1
|
Solaimani M, Hosseinzadeh S, Abasi M. Non-coding RNAs, a double-edged sword in breast cancer prognosis. Cancer Cell Int 2025; 25:123. [PMID: 40170036 PMCID: PMC11959806 DOI: 10.1186/s12935-025-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/06/2025] [Indexed: 04/03/2025] Open
Abstract
Cancer is a rising issue worldwide, and numerous studies have focused on understanding the underlying reasons for its occurrence and finding proper ways to defeat it. By applying technological advances, researchers are continuously uncovering and updating treatments in cancer therapy. Their vast functions in the regulation of cell growth and proliferation and their significant role in the progression of diseases, including cancer. This review provides a comprehensive analysis of ncRNAs in breast cancer, focusing on long non-coding RNAs such as HOTAIR, MALAT1, and NEAT1, as well as microRNAs such as miR-21, miR-221/222, and miR-155. These ncRNAs are pivotal in regulating cell proliferation, metastasis, drug resistance, and apoptosis. Additionally, we discuss experimental approaches that are useful for studying them and highlight the advantages and challenges of each method. We then explain the results of these clinical trials and offer insights for future studies by discussing major existing gaps. On the basis of an extensive number of studies, this review provides valuable insights into the potential of ncRNAs in cancer therapy. Key findings show that even though the functions of ncRNAs are vast and undeniable in cancer, there are still complications associated with their therapeutic use. Moreover, there is an absence of sufficient experiments regarding their application in mouse models, which is an area to work on. By emphasizing the crucial role of ncRNAs, this review underscores the need for innovative approaches and further studies to explore their potential in cancer therapy.
Collapse
Affiliation(s)
- Maryam Solaimani
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Sahar Hosseinzadeh
- Faculty of Pharmacy and Medical Biotechnology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, PO Box: 48175/861, Sari, Iran.
| |
Collapse
|
2
|
Jiang M, Wang L, Lu L, Tong Y, Li Y, Zhi H. Decarbromodiphenyl ether exposure promotes migration of triple-negative breast cancer cells through miR-221 in extracellular vesicles. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:481-489. [PMID: 39183060 PMCID: PMC11375496 DOI: 10.3724/zdxbyxb-2024-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
OBJECTIVES To investigate the effect of decarbromodiphenyl ether (BDE-209) exposure on the migration ability of triple-negative breast cancer (TNBC) cells and to explore the underlying mechanism. METHODS Human TNBC MDA-MB-231 cells were divided into blank control group and BDE-209 exposure groups (treated with 0.02, 0.20, 2.00, 20.00 and 200.00 ng/mL BDE-209 in high glucose DMEM). Extracellular vehicles (EVs) secreted by MDA-MB-231 cells were isolated by differential ultracentrifugation. Transmission electron microscopy (SEM), nanoparticle tracking analysis (NTA) and Western blotting were performed to characterize the EVs. The effect of the EVs induced by BDE-209 exposure (EVs-BDE-209) on the migration and invasion of MDA-MB-231 cells was detected by wound-healing assay and Transwell test. qRT-PCR was used to measure the miR-221 level in EVs-BDE-209. The expression of MMP9 in MDA-MB-231 cells was determined by Western blotting. RESULTS Compared with the blank control, BDE-209 exposure increased the tumor cell-derived EVs in dose-dependent manner. The MDA-MB-231 cells co-cultured with EVs released by 200.00 ng/mL BDE-209 exposure showed an 86% increase in cell migration rate, a 1.32-fold higher number of membrane-penetrating cells, a 2.71-fold higher expression level of miR-221, and a 1.62-fold higher expression level of MMP9 compared with the blank control group (all P<0.05). While transfection with anti-miR-221 antibody to decrease miR-221 level in EVs significantly reversed the increased invasion ability of the MDA-MB-231 cells treated with EVs-BDE-209. CONCLUSIONS BDE-209 exposure may promote metastasis potential of MDA-MB-231 cells via EVs-BDE-209 transmitted miR-221.
Collapse
Affiliation(s)
- Mengxiao Jiang
- Department of Pathology, Wannan Medical College, Wuhu 241002, Anhui Province, China.
| | - Lizhen Wang
- Department of Pathology, Wannan Medical College, Wuhu 241002, Anhui Province, China
| | - Linming Lu
- Department of Pathology, Wannan Medical College, Wuhu 241002, Anhui Province, China
| | - Youhua Tong
- Department of Pathology, Wannan Medical College, Wuhu 241002, Anhui Province, China
| | - Yanyu Li
- Department of Pathology, Wannan Medical College, Wuhu 241002, Anhui Province, China
| | - Hui Zhi
- Department of Pathology, Wannan Medical College, Wuhu 241002, Anhui Province, China.
| |
Collapse
|
3
|
Tutuianu A, Anene CA, Shelton M, Speirs V, Whitelaw DC, Thorpe J, Roberts W, Boyne JR. Platelet-derived microvesicles isolated from type-2 diabetes mellitus patients harbour an altered miRNA signature and drive MDA-MB-231 triple-negative breast cancer cell invasion. PLoS One 2024; 19:e0304870. [PMID: 38900754 PMCID: PMC11189239 DOI: 10.1371/journal.pone.0304870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
The underlying causes of breast cancer are diverse, however, there is a striking association between type 2 diabetes and poor patient outcomes. Platelet activation is a common feature of both type 2 diabetes and breast cancer and has been implicated in tumourigenesis through a multitude of pathways. Here transcriptomic analysis of type 2 diabetes patient-derived platelet microvesicles revealed an altered miRNA signature compared with normoglycaemic control patients. Interestingly, interrogation of these data identifies a shift towards an oncogenic signature in type 2 diabetes-derived platelet microvesicles, with increased levels of miRNAs implicated in breast cancer progression and poor prognosis. Functional studies demonstrate that platelet microvesicles isolated from type 2 diabetes patient blood are internalised by triple-negative breast cancer cells in vitro, and that co-incubation with type 2 diabetes patient-derived platelet microvesicles led to significantly increased expression of epithelial to mesenchymal transition markers and triple-negative breast cancer cell invasion compared with platelet microvesicles from healthy volunteers. Together, these data suggest that circulating PMVs in type 2 diabetes patients may contribute to the progression of triple-negative breast cancer.
