1
|
Ni B, Song X, Shi B, Wang J, Sun Q, Wang X, Xu M, Cao L, Zhu G, Li J. Research progress of ginseng in the treatment of gastrointestinal cancers. Front Pharmacol 2022; 13:1036498. [PMID: 36313365 PMCID: PMC9603756 DOI: 10.3389/fphar.2022.1036498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer has become one of the major causes of human death. Several anticancer drugs are available; howeve their use and efficacy are limited by the toxic side effects and drug resistance caused by their continuous application. Many natural products have antitumor effects with low toxicity and fewer adverse effects. Moreover, they play an important role in enhancing the cytotoxicity of chemotherapeutic agents, reducing toxic side effects, and reversing chemoresistance. Consequently, natural drugs are being applied as potential therapeutic options in the field of antitumor treatment. As natural medicinal plants, some components of ginseng have been shown to have excellent efficacy and a good safety profile for cancer treatment. The pharmacological activities and possible mechanisms of action of ginseng have been identified. Its broad range of pharmacological activities includes antitumor, antibacterial, anti-inflammatory, antioxidant, anti-stress, anti-fibrotic, central nervous system modulating, cardioprotective, and immune-enhancing effects. Numerous studies have also shown that throuth multiple pathways, ginseng and its active ingredients exert antitumor effects on gastrointestinal (GI) tract tumors, such as esophageal, gastric, colorectal, liver, and pancreatic cancers. Herein, we introduced the main components of ginseng, including ginsenosides, polysaccharides, and sterols, etc., and reviewed the mechanism of action and research progress of ginseng in the treatment of various GI tumors. Futhermore, the pathways of action of the main components of ginseng are discussed in depth to promote the clinical development and application of ginseng in the field of anti-GI tumors.
Collapse
Affiliation(s)
- Baoyi Ni
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotong Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bolun Shi
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Qianhui Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Manman Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luchang Cao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
2
|
Tong Y, Song X, Zhang Y, Xu Y, Liu Q. Insight on structural modification, biological activity, structure-activity relationship of PPD-type ginsenoside derivatives. Fitoterapia 2022; 158:105135. [PMID: 35101587 DOI: 10.1016/j.fitote.2022.105135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 11/25/2022]
Abstract
Ginsenosides, characterized by triterpenoid, are one of the active components of ginseng. Among them, PPD-type ginsenosides have potent and diverse pharmacological activities, while the effective applications and clinical studies are limited by the poor stability, water solubility and oral bioavailability. In this review, we have attempted to demonstrate the structural-activity relationship of chemical modifications on the dammarane-type skeleton and the C-17 side chain, noting that certain structurally modified derivatives exhibit satisfactory pharmacological activity. This review will provide ideas for the design and synthesis of novel PPD derivatives, and valuable help for the further study of PPD derivatives to make it realize clinical application.
Collapse
Affiliation(s)
- Yangliu Tong
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaoping Song
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Yanxin Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ying Xu
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Qingchao Liu
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
3
|
Xu J, Pan Y, Liu Y, Na S, Zhou H, Li L, Chen F, Song H. A review of anti-tumour effects of ginsenoside in gastrointestinal cancer. J Pharm Pharmacol 2021; 73:1292-1301. [PMID: 33836068 DOI: 10.1093/jpp/rgab048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Gastrointestinal cancer, one of the major causes of cancer-related deaths in the world, refers to malignant conditions of the gastrointestinal (GI) tract and other organs. Although conventional therapy has been successful to some extent in cancer treatment, drug resistance and cancer recurrence still limit the therapeutic efficacy. There is increasing evidence indicating that ginsenoside, as a kind of high nutritional value and widely used traditional Chinese medicine, could contribute to the promotion of treatment in GI cancer, which deserves further investigation. KEY FINDINGS Based on previous studies, the possible mechanisms mainly include regulation of autophagy, apoptosis, proliferation, migration and angiogenesis. However, no studies recently have conducted a more in-depth review of the anti-cancer effects of ginsenoside in GI cancer. SUMMARY Therefore, this review will summarise and analyse the latest developments in the anti-tumour effects of ginsenosides in GI cancer, thus may promote further research of the anti-tumour efficacy of ginsenoside.
