trans-Ner was also evaluated by total organic carbon (TOC) analysis. The encapsulation efficiency (EE %) of Ner in HP-β-CD solid complexes was assessed by HPLC. The structural characterization of CD/trans-Ner inclusion complex was then conducted by NMR spectroscopy followed by molecular modelling studies. The effect of encapsulation on the Ner photostability was also carried out over time under UVB irradiation. AL-type phase-solubility diagrams were obtained, suggesting the formation of 1:1 CD/Ner inclusion complexes. The solubility of Ner was enhanced by approximately 70-fold in the presence of 10 mM HP-β-CD. Moreover, high EE % values were obtained for 5:1 and 10:1 HP-β-CD:Ner molar ratios. NMR and molecular modelling studies revealed the most stable structure for trans-Ner inside the CD cavity with the OH group oriented towards the wider rim of the CD. Finally, CD encapsulation of Ner as pure compound or as main component of the cabreuva EO, protected it from degradation. This effect was more pronounced as the concentration of CD increased. These findings suggested that CDs are promising encapsulating carriers for Ner by enhancing its solubility and stability and thereby its application in food industry.
Collapse
Affiliation(s)
- Joyce Azzi
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Faculty of Sciences, Jdaidet El-Matn, Lebanese University, Lebanon.,Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417, ULCO, F-59140 Dunkerque, France
| | - Pierre-Edouard Danjou
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417, ULCO, F-59140 Dunkerque, France
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417, ULCO, F-59140 Dunkerque, France
| | - Steven Ruellan
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417, ULCO, F-59140 Dunkerque, France
| | - Lizette Auezova
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Faculty of Sciences, Jdaidet El-Matn, Lebanese University, Lebanon
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Faculty of Sciences, Jdaidet El-Matn, Lebanese University, Lebanon
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417, ULCO, F-59140 Dunkerque, France
| |
Collapse
|
41
|
Qadri M, Nalli Y, Jain SK, Chaubey A, Ali A, Strobel GA, Vishwakarma RA, Riyaz-Ul-Hassan S. An Insight into the Secondary Metabolism of Muscodor yucatanensis: Small-Molecule Epigenetic Modifiers Induce Expression of Secondary Metabolism-Related Genes and Production of New Metabolites in the Endophyte. MICROBIAL ECOLOGY 2017; 73:954-965. [PMID: 27924400 DOI: 10.1007/s00248-016-0901-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/13/2016] [Indexed: 05/02/2023]
Abstract
Muscodor spp. are proficient producers of bioactive volatile organic compounds (VOCs) with many potential applications. However, all members of this genus produce varying amounts and types of VOCs which suggests the involvement of epigenetics as a possible explanation. The members of this genus are poorly explored for the production of soluble compounds (extrolites). In this study, the polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes from an endophyte, Muscodor yucatanensis Ni30, were cloned and sequenced. The PKS genes belonged to reduced, partially reduced, non-reduced, and highly reduced subtypes. Strains over-expressing PKS genes were developed through the use of small-molecule epigenetic modifiers (suberoylanilide hydroxamic acid (SAHA) and 5-azacytidine). The putative epigenetic variants of this organism differed considerably from the wild type in morphological features and cultural characteristics as well as metabolites that were produced. Each variant produced a different set of VOCs distinct from the wild type, and several VOCs including methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)hexane-2,4-diol and 2-carboxymethyl-3-n-hexylmaleic appeared in the variant strains, the production of which could be attributed to the activity of otherwise silent PKS genes. The bioactive extrolite brefeldin A was isolated and characterized from the wild type. However, this metabolite was not detected in EV-1, but instead, two other products were isolated and characterized as ergosterol and xylaguaianol C. Hence, M. yucatanensis has the genetic potential to produce several previously undetectable VOCs and organic solvent soluble products. It is also the case that small-molecule epigenetic modifiers can be used to produce stable variant strains of fungi with the potential to produce new molecules. Finally, this work hints to the prospect that the epigenetics of an endophytic microorganism can be influenced by any number of environmental and chemical factors associated with its host plant which may help to explain the enormous chemical diversity of secondary metabolic products found in Muscodor spp.