Collapse
Affiliation(s)
- Anca Tutuianu
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Chinedu A. Anene
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Mikayla Shelton
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Valerie Speirs
- Institute of Medical Science, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| | - Donald C. Whitelaw
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Joanne Thorpe
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Wayne Roberts
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - James R. Boyne
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
4
|
Ju Y, Fang S, Liu L, Ma H, Zheng L. The function of the ELF3 gene and its mechanism in cancers. Life Sci 2024; 346:122637. [PMID: 38614305 DOI: 10.1016/j.lfs.2024.122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
E74-like factor 3 (ELF3) is an important member of the E-twenty-six (ETS) transcription factor family. ELF3 is expressed in various types of cells and regulates a variety of biological behaviors, such as cell proliferation, differentiation, apoptosis, migration, and invasion, by binding to DNA to regulate the expression of other genes. In recent years, studies have shown that ELF3 plays an important role in the occurrence and development of many tumors and inflammation and immune related diseases. ELF3 has different functions and expression patterns in different tumors; it can function as a tumor suppressor gene or an oncogene, highlighting its dual effects of tumor promotion and inhibition. ELF3 also affects the levels of tumor immunity-related cytokines and is involved in the regulation and expression of multiple signaling pathways. In tumor therapy, ELF3 is a complex and multifunctional gene and has become a key focus of targeted treatment research. An in-depth study of the biological function of ELF3 can help to elucidate its role in biological processes and provide ideas and a basis for the development and clinical application of ELF3-related therapeutic methods. This review introduces the structure and physiological and cellular functions of the ELF3 gene, summarizes the mechanisms of action of ELF3 in different types of malignant tumors and its role in immune regulation, inflammation, etc., and discusses treatment methods for ELF3-related diseases, providing significant reference value for scholars studying the ELF3 gene and related diseases.
Collapse
Affiliation(s)
- Yiheng Ju
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sheng Fang
- Yantai Penglai People's Hospital, Yantai, China
| | - Lei Liu
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Ma
- Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Longbo Zheng
- Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Khalife H, Fayyad-Kazan M, Fayyad-Kazan H, Hadchity E, Borghol N, Hussein N, Badran B. Lipoic acid alters the microRNA signature in breast cancer cells. Pathol Res Pract 2024; 257:155321. [PMID: 38678851 DOI: 10.1016/j.prp.2024.155321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/05/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Breast cancer, the deadliest disease affecting women globally, exhibits heterogeneity with distinct molecular subtypes. Despite advances in cancer therapy, the persistence of high mortality rates due to chemotherapy resistance remains a major challenge. Lipoic acid (LA), a natural antioxidant, has proven potent anticancer properties. Yet, the impact of LA on microRNA (miRNA) expression profile in breast cancer remains unexplored. AIM The aim of this study was to unravel the effect of LA on miRNA expression profiles in different breast cancer cell lines. METHODS The MiRCURY LNA miRNA miRNome qPCR Panel was used to compare the miRNA signature in MDA-MB-231 and MCF-7 cells treated or not with LA. RESULTS We identified six upregulated and six downregulated miRNAs in LA-treated MDA-MB-231 cells and 14 upregulated and four downregulated miRNAs in LA-treated MCF-7 cells compared to control cells. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that the deregulated miRNAs could alter different signaling cascades including FoxO, P53 and Hippo pathways. CONCLUSION The outcome of this study provides further insights into the molecular mechanisms underlying the therapeutic benefit of LA. This in turn could assist the amelioration of LA-based anticancer therapies.
Collapse
Affiliation(s)
- Hoda Khalife
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Mohammad Fayyad-Kazan
- The American University of Iraq-Baghdad, School of Arts and Sciences, Department of Natural and Applied Sciences, Baghdad, Iraq
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Elie Hadchity
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Nada Borghol
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Nader Hussein
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon; Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France.
| | - Bassam Badran
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon.