Collapse
Affiliation(s)
- Jing Xu
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yunxia Pan
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yanyan Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Sha Na
- Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Lu Li
- Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Fengyuan Chen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Hang Song
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| |
Collapse
|
4
|
Li KK, Yan XM, Li ZN, Yan Q, Gong XJ. Synthesis and antitumor activity of three novel ginsenoside M1 derivatives with 3'-ester modifications. Bioorg Chem 2019; 90:103061. [PMID: 31216505 DOI: 10.1016/j.bioorg.2019.103061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/11/2019] [Accepted: 06/07/2019] [Indexed: 01/19/2023]
Abstract
Ginsenoside M1 (M1) was considered to be the main antitumor component of ginsenoside metabolites in the body. In order to enhance its potency on antitumor effect, three novel M1 3'-ester derivatives (1c, 2c, 3c) were synthesized and evaluated. The yield of these derivatives was between 41% and 69%. Compared with M1, 2c and 3c can improve the efficacy of the inhibition on breast cancer MCF-7 and MDA-MB-231 cells, especially for MCF-7 (fold: 0.7-4.2, p < 0.0001). Further study suggested that 2c and 3c may cause cell autophagy and promote apoptosis in MCF-7 cells. The results indicated the 3'-ester modified M1 derivatives 2c and 3c possess higher abilities of inhibition growth towards triple-positive breast cancer and provided a new source for synthesis of potential anti-breast cancer drugs.
Collapse
Affiliation(s)
- Ke-Ke Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Xiao-Mei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
| | - Zheng-Ning Li
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Qiu Yan
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Xiao-Jie Gong
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
5
|
Fan HY. Regioselective synthesis and structures of anti-cancer 20(R)-ginsenoside Rg3 derivatives. Nat Prod Res 2019; 34:1962-1970. [DOI: 10.1080/14786419.2019.1569007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hong-Yu Fan
- Dalian Fusheng Natural Pharmaceutical Development Co., Ltd., Dalian, P. R. China
- Department of Pharmacology, Jilin University, Changchun, P. R. China
| |
Collapse
|
6
|
Jäger SN, Porta EOJ, Labadie GR. Convenient synthesis of the immunogenic glycolipid BbGL1. Steroids 2019; 141:41-45. [PMID: 30468783 DOI: 10.1016/j.steroids.2018.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/09/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
Abstract
A simple and efficient method to synthesize the immunogenic glycolipid BbGL1 is introduced. Two simple steps were required to obtain the desired product in good yield. First, a highly efficient glycosylation of cholesterol using galactosyl trichloroacetimidate as a donor was performed to produce cholesteryl-β-d-galactoside. Finally, an efficient palmitoylation on the C6-OH of the galactose of the synthesized saponin using sym-collidine and acyl chloride under microwave heating that produced BbGL1 in good yield. The procedure is a convenient and cheaper alternative to the reported procedures allowing a rapid preparation of multiple analogs and conjugates.
Collapse
Affiliation(s)
- Sebastián N Jäger
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Exequiel O J Porta
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
7
|
Hou J, Xue J, Zhao X, Wang Z, Li W, Li X, Zheng Y. Octyl ester of ginsenoside compound K as novel anti-hepatoma compound: Synthesis and evaluation on murine H22 cells in vitro and in vivo. Chem Biol Drug Des 2017; 91:951-956. [PMID: 29193880 DOI: 10.1111/cbdd.13153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/08/2017] [Accepted: 11/17/2017] [Indexed: 12/28/2022]
Abstract
Ginsenoside compound K (M1) is the active form of major ginsenosides deglycosylated by intestinal bacteria after oral administration. However, M1 was reported to selectively accumulate in liver and transform to fatty acid esters. Ester of M1 was not excreted by bile as M1 was, which means it was accumulated in the liver longer than M1. This study reported a synthetic method of M1-O, a mono-octyl ester of M1, and evaluated the anticancer property against murine H22 cell both in vitro and in vivo. As a result, both M1 and M1-O showed a dose-dependent manner in cytotoxicity assay in vitro. At lower dose of 12.5 μm, M1-O showed moderate detoxification. Instead, M1-O exhibited significantly higher inhibition in H22-bearing mice than M1. M1-O induced murine H22 tumor cellular apoptosis in caspase-dependent pathway given that pan-caspase inhibitor, Z-VAD-FMK, could reverse the cytotoxicity induced by M1-O. Additionally, pro- and anti-apoptosis proteins, Bcl-2 and Bax, altered and consequently induced increased expression of cleaved caspase-3. Interestingly, cyclophosphamide regimen significantly induced atrophy of spleen and thymus, main immune organs, while M1-O treatment greatly alleviated this atrophy. Collectively, we propose M1-O as a candidate for live cancer treatment.
Collapse
Affiliation(s)
- Jingang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Intelligent Synthetic Biology Center, Daejeon, Korea
| | - Jianjie Xue
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China.,Qingdao Institute of Preventive Medicine, Qingdao, China
| | | | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xindian Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Jäger SN, Mittelbach M, Cabrera R, Labadie GR. Simple method for high purity acylated steryl glucosides synthesis. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sebastián N. Jäger
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| | | | - Rodolfo Cabrera
- UnitecBio; Quebracho S/N PB; Puerto General San Martín, Santa Fe Argentina
| | - Guillermo R. Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| |
Collapse
|
9
|
Zu L, Zhao Y, Gu G. Recent Development in the Synthesis of Natural Saponins and Their Derivatives. J Carbohydr Chem 2014. [DOI: 10.1080/07328303.2014.957387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|