Collapse
Affiliation(s)
- Masroor Qadri
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Yedukondalu Nalli
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Shreyans K Jain
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Asha Chaubey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
- Fermentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Asif Ali
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Gary A Strobel
- Department of Plant Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Ram A Vishwakarma
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Syed Riyaz-Ul-Hassan
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.
| |
Collapse
|
42
|
Chen JJ, Tsai TH, Liao HR, Chen LC, Kuo YH, Sung PJ, Chen CL, Wei CS. New Sesquiterpenoids and Anti-Platelet Aggregation Constituents from the Rhizomes of Curcuma zedoaria. Molecules 2016; 21:molecules21101385. [PMID: 27763530 PMCID: PMC6272984 DOI: 10.3390/molecules21101385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 11/24/2022] Open
Abstract
Two new sesquiterpenoids—13-hydroxycurzerenone (1) and 1-oxocurzerenone (2)—have been isolated from the rhizomes of Curcuma zedoaria, together with 13 known compounds (3–15). The structures of two new compounds were determined through spectroscopic and MS analyses. Among the isolated compounds, 13-hydroxycurzerenone (1), 1-oxocurzerenone (2), curzerenone (3), germacrone (4), curcolone (5), procurcumenol (6), ermanin (7), curcumin (8), and a mixture of stigmast-4-en-3,6-dione (12) and stigmasta-4,22-dien-3,6-dione (13) exhibited inhibition (with inhibition % in the range of 21.28%–67.58%) against collagen-induced platelet aggregation at 100 μM. Compounds 1, 5, 7, 8, and the mixture of 12 and 13 inhibited arachidonic acid (AA)-induced platelet aggregation at 100 μM with inhibition % in the range of 23.44%–95.36%.
Collapse
Affiliation(s)
- Jih-Jung Chen
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Tung-Han Tsai
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan.
| | - Hsiang-Ruei Liao
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Li-Chai Chen
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan.
- Department of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Chun-Sheng Wei
- Department of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan.
| |
Collapse
|
43
|
Tao R, Wang CZ, Ye JZ, Zhou H, Chen HX, Zhang CW. Antibacterial, cytotoxic and genotoxic activity of nitrogenated and haloid derivatives of C 50-C 60 and C 70-C 120 polyprenol homologs. Lipids Health Dis 2016; 15:175. [PMID: 27724930 PMCID: PMC5057508 DOI: 10.1186/s12944-016-0345-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022] Open
Abstract
Background Polyprenol is an important lipid with many bioactive effects. The study on differences in bioactive effects of polyprenol derivatives having different isoprene units are seldom reported and it is helpful to find out which type of polyprenol derivatives are effective for treating A549/HepG2 cells and E. coli /S. aureus. Methods All tested polyprenol derivatives were measured with inhibition halos by Oxford cup assays. MIC values were assessed by the broth dilution method. Time-killing curve studies were conducted in duplicate on separate days. Cytotoxicity study was measured by the MTT assay and genotoxic study was evaluated by comet assay. Results With regard to antibacterial activity, the sensitivities to the quaternary polyprenyl ammonium salt derivatives GAS and MAS were 31.3 μg/mL and 15.6–31.3 μg/mL, respectively. GAS and MAS exhibited cytotoxic activity toward HepG2 cells (IC50 of 10.1–11.6 μg/mL), which was stronger than that exhibited toward A549 cells (IC50 of 13.8–13.9 μg/mL). The bactericidal activity of MAS was stronger than that of GAS at the same concentration at least 48 h. The DNA damage in A549 and HepG2 cells exposed to all 10, 20 and 40 μg/mL MAS was statistically significant in comparison to the control. Our results indicate a dose-dependent increment in DNA damage in A549 and HepG2 cells exposed to 10, 20 and 40 μg/mL MAS for both the percentage of DNA in the tail and tail moment. Conclusion The quaternary ammonium salt derivatives GAS and MAS exhibited higher antibacterial (E. coli and S. aureus) and cytotoxic activity (A549 and HepG2 cells) than the other derivatives evaluated in this study. The DNA damage in HepG2 cells suggests that MAS induced A549 and HepG2 cells death via apoptotic pathway. Our results provide new evidence supporting the medical use of polyprenol derivatives against bacterial and tumor diseases.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China.,Research Institute of Forestry New Technology, CAF, Beijing, 100091, China
| | - Cheng-Zhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China. .,Research Institute of Forestry New Technology, CAF, Beijing, 100091, China.