| |
Collapse
|
6
|
Monteiro MM, Gomes CC, Cruz MC, Horliana ACRT, Hamassaki DE, Lima CR, Santos MF. High glucose impairs human periodontal ligament cells migration through lowered microRNAs 221 and 222. J Periodontal Res 2024; 59:336-345. [PMID: 38041212 DOI: 10.1111/jre.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE To investigate the effects of miR-221 and miR-222 and high glucose on human periodontal ligament (PL) cells morphology, cytoskeleton, adhesion, and migration. BACKGROUND Chronic hyperglycemia is common in uncontrolled diabetes mellitus (DM) and plays a central role in long-term DM complications, such as impaired periodontal healing. We have previously shown that high glucose increases apoptosis of human PL cells by inhibiting miR-221 and miR-222 and consequently augmenting their target caspase-3. However, other effects of miR-221/222 downregulation on PL cells are still unknown. METHODS Cells from young humans' premolar teeth were cultured for 7 days under 5 or 30 mM glucose. Directional and spontaneous migration on fibronectin were studied using transwell and time-lapse assays, respectively. F-actin staining was employed to study cell morphology and the actin cytoskeleton. MiR-221 and miR-222 were inhibited using antagomiRs, and their expressions were evaluated by real-time RT-PCR. RESULTS High glucose inhibited PL cells early adhesion, spreading, and migration on fibronectin. Cells exposed to high glucose showed reduced polarization, velocity, and directionality. They formed several simultaneous unstable and short-lived protrusions, suggesting impairment of adhesion maturation. MiR-221 and miR-222 inhibition also reduced migration, decreasing cell directionality but not significantly cell velocity. After miR-221 and miR-222 downregulation cells showed morphological resemblance with cells exposed to high glucose. CONCLUSION High glucose impairs human PL cells migration potentially through a mechanism involving reduction of microRNA-221 and microRNA-222 expression. These effects may contribute to the impairment of periodontal healing, especially after surgery and during guided regeneration therapies.
Collapse
Affiliation(s)
- Mariana Marin Monteiro
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Cibele Crastequini Gomes
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mario Costa Cruz
- Center of Facilities for Research Support (CEFAP-USP), Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Dânia Emi Hamassaki
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Cilene Rebouças Lima
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Marinilce F Santos
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Ward AS, Hall CN, Tree MO, Kohtz DS. Spheroid architecture strongly enhances miR-221/222 expression and promotes oxidative phosphorylation in an ovarian cancer cell line through a mechanism that includes restriction of miR-9 expression. Mol Biol Rep 2024; 51:275. [PMID: 38310615 DOI: 10.1007/s11033-023-09168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/15/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Tumor cell spheroids are organized multicellular structures that form during the expansive growth of carcinoma cells. Spheroids formation is thought to contribute to metastasis by supporting growth and survival of mobile tumor cell populations. METHODS AND RESULTS We investigated how spheroid architecture affects OXPHOS activity, microRNA expression, and intraperitoneal survival of an ovarian carcinoma cell line using high resolution respirometry, quantitative RT-PCR, and a rodent intraperitoneal growth model. Rates of oxidative phosphorylation/respiration per cell of cells growing as spheroids were nearly double those of a variant of the same cell type growing in suspension as loosely aggregated cells. Further, inhibition of spheroid formation by treatment with CDH2 (N-cadherin) siRNA reduced the rate of OXPHOS to that of the non-spheroid forming variant. Cells growing as spheroids showed greatly enhanced expression of miR-221/222, an oncomiR that targets multiple tumor suppressor genes and promotes invasion, and reduced expression of miR-9, which targets mitochondrial tRNA-modification enzymes and inhibits OXPHOS. Consistent with greater efficiency of ATP generation, tumor cells growing as spheroids injected into the nutrient-poor murine peritoneum survived longer than cells growing in suspension as loosely associated aggregates. CONCLUSIONS The data indicate that growth in spheroid form enhances the OXPHOS activity of constituent tumor cells. In addition, spheroid architecture affects expression of microRNA genes involved in growth control and mitochondrial function. During the mobile phase of metastasis, when ovarian tumor cells disperse through nutrient-poor environments such as the peritoneum, enhanced OXPHOS activity afforded by spheroid architecture would enhance survival and metastatic potential.
Collapse
Affiliation(s)
- Avery S Ward
- Central Michigan University College of Medicine, Central Michigan University, Mt. Pleasant, MI, 48859, USA
| | - Cody N Hall
- Central Michigan University College of Medicine, Central Michigan University, Mt. Pleasant, MI, 48859, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55901, USA
| | - Maya O Tree
- Central Michigan University College of Medicine, Central Michigan University, Mt. Pleasant, MI, 48859, USA
| | - D Stave Kohtz
- Central Michigan University College of Medicine, Central Michigan University, Mt. Pleasant, MI, 48859, USA.
| |
Collapse
|
8
|
Fang Y, Zhang Q, Chen Z, Guo C, Wu J. Clinical significance and immune characteristics analysis of miR-221-3p and its key target genes related to epithelial-mesenchymal transition in breast cancer. Aging (Albany NY) 2024; 16:322-347. [PMID: 38189813 PMCID: PMC10817385 DOI: 10.18632/aging.205370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND MicroRNA-221-3p (miR-221-3p) facilitates the advancement of breast cancer (BC) through the induction of epithelial-mesenchymal transition (EMT). Our research aimed to utilize bioinformatics to discover possible EMT-related target genes (ETGs) of miR-221-3p and examine their roles in breast cancer. METHODS We employed bioinformatics techniques to identify ten key ETGs of miR-221-3p. Subsequently, we conducted an extensive analysis of both miR-221-3p and the ten ETGs, including clinical significance and immune characteristics. RESULTS The expression of miR-221-3p was notably higher in Basal-like BC compared to other subtypes and adjacent normal tissue. Our pathway analysis suggested that miR-221-3p might regulate EMT through the MAPK signaling pathway by targeting its ETGs. Among the ETGs, seven core genes (EGFR, IGF1, KDR, FGF2, KIT, FGFR1, and FGF1) exhibited downregulation in BC. Conversely, ERBB2, SDC1, and MMP14 showed upregulation in BC and displayed potential diagnostic value. The analysis of prognostication indicated that increased levels of SDC1 and MMP14 were correlated with an unfavorable prognosis, whereas elevated expression of KIT was associated with a more favorable prognosis. The infiltration of various immune cells and the expression of immune checkpoint genes (ICGs) exhibited positive correlations with most ETGs and miR-221-3p. SDC1 exhibited a greater tumor mutational burden (TMB) score, while ERBB2, KDR, FGF2, KIT, FGFR1, and FGF1 showed lower TMB scores. Furthermore, decreased ERBB2 and KDR expression levels were correlated with elevated microsatellite instability (MSI) scores. Elevated expression of ETGs was linked to decreased mRNA stemness indices (mRNAsi), whereas miR-221-3p displayed the opposite pattern. Most ETGs and miR-221-3p expression exhibited a negative correlation with IC50 values for drugs. Among the ETGs, amplification was the most significant genetic alteration, except for IGF1. CONCLUSION In conclusion, miR-221-3p acts as a unique indicator for Basal-like BC. The examination revealed ten essential ETGs of miR-221-3p, some of which show potential as diagnostic and prognostic markers. The in-depth examination of these ten ETGs and miR-221-3p indicates their participation in the development of BC, emphasizing their promise as innovative targets for therapy in BC patients.
