1
|
Hou M, Yu QQ, Yang L, Zhao H, Jiang P, Qin L, Zhang Q. The role of short-chain fatty acid metabolism in the pathogenesis, diagnosis and treatment of cancer. Front Oncol 2024; 14:1451045. [PMID: 39435279 PMCID: PMC11491288 DOI: 10.3389/fonc.2024.1451045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Short-chain fatty acids (SCFAs), which are saturated fatty acids consisting of six or fewer carbon atoms, have been found to be closely associated with the biological behavior of malignant tumors. This manuscript provides a comprehensive review on the role of SCFAs in regulating cell cycle, apoptosis, tumor angiogenesis, epithelial-mesenchymal transition, protein regulatory pathways, and histone regulation in promoting the development of malignant tumors. Furthermore, we discuss the potential therapeutic strategies targeting SCFAs for treating malignant tumors. This review offers a theoretical foundation for investigating the mechanisms by which SCFAs impact malignant tumors and provides insights into developing novel treatment targets.
Collapse
Affiliation(s)
- Maolin Hou
- Department of Internal Medicine, Siziwangqi People’s Hospital, Wulancabu, China
| | - Qing-Qing Yu
- Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Jining, China
| | - Le Yang
- Department of Gastrointestinal Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Haibo Zhao
- Department of Oncology, Jining No.1 People’s Hospital, Jining, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Jining, China
| | - Lei Qin
- Department of Gastrointestinal Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Qiujie Zhang
- Department of Oncology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
2
|
Villarruel-Melquiades F, Mendoza-Garrido ME, García-Cuellar CM, Sánchez-Pérez Y, Pérez-Carreón JI, Camacho J. Current and novel approaches in the pharmacological treatment of hepatocellular carcinoma. World J Gastroenterol 2023; 29:2571-2599. [PMID: 37213397 PMCID: PMC10198058 DOI: 10.3748/wjg.v29.i17.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumours worldwide. The mortality-to-incidence ratio is up to 91.6% in many countries, representing the third leading cause of cancer-related deaths. Systemic drugs, including the multikinase inhibitors sorafenib and lenvatinib, are first-line drugs used in HCC treatment. Unfortunately, these therapies are ineffective in most cases due to late diagnosis and the development of tumour resistance. Thus, novel pharmacological alternatives are urgently needed. For instance, immune checkpoint inhibitors have provided new approaches targeting cells of the immune system. Furthermore, monoclonal antibodies against programmed cell death-1 have shown benefits in HCC patients. In addition, drug combinations, including first-line treatment and immunotherapy, as well as drug repurposing, are promising novel therapeutic alternatives. Here, we review the current and novel pharmacological approaches to fight HCC. Preclinical studies, as well as approved and ongoing clinical trials for liver cancer treatment, are discussed. The pharmacological opportunities analysed here should lead to significant improvement in HCC therapy.