| | - Jian-Zhong Ye
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China.,Research Institute of Forestry New Technology, CAF, Beijing, 100091, China
| | - Hong-Xia Chen
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China
| | - Chang-Wei Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province, 210042, China
| |
Collapse
|
44
|
de Jesus IC, Santos Frazão GG, Blank AF, de Aquino Santana LCL. Myrcia ovata Cambessedes essential oils: A proposal for a novel natural antimicrobial against foodborne bacteria. Microb Pathog 2016; 99:142-147. [DOI: 10.1016/j.micpath.2016.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/18/2016] [Accepted: 08/19/2016] [Indexed: 12/22/2022]
|
45
|
Polyprenols of Ginkgo biloba Enhance Antibacterial Activity of Five Classes of Antibiotics. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4191938. [PMID: 27642597 PMCID: PMC5011515 DOI: 10.1155/2016/4191938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022]
Abstract
Polyprenol (GBP) from Ginkgo biloba Leaves (GBL) is an important lipid with many bioactive effects. The effect of GBP on antibacterial properties of five antibiotics belonging to different classes was through analysis of inhibition halos, MIC, and FIC index. And we studied the time-killing curves and Ca(2+) mobilization assay in Staphylococcus aureus cells treated with GBP microemulsion and gentamicin sulfate under MIC/2 conditions. These results showed that the GBP microemulsion (average diameter 90.2 nm) combining with gentamicin sulfate had the highest enhancing antibacterial effect against Staphylococcus aureus, and the MIC value was 33.0 μg/mL. The increase of the antibacterial effect of tested antibiotics was positively correlated with the decrease of the average diameter of GBP microemulsion. Moreover, GBP microemulsion enhanced antibacterial effect and prolonged antibacterial time of GBP combining with gentamicin sulfate against Staphylococcus aureus. GBP microemulsion could enhance the ability of gentamicin inducing an increase in intracellular calcium concentrations to Staphylococcus aureus. GBP microemulsion could help some classes of antibiotics to inhibit or kill bacteria. This study supports the fact that GBP microemulsion obviously can not only reduce the dosage of some classes of antibiotics, but also reduce the frequency of the antibiotic use in vitro.
Collapse
|
46
|
Chan WK, Tan LTH, Chan KG, Lee LH, Goh BH. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016; 21:molecules21050529. [PMID: 27136520 PMCID: PMC6272852 DOI: 10.3390/molecules21050529] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 11/16/2022] Open
Abstract
Nerolidol (3,7,11-trimethyl-1,6,10-dodecatrien-3-ol) is a naturally occurring sesquiterpene alcohol that is present in various plants with a floral odor. It is synthesized as an intermediate in the production of (3E)-4,8-dimethy-1,3,7-nonatriene (DMNT), a herbivore-induced volatile that protects plants from herbivore damage. Chemically, nerolidol exists in two geometric isomers, a trans and a cis form. The usage of nerolidol is widespread across different industries. It has been widely used in cosmetics (e.g., shampoos and perfumes) and in non-cosmetic products (e.g., detergents and cleansers). In fact, U.S. Food and Drug Administration (FDA) has also permitted the use of nerolidol as a food flavoring agent. The fact that nerolidol is a common ingredient in many products has attracted researchers to explore more medicinal properties of nerolidol that may exert beneficial effect on human health. Therefore, the aim of this review is to compile and consolidate the data on the various pharmacological and biological activities displayed by nerolidol. Furthermore, this review also includes pharmacokinetic and toxicological studies of nerolidol. In summary, the various pharmacological and biological activities demonstrated in this review highlight the prospects of nerolidol as a promising chemical or drug candidate in the field of agriculture and medicine.