Collapse
Affiliation(s)
- Yutong Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qunchen Zhang
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, China
| | - Zexiao Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Cuiping Guo
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jundong Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
9
|
Zhang L, Ren Z, Lü J, Mo X, Lin J, Li Y, Ma W, Liu P, Shen Y, Zhao Q, Qian L, Cheng X, Yu Z, Zhang B. Nanoparticles carrying paclitaxel and anti-miR-221 for breast cancer therapy triggered by ultrasound. Cell Death Discov 2023; 9:298. [PMID: 37582832 PMCID: PMC10427607 DOI: 10.1038/s41420-023-01594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Nanomaterials have been well demonstrated to have the potential to be used for tumor cell-targeted drug delivery. Targeted inhibition of miR-221 was proved to promote the sensitivity of triple genitive breast cancer (TNBC) cells to chemo-drugs. In order to improve the chemotherapeutic effect in TNBC, herein, we developed a novel kind of nanoparticles shelled with PLGA and loaded with perfluoropentane (PFP), paclitaxel (PTX), and anti-miR-221 inhibitor, which was named PANP. Ultrasound-triggered vaporization of PFP in PANPs was utilized for real-time imaging track of the nanoparticles in vivo. In addition, macrophages were applied for the internalization of PANPs to form RAW-PANP with strong chemotaxis to accumulate around cancer cells. Nanoparticles with different contents did not cause M2 polarization compared with the control group but caused polarization toward M1. We compared the inherent tumor-homing behavior of macrophages containing different contents with that of normal macrophages and no significant abnormalities were observed. After injection into the tumor-burden mice, RAW-PANPs showed enrichment within tumor tissues. Upon the ultrasound cavitation-triggered burst, PTX was released in the tumor. Meanwhile, the release of anti-miR-221 improved the sensitivity of tumor cells to PTX. As a result, RAW-PANPs showed high efficiency in suppressing TNBC cell proliferation in vitro and inhibiting tumor growth and progression in vivo. The treatments did not induce liver, heart, or kidney injury. In conclusion, the current study not only developed a macrophage-carried, ultrasound-triggered, cancer cell-targeted chemotherapeutic system, but also demonstrated a miRNA-based technique to promote drug sensitivity of cancer cells, which holds strong potential to treat patients with TNBC, especially for those suffering drug-resistance. The innovation of this study is to use macrophages to deliver nanoparticles to the tumors and then use ultrasound locally to burst the nanoparticles to release the miRNA and PTX.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Ultrasound Medicine, Shanghai East Hospital, Nanjing Medical University, 150 Jimo Road, Shanghai, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhen Ren
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- School of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinhai Mo
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Lin
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjing Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pengfei Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yajing Shen
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Qian
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoxin Cheng
- School of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zuoren Yu
- Department of Ultrasound Medicine, Shanghai East Hospital, Nanjing Medical University, 150 Jimo Road, Shanghai, China.