Collapse
Affiliation(s)
- Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - María Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Julio Isael Pérez-Carreón
- Instituto Nacional de Medicina Genómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| |
Collapse
|
3
|
Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel) 2021; 13:634. [PMID: 33562653 PMCID: PMC7915831 DOI: 10.3390/cancers13040634] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond "classic" oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
4
|
Liu P, Lu Z, Wu Y, Shang D, Zhao Z, Shen Y, Zhang Y, Zhu F, Liu H, Tu Z. Cellular Senescence-Inducing Small Molecules for Cancer Treatment. Curr Cancer Drug Targets 2020; 19:109-119. [PMID: 29848278 DOI: 10.2174/1568009618666180530092825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/10/2018] [Accepted: 03/07/2018] [Indexed: 01/22/2023]
Abstract
Recently, the chemotherapeutic drug-induced cellular senescence has been considered a promising anti-cancer approach. The drug-induced senescence, which shows both similar and different hallmarks from replicative and oncogene-induced senescence, was regarded as a key determinant of tumor response to chemotherapy in vitro and in vivo. To date, an amount of effective chemotherapeutic drugs that can evoke senescence in cancer cells have been reported. The targets of these drugs differ substantially, including senescence signaling pathways, DNA replication process, DNA damage pathways, epigenetic modifications, microtubule polymerization, senescence-associated secretory phenotype (SASP), and so on. By summarizing senescence-inducing small molecule drugs together with their specific traits and corresponding mechanisms, this review is devoted to inform scientists to develop novel therapeutic strategies against cancer through inducing senescence.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanfang Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dongsheng Shang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.,School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhicong Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanting Shen
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yafei Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
5
|
Hu B, An HM, Yan X, Zheng JL, Huang XW, Li M. Traditional Chinese medicine formulation Yanggan Jiedu Sanjie inhibits TGF-β1-induced epithelial-mesenchymal transition and metastatic potential in human hepatocarcinoma Bel-7402 cells. Altern Ther Health Med 2019; 19:67. [PMID: 30876428 PMCID: PMC6420768 DOI: 10.1186/s12906-019-2477-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is a vital process in cancer progression and metastasis. Yanggan Jiedu Sanjie (YGJDSJ) is Traditional Chinese Medicine formulation for liver cancer treatment. In the present study, we evaluated the effects of YGJDSJ on TGF-β1-induced EMT in hepatocellular carcinoma Bel-7402 cells. METHODS Bel-7402 cells were treated with TGF-β1 and YGJDSJ. EMT was identified by morphological changes and expression of marker proteins. Cell morphology was observed under a microscope. Protein expression and phosphorylation was detected by western blotting. Cell migration was measured by the scratch assay. Cell adhesion and invasion was detected by a commercial kit. RESULTS YGJDSJ reversed TGF-β1-induced morphological changes, as well as the expression of the EMT markers E-cadherin and N-cadherin in Bel-7402 cells. YGJDSJ also inhibited TGF-β1 up-regulated Smad3 phosphorylation and Snail expression in Bel-7402 cells. Moreover, YGJDSJ inhibited TGF-β1-induced cell adhesion, migration and invasion in Bel-7402 cells. CONCLUSIONS YGJDSJ inhibited TGF-β1-induced EMT and mediated metastatic potential of Bel-7402 cells, which may be related to down-regulation of Smad3 phosphorylation and Snail expression. The present study provides a new basis for application of this herbal formula for prevention of liver cancer metastasis.
Collapse
|
6
|
Hu B, An HM, Wang SS, Zheng JL, Yan X, Huang XW, Tian JH. Teng-Long-Bu-Zhong-Tang induces p21-dependent cell senescence in colorectal carcinoma LS174T cells via histone acetylation. J Exp Pharmacol 2017; 9:67-72. [PMID: 28572741 PMCID: PMC5441675 DOI: 10.2147/jep.s129272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Teng-Long-Bu-Zhong-Tang (TLBZT) is a Chinese herbal formula for colorectal carcinoma treatment. TLBZT effectively induces cell senescence in colorectal carcinoma, accompanied by p21 upregulation. In this study, we further explored the role of p21 in TLBZT-induced cell senescence, as well as the mechanism by which TLBZT upregulates p21. Specific knockdown of p21 expression by small interfering RNA significantly attenuated TLBZT-induced cell senescence in human colorectal carcinoma LS174T cells. Silencing of p53 by small interfering RNA did not affect TLBZT-induced p21 upregulation. Meanwhile, TLBZT inhibited histone deacetylase activity. Furthermore, TLBZT increased acetylation levels of histone H3 and H4, enhancing their binding to the p21 promoter. These data suggested that TLBZT induces cell senescence in LS174T cells through a mechanism involving p21 upregulation via histone H3 and H4 acetylation. This study provides new insights into the application of TLBZT for colorectal carcinoma treatment.