Collapse
Affiliation(s)
- Weng-Keong Chan
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Loh Teng-Hern Tan
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Learn-Han Lee
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, 56000 Phayao, Thailand.
| | - Bey-Hing Goh
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, 56000 Phayao, Thailand.
| |
Collapse
|
47
|
Ušjak L, Petrović S, Drobac M, Soković M, Stanojković T, ćirić A, Niketić M. Chemical Composition and Bioactivity of the Essential Oils of Heracleum pyrenaicum subsp. pollinianum and Heracleum orphanidis. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of this research was to analyze the chemical composition, antimicrobial and cytotoxic activity of Heracleum pyrenaicum subsp. pollinianum (Bertol.) F. Pedrotti & Pignatti (HPP) and H. orphanidis Boiss. (HO) essential oils. The composition of the oils was analyzed by GC and GC-MS. β-Pinene (35.1%) was the most abundant compound in HPP root oil, while ( Z)-falcarinol (80.0%) dominated in HO root oil. ( E)-Nerolidol (28.5%) was the main constituent in HPP leaf oil. HPP fruit oil, as well as HO leaf and fruit oils mainly contained aliphatic esters, mostly octyl acetate (50.5–84.5%). Antimicrobial screening was performed by microdilution method against eight bacterial and eight fungal strains. The strongest antibacterial activity was shown by both root oils (MICs 0.02–0.60 mg/mL and MBCs 0.04–2.50 mg/mL for HPP, and MICs 0.02–1.25 mg/mL and MBCs 0.04–2.50 mg/mL for HO), while the best antifungal potential was exhibited by HPP fruit oil (MICs 0.30–0.60 mg/mL and MFCs 0.60–1.25 mg/mL) and HO leaf oil (MICs 0.15–0.63 mg/mL and MFCs 0.30–1.25 mg/mL). The tested root and fruit oils exhibited strong cytotoxic effect, which was determined by MTT test against HeLa (IC50 7.53–21.07 μg/mL) and LS174 (IC50 24.16–58.86 μg/mL) cell lines.
Collapse
Affiliation(s)
- Ljuboš Ušjak
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Silvana Petrović
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Milica Drobac
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Marina Soković
- University of Belgrade, Institute for Biological Research “Siniša Stanković”, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Tatjana Stanojković
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Ana ćirić
- University of Belgrade, Institute for Biological Research “Siniša Stanković”, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marjan Niketić
- Natural History Museum, Njegoševa 51, 11000 Belgrade, Serbia
| |
Collapse
|
48
|
Enzymolysis-based ultrasound extraction and antioxidant activities of polyprenol lipids from Ginkgo biloba leaves. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Analysis on the Physicochemical Properties of Ginkgo biloba Leaves after Enzymolysis Based Ultrasound Extraction and Soxhlet Extraction. Molecules 2016; 21:97. [PMID: 26784159 PMCID: PMC6273774 DOI: 10.3390/molecules21010097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 11/17/2022] Open
Abstract
In this study, high performance liquid chromatography (HPLC), ultraviolet (UV), thermagravimetric analyzer (TGA), pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS), and scanning electron microscope (SEM) were used as measurement techniques, contents of chemical composition, pyrolytic products, thermal stability, morphological characterization of Ginkgo biloba leaves (GBL) acted as the index, and physicochemical properties of GBL after enzymolysis based ultrasound extraction (EBUE) and Soxhlet extraction were studied. The detection results of chemical composition revealed that contents of general flavone, soluble protein, soluble total sugar and protein in the GBL declined significantly after EBUE, and contents of polyprenols and crude fat obviously reduced as well after Soxhlet extraction. Py-GC-MS results indicated that total GC contents of micromolecules with carbon less than 12 from 54.0% before EBUE decline to 8.34% after EBUE. Total GC contents of long-chain fatty acids with carbon less than 20 from 43.0% before EBUE reduced to 27.0% after Soxhlet extraction. Thermal stability results showed that GBL after Soxhlet extraction was easier to decompose than GBL before EBUE. SEM results illustrated that surface structure of GBL was damaged severely after EBUE, compared with GBL before EBUE, while organic solvent extraction had little influence on the morphological characterization of GBL after Soxhlet extraction compared with GBL after EBUE.
Collapse
|
50
|
Transmittance and Autofluorescence of Neonatal Rat Stratum Corneum: Nerolidol Increases the Dynamics and Partitioning of Protoporphyrin IX into Intercellular Membranes. J Fluoresc 2016; 26:709-17. [DOI: 10.1007/s10895-015-1758-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
|