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Bo Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Sweef O, Zaabout E, Bakheet A, Halawa M, Gad I, Akela M, Tousson E, Abdelghany A, Furuta S. Unraveling Therapeutic Opportunities and the Diagnostic Potential of microRNAs for Human Lung Cancer. Pharmaceutics 2023; 15:2061. [PMID: 37631277 PMCID: PMC10459057 DOI: 10.3390/pharmaceutics15082061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer is a major public health problem and a leading cause of cancer-related deaths worldwide. Despite advances in treatment options, the five-year survival rate for lung cancer patients remains low, emphasizing the urgent need for innovative diagnostic and therapeutic strategies. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets for lung cancer due to their crucial roles in regulating cell proliferation, differentiation, and apoptosis. For example, miR-34a and miR-150, once delivered to lung cancer via liposomes or nanoparticles, can inhibit tumor growth by downregulating critical cancer promoting genes. Conversely, miR-21 and miR-155, frequently overexpressed in lung cancer, are associated with increased cell proliferation, invasion, and chemotherapy resistance. In this review, we summarize the current knowledge of the roles of miRNAs in lung carcinogenesis, especially those induced by exposure to environmental pollutants, namely, arsenic and benzopyrene, which account for up to 1/10 of lung cancer cases. We then discuss the recent advances in miRNA-based cancer therapeutics and diagnostics. Such information will provide new insights into lung cancer pathogenesis and innovative diagnostic and therapeutic modalities based on miRNAs.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed Zaabout
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Bakheet
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ibrahim Gad
- Department of Statistics and Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf Abdelghany
- Biomedical Research Center of University of Granada, Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
11
|
Fang Y, Zhang Q, Chen C, Chen Z, Zheng R, She C, Zhang R, Wu J. Identification and comprehensive analysis of epithelial-mesenchymal transition related target genes of miR-222-3p in breast cancer. Front Oncol 2023; 13:1189635. [PMID: 37546414 PMCID: PMC10400091 DOI: 10.3389/fonc.2023.1189635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) is a crucial mechanism that microRNA-222-3p (miR-222-3p) promotes breast cancer (BC) progression. Our study aimed to identify EMT-associated target genes (ETGs) of miR-222-3p for further analysis of their roles in BC based on bioinformatics tools. Methods Based on bioinformatics analysis, we identified 10 core ETGs of miR-222-3p. Then, we performed a comprehensive analysis of 10 ETGs and miR-222-3p, including pathway enrichment analysis of ETGs, differential expression, clinical significance, correlation with immune cell infiltration, immune checkpoint genes (ICGs) expression, tumor mutational burden (TMB), microsatellite instability (MSI), stemness, drug sensitivity, and genetic alteration. Results The expression of miR222-3p in basal-like BC was significantly higher than in other subtypes of BC and the normal adjacent tissue. Pathway analysis suggested that the ETGs might regulate the EMT process via the PI3K-Akt and HIF-1 signaling pathway. Six of the 10 core ETGs of miR-222-3p identified were down-expressed in BC, which were EGFR, IL6, NRP1, NTRK2, LAMC2, and PIK3R1, and SERPINE1, MUC1, MMP11, and BIRC5 were up-expressed in BC, which also showed potential diagnostic values in BC. Prognosis analysis revealed that higher NTRK2 and PIK3R1 expressions were related to a better prognosis, and higher BIRC5 and miR-222-3p expressions were related to a worse prognosis. Most ETGs and miR-222-3p were positively correlated with various infiltration of various immune cells and ICGs expression. Lower TMB scores were correlated with higher expression of MUC1 and NTRK2, and higher BIRC5 was related to a higher TMB score. Lower expression of MUC1, NTRK2, and PIK3R1 were associated with higher MSI scores. Higher expression of ETGs was associated with lower mRNAsi scores, except BIRC5 and miR-222-3p conversely. Most ETGs and miR-222-3p expression were negatively correlated with the drug IC50 values. The analysis of the genetic alteration of the ETGs suggested that amplification was the main genetic alteration of eight ETGs except for NTRK2 and PIK3R1. Conclusion MiR-222-3p might be a specific biomarker of basal-like BC. We successfully identify 10 core ETGs of miR-222-3p, some might be useful diagnostic and prognostic biomarkers. The comprehensive analysis of 10 ETGs and miR-222-3p indicated that they might be involved in the development of BC, which might be novel therapeutic targets for the treatment of BC.
Collapse
Affiliation(s)
- Yutong Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qunchen Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chunfa Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zexiao Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Rongji Zheng
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chuanghong She
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Rendong Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jundong Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
12
|
Shademan B, Karamad V, Nourazarian A, Masjedi S, Isazadeh A, Sogutlu F, Avcı CB. MicroRNAs as Targets for Cancer Diagnosis: Interests and Limitations. Adv Pharm Bull 2023; 13:435-445. [PMID: 37646065 PMCID: PMC10460809 DOI: 10.34172/apb.2023.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/02/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
MicroRNAs are small RNAs with ability to attach to the large number of RNA that regulate gene expression on post-transcriptional level via inhibition or degradation of specific mRNAs. MiRNAs in cells are the primary regulators of functions such as cell growth, differentiation, and apoptosis and considerably influence cell function. The expression levels of microRNAs change in human diseases, including cancer. These changes highlight their essential role in cancer pathogenesis. Ubiquitous irregular expression profiles of miRNAs have been detected in various human cancers using genome-wide identification techniques, which are emerging as novel diagnostic and prognostic cancer biomarkers of high specificity and sensitivity. The measurable miRNAs with enhanced stability in blood, tissues, and other body fluids provide a comprehensive source of miRNA-dependent biomarkers for human cancers. The leading role of miRNAs as potential biomarkers in human cancers is discussed in this article. In addition, the interests and difficulties of miRNAs as biomarkers have been explored.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Sepideh Masjedi
- Department of Cellular and Molecular Biology Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| |
Collapse
|
13
|
Kim JY, Jung EJ, Kim JM, Son Y, Lee HS, Kwag SJ, Park JH, Cho JK, Kim HG, Park T, Jeong SH, Jeong CY, Ju YT. MiR‑221 and miR‑222 regulate cell cycle progression and affect chemosensitivity in breast cancer by targeting ANXA3. Exp Ther Med 2023; 25:127. [PMID: 36845963 PMCID: PMC9947582 DOI: 10.3892/etm.2023.11826] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/15/2022] [Indexed: 02/10/2023] Open
Abstract