Collapse
Affiliation(s)
- Bing Hu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine.,Institute of Traditional Chinese Medicine in Oncology, Shanghai Academy of Traditional Chinese Medicine
| | - Hong-Mei An
- Department of Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shuang-Shuang Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine.,Institute of Traditional Chinese Medicine in Oncology, Shanghai Academy of Traditional Chinese Medicine
| | - Jia-Lu Zheng
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine.,Institute of Traditional Chinese Medicine in Oncology, Shanghai Academy of Traditional Chinese Medicine
| | - Xia Yan
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine.,Institute of Traditional Chinese Medicine in Oncology, Shanghai Academy of Traditional Chinese Medicine
| | - Xiao-Wei Huang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine.,Institute of Traditional Chinese Medicine in Oncology, Shanghai Academy of Traditional Chinese Medicine
| | - Jian-Hui Tian
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine.,Institute of Traditional Chinese Medicine in Oncology, Shanghai Academy of Traditional Chinese Medicine
| |
Collapse
|
7
|
Petrova NV, Velichko AK, Razin SV, Kantidze OL. Small molecule compounds that induce cellular senescence. Aging Cell 2016; 15:999-1017. [PMID: 27628712 PMCID: PMC6398529 DOI: 10.1111/acel.12518] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
To date, dozens of stress‐induced cellular senescence phenotypes have been reported. These cellular senescence states may differ substantially from each other, as well as from replicative senescence through the presence of specific senescence features. Here, we attempted to catalog virtually all of the cellular senescence‐like states that can be induced by low molecular weight compounds. We summarized biological markers, molecular pathways involved in senescence establishment, and specific traits of cellular senescence states induced by more than fifty small molecule compounds.
Collapse
Affiliation(s)
| | - Artem K. Velichko
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
| | - Sergey V. Razin
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
- Department of Molecular Biology Lomonosov Moscow State University 119991 Moscow Russia
- LIA 1066 French‐Russian Joint Cancer Research Laboratory 94805 Villejuif France
| | - Omar L. Kantidze
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
- LIA 1066 French‐Russian Joint Cancer Research Laboratory 94805 Villejuif France
| |
Collapse
|
8
|
Jafary H, Ahmadian S, Soleimani M. Synergistic anticancer activity of valproate combined with nicotinamide enhances anti-proliferation response and apoptosis in MIAPaca2 cells. Mol Biol Rep 2014; 41:3801-12. [PMID: 24595447 DOI: 10.1007/s11033-014-3246-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 02/07/2014] [Indexed: 01/01/2023]
Abstract
Histone deacetylase is strongly associated with epigenetic regulation and carcinogenesis, and its inhibitors can induce cell cycle arrest and apoptosis of the cancer cells. In this study we aimed to examine the antiproliferative effects a combination of the valproate with nicotinamide in MIAPaca2 cell line. We revealed that valproate acted in a synergistic/additive with nicotinamide to inhibit the proliferation and induction of apoptosis in MIAPaca2 cancer cell line. MIAPaca2 was treated with various concentrations of valproate. The MTT assay and colony formation in soft agar indicated that valproate at 0.5 mM, when used alone weakly, suppressed proliferation of cells (37 ± 3.02%) whereas the combination treatment of valproate + nicotinamide significantly suppressed cell proliferation (58 ± 3.5%). The effect of nicotinamide at 25 mM on cell proliferation and cell colonization induced 50% apoptosis of MIAPaca2 cells. To identify the anti-proliferation and apoptotic effects of valproate and nicotinamide we performed flow cytometric and microscopic analyses. The results indicated significant apoptosis induction and nuclear morphological alterations greater than when valproate was used alone. Furthermore, western blot analyses was performed to study the role of acetyl-histone H3 levels, and quantitative RNA expression analyses were performed on expression of thrombospondin (TSP) and maspin genes in MIAPaca2. We found that the combination treatment of valproate + nicotinamide enhanced the expression of maspin and TSP genes and the biological response of the cell line was correlated with the increase of histone H3 acetylation after nicotinamide and valproate application. Together our findings indicate that valproate which act as inhibitor of cell proliferation and inducer of apoptosis in human cancer MIAPaca2 cells when used in combination with nicotinamide makes it a potentially good candidate for new anticancer drug development.
Collapse
Affiliation(s)
- Hanieh Jafary
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | | | | |
Collapse
|