Breast malignancy remains one of the most common causes of cancer-associated mortalities among women. MicroRNA (miR)-221 and miR-222 are homologous miRs and have a substantial impact on cancer progression. In the present study, the regulatory mechanisms of miR-221/222 and its target annexin A3 (ANXA3) in breast cancer cells were investigated. Breast tissue samples were collected to evaluate the expression patterns of miR-221/222 levels in breast cancer cell lines and cancer tissues according to clinical characteristics. The levels of miR-221/222 were increased or decreased in cancer cell lines compared with normal breast cell lines according to cell line subtype. Subsequently, the changes in the progression and invasion of breast cancer cells were investigated using cell proliferation, invasion assay, gap closure and colony formation assays. Western blotting of cell cycle proteins and flow cytometry were performed to evaluate the possible pathway of miR-221/222 and ANXA3 axis. Chemosensitivity tests were performed to explore the suitability of the miR-221/222 and ANXA3 axis as a therapeutic target in breast cancer. The expression levels of miR-221/222 were associated with aggressive characteristics of breast cancer subtypes. Cell transfection assay demonstrated the regulation of breast cancer proliferation and invasiveness by miR-221/222. MiR-221/222 directly targeted the 3'-untranslated region of ANXA3 and suppressed the expression of ANXA3 at the mRNA and protein levels. In addition, miR-221/222 negatively regulated cell proliferation and the cell cycle pathway in breast cancer cells by targeting ANXA3. In combination with adriamycin, downregulation of ANXA3 may sensitize adriamycin-induced cell death to induction of persistent G2/M and G0/G1 arrest. Decreased expression of ANXA3 through increased expression of miR-221/222 reduced breast cancer progression and increased the effectiveness of the chemotherapy drug. The present results indicated the miR-221/222 and ANXA3 axis to be a possible novel therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Ju-Yeon Kim
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Eun Jung Jung
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Gyeongsang 51472, Republic of Korea
| | - Jae-Myung Kim
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Youngsim Son
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Han Shine Lee
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Gyeongsang 51472, Republic of Korea
| | - Seung-Jin Kwag
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Ji-Ho Park
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Jin-Kyu Cho
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Han-Gil Kim
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Taejin Park
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Gyeongsang 51472, Republic of Korea
| | - Sang-Ho Jeong
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Gyeongsang 51472, Republic of Korea
| | - Chi-Young Jeong
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Young-Tae Ju
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| |
Collapse
|
14
|
Xie H, Guo Y, Xu Z, Wang Q, Wang T, Gu Y, Li D, Liu Y, Ma W, Liu P, Zhao Q, Lü J, Liu J, Yu Z. Dual Function of CCAT2 in Regulating Luminal Subtype of Breast Cancer Depending on the Subcellular Distribution. Cancers (Basel) 2023; 15:cancers15020538. [PMID: 36672487 PMCID: PMC9856762 DOI: 10.3390/cancers15020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Breast cancer is the most common cancer in women around the world. Emerging evidence has indicated the important roles that non-coding RNAs play in regulating tumor development and progression in breast cancer. Herein, we found a dual function of long non-coding RNA (LncRNA) CCAT2 in the luminal subtype of breast cancer, depending on its subcellular distribution. CCAT2 showed an overall downregulation in the tumor tissues from luminal breast cancer patients. Transient overexpression of CCAT2 in the luminal subtype of breast cancer cell MCF-7 or T47D significantly suppressed cell proliferation in vitro and inhibited tumor growth in vivo. Gene expression analysis of cancer stem cell markers including OCT4, NANOG, h-TERT, SOX2 and KLF4; flow cytometry analysis of breast cancer stem cell population, and mammosphere formation assay demonstrated inhibition of cancer cell stemness with transient transfection of CCAT2 in which exogenous CCAT2 mainly distributed in the cytoplasm and regulated miR-221-p27 signaling via RNA sequence interaction. However, overexpression of CCAT2 in MCF-7 cells through pMX retroviral nuclear expression vector accumulated CCAT2 in the nucleus, leading to upregulation of OCT4-PG1, a pseudogene of stem gene OCT4, thereby promoting the cancer cell stemness. In conclusion, the current study, for the first time, revealed a dual function of lncRNA CCAT2 as a tumor suppressor or oncogene depending upon its subcellular distribution. It also demonstrated the regulatory mechanism of cytoplasmic CCAT2 in suppressing tumorigenesis in the luminal subtype of breast cancer.
Collapse
Affiliation(s)
- Heying Xie
- Shanghai East Hospital, Jinzhou Medical University, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuefan Guo
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhen Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiong Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yi Gu
- Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Danni Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yu Liu
- Shanghai East Hospital, Jinzhou Medical University, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wenjing Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Pengfei Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qian Zhao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junjun Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zuoren Yu
- Shanghai East Hospital, Jinzhou Medical University, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
15
|
Lee SH, Ng CX, Wong SR, Chong PP. MiRNAs Overexpression and Their Role in Breast Cancer: Implications for Cancer Therapeutics. Curr Drug Targets 2023; 24:484-508. [PMID: 36999414 DOI: 10.2174/1389450124666230329123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 04/01/2023]
Abstract
MicroRNAs have a plethora of roles in various biological processes in the cells and most human cancers have been shown to be associated with dysregulation of the expression of miRNA genes. MiRNA biogenesis involves two alternative pathways, the canonical pathway which requires the successful cooperation of various proteins forming the miRNA-inducing silencing complex (miRISC), and the non-canonical pathway, such as the mirtrons, simtrons, or agotrons pathway, which bypasses and deviates from specific steps in the canonical pathway. Mature miRNAs are secreted from cells and circulated in the body bound to argonaute 2 (AGO2) and miRISC or transported in vesicles. These miRNAs may regulate their downstream target genes via positive or negative regulation through different molecular mechanisms. This review focuses on the role and mechanisms of miRNAs in different stages of breast cancer progression, including breast cancer stem cell formation, breast cancer initiation, invasion, and metastasis as well as angiogenesis. The design, chemical modifications, and therapeutic applications of synthetic anti-sense miRNA oligonucleotides and RNA mimics are also discussed in detail. The strategies for systemic delivery and local targeted delivery of the antisense miRNAs encompass the use of polymeric and liposomal nanoparticles, inorganic nanoparticles, extracellular vesicles, as well as viral vectors and viruslike particles (VLPs). Although several miRNAs have been identified as good candidates for the design of antisense and other synthetic modified oligonucleotides in targeting breast cancer, further efforts are still needed to study the most optimal delivery method in order to drive the research beyond preclinical studies.
Collapse
Affiliation(s)
- Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Sharon Rachel Wong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
16
|
Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, Riillo C, Caridà G, Scionti F, Labanca C, Romeo C, Siciliano MA, D'Apolito M, Napoli C, Montesano M, Farenza V, Uppolo V, Tafuni M, Falcone F, D'Aquino G, Calandruccio ND, Luciano F, Pensabene L, Tagliaferri P, Tassone P. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1191-1224. [PMID: 35282417 PMCID: PMC8891816 DOI: 10.1016/j.omtn.2022.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among deregulated microRNAs (miRs) in human malignancies, miR-221 has been widely investigated for its oncogenic role and as a promising biomarker. Moreover, recent evidence suggests miR-221 as a fine-tuner of chronic liver injury and inflammation-related events. Available information also supports the potential of miR-221 silencing as promising therapeutic intervention. In this systematic review, we selected papers from the principal databases (PubMed, MedLine, Medscape, ASCO, ESMO) between January 2012 and December 2020, using the keywords "miR-221" and the specific keywords related to the most important hematologic and solid malignancies, and some non-malignant diseases, to define and characterize deregulated miR-221 as a valuable therapeutic target in the modern vision of molecular medicine. We found a major role of miR-221 in this view.
Collapse
Affiliation(s)
| | - Mariamena Arbitrio
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Alessia Cordua
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Onofrio Cuomo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria D'Apolito
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Uppolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Michele Tafuni
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Surgical and Medical Sciences, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
17
|
Corrà F, Crudele F, Baldassari F, Bianchi N, Galasso M, Minotti L, Agnoletto C, Di Leva G, Brugnoli F, Reali E, Bertagnolo V, Vecchione A, Volinia S. UC.183, UC.110, and UC.84 Ultra-Conserved RNAs Are Mutually Exclusive with miR-221 and Are Engaged in the Cell Cycle Circuitry in Breast Cancer Cell Lines. Genes (Basel) 2021; 12:genes12121978. [PMID: 34946928 PMCID: PMC8701292 DOI: 10.3390/genes12121978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
In the human genome, there are about 600 ultra-conserved regions (UCRs), long DNA sequences extremely conserved in vertebrates. We performed a large-scale study to quantify transcribed UCR (T-UCR) and miRNA levels in over 6000 cancer and normal tissue samples to find possible correlation between these kinds of regulatory molecules. Our analysis evidenced several non-coding RNAs showing negative co-regulation with miRNAs; among them, we focused on miR-221 to investigate any relationship with its pivotal role in the cell cycle. We have chosen breast cancer as model, using two cell lines with different phenotypes to carry out in vitro treatments with siRNAs against T-UCRs. Our results demonstrate that the expression of uc.183, uc.110, and uc.84 T-UCRs is mutually exclusive with miR-221 and is engaged in the regulation of CDKN1B expression. In addition, tests with a set of anticancer drugs, including BYL719, AZD5363, AZD8055, AZD7762, and XL765, revealed the modulation of specific T-UCRs without alteration of miR-221 levels.
Collapse
Affiliation(s)
- Fabio Corrà
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Francesca Crudele
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Federica Baldassari
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Nicoletta Bianchi
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Marco Galasso
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Linda Minotti
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Chiara Agnoletto
- Advanced Translational Research Laboratory, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy;
| | - Gianpiero Di Leva
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK;
| | - Federica Brugnoli
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Eva Reali
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Valeria Bertagnolo
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Andrea Vecchione
- Department of Medical Surgical Science and Translational Medicine-c/o Azienda Ospedaliera Sant’Andrea, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Stefano Volinia
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
- Correspondence: ; Tel.: +39-0532-455-714
| |
Collapse
|
18
|
Pan W, Yu S, Jia J, Hu J, Jie L, Zhang P, Wang Q, Yan X, Qiu Y. Deregulation of the cell cycle and related microRNA expression induced by vinyl chloride monomer in the hepatocytes of rats. Toxicol Ind Health 2021; 37:365-376. [PMID: 33973497 DOI: 10.1177/07482337211015591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vinyl chloride (VC) is a confirmed human carcinogen associated with hepatocellular carcinoma and angiosarcoma. However, the role of microRNAs (miRNAs) in liver cell cycle changes under VC exposure remains unclear, which prevents research on the mechanism of VC-induced carcinogenesis. In this study, male rats were injected intraperitoneally with VC (0, 5, 25, and 125 mg/kg body weight) for 6, 8, and 12 weeks. Cell cycle analysis of liver cells, miRNA-222, miRNA-199a, miRNA-195, and miRNA-125b expression in the liver and serum, and target protein expression were performed at different time points. The results showed a higher percentage of hepatocytes in the G1/G0 and S phases at the end of 6 and 12 weeks of VC exposure, respectively. MiRNA-222 expression decreased initially and then increased, whereas miRNA-199a, miRNA-195, and miRNA-125b expression increased initially and then decreased, which corresponded with changes in cell cycle distribution and related target proteins expression (p27, cyclinA, cyclinD1, and CDK6). The corresponding expression levels of miRNAs in serum did not change. Dynamic changes in miR-222, miR-199a, miR-195, and miR-125b induced by VC can lead to cell cycle deregulation by affecting cell cycle-related proteins, and these miRNAs can serve as early biomarkers for malignant transformation caused by VC.
Collapse
Affiliation(s)
- Weizhe Pan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shengnan Yu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jin Jia
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Junyang Hu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Liang Jie
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Panhong Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Yan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
19
|
Guo Y, Wang G, Wang Z, Ding X, Qian L, Li Y, Ren Z, Liu P, Ma W, Li D, Li Y, Zhao Q, Lü J, Li Q, Wang Q, Yu Z. Reck-Notch1 Signaling Mediates miR-221/222 Regulation of Lung Cancer Stem Cells in NSCLC. Front Cell Dev Biol 2021; 9:663279. [PMID: 33959615 PMCID: PMC8093830 DOI: 10.3389/fcell.2021.663279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to the cancer initiation, metastasis and drug resistance in non-small cell lung cancer (NSCLC). Herein, we identified a miR-221/222 cluster as a novel regulator of CSCs in NSCLC. Targeted overexpression or knockdown of miR-221/222 in NSCLC cells revealed the essential roles of miR-221/222 in regulation of lung cancer cell proliferation, mammosphere formation, subpopulation of CD133+ CSCs and the expression of stemness genes including OCT4, NANOG and h-TERT. The in vivo animal study showed that overexpression of miR-221/222 significantly enhanced the capacity of lung cancer cells to develop tumor and grow faster, indicating the importance of miR-221/222 in tumorigenesis and tumor growth. Mechanistically, Reck was found to be a key direct target gene of miR-221/222 in NSCLC. Overexpression of miR-221/222 significantly suppressed Reck expression, activated Notch1 signaling and increased the level of NICD. As an activated form of Notch1, NICD leads to enhanced stemness in NSCLC cells. In addition, knockdown of Reck by siRNA not only mimicked miR-221/222 effects, but also demonstrated involvement of Reck in the miR-221/222-induced activation of Notch1 signaling, verifying the essential roles of the miR-221/222-Reck-Notch1 axis in regulating stemness of NSCLC cells. These findings uncover a novel mechanism by which lung CSCs are significantly manipulated by miR-221/222, and provide a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yuefan Guo
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongrui Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Ding
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Qian
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Jinzhou Medical University, School of Basic Medical, Jinzhou, China
| | - Ya Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Dalian Medical University, School of Basic Medical, Dalian, China
| | - Zhen Ren
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Dalian Medical University, School of Basic Medical, Dalian, China
| | - Pengfei Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjing Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qinchuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qinhong Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
21
|
Pan X, Hong X, Li S, Meng P, Xiao F. METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp Mol Med 2021; 53:91-102. [PMID: 33420414 PMCID: PMC8080609 DOI: 10.1038/s12276-020-00510-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/14/2020] [Accepted: 08/10/2020] [Indexed: 01/29/2023] Open
Abstract
Breast cancer (BC) is the most prevalent malignant neoplasm among women and is the fifth most common cause of cancer-associated death worldwide. Acquired chemoresistance driven by genetic and epigenetic alterations is a significant clinical challenge in treating BC. However, the mechanism of BC cell resistance to adriamycin (ADR) remains to be elucidated. In this study, we identified the methyltransferase-like 3/microRNA-221-3p/homeodomain-interacting protein kinase 2/Che-1 (METTL3/miR-221-3p/HIPK2/Che-1) axis as a novel signaling event that may be responsible for resistance of BC cells to ADR. A dual-luciferase reporter gene assay was employed to test the presence of miR-221-3p binding sites in the 3'UTR of HIPK2. Drug resistance was evaluated by immunoblotting multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP). Cultured ADR-resistant MCF-7 cells were assayed for their half maximal inhibitory concentration (IC50) values and apoptosis using an MTT assay and Annexin V-FITC/PI-labeled flow cytometry, and the cells were then xenografted into nude mice. METTL3 knockdown was shown to reduce the expression of miR-221-3p by reducing pri-miR-221-3p m6A mRNA methylation, thereby reducing the IC50 value of ADR-resistant MCF-7 cells, reducing the expression of MDR1 and BCRP, and inducing apoptosis. Mechanistically, miR-221-3p was demonstrated to negatively regulate HIPK2 and upregulate its direct target Che-1, thus leading to enhanced drug resistance in ADR-resistant MCF-7 cells. In vitro results were reproduced in nude mice xenografted with ADR-resistant MCF-7 cells. Our work elucidates an epigenetic mechanism of acquired chemoresistance in BC, in support of the METTL3/miR-221-3p/HIPK2/Che-1 axis as a therapeutic target for the improvement of chemotherapy.
Collapse
Affiliation(s)
- Xiaoping Pan
- grid.284723.80000 0000 8877 7471Clinical Laboratory, Huadu Hospital, Southern Medical University, 510800 Guangzhou, P. R. China
| | - Xiaolv Hong
- grid.284723.80000 0000 8877 7471Department of Infectious Disease, Huadu Hospital, Southern Medical University, 510800 Guangzhou, P. R. China
| | - Sumei Li
- grid.284723.80000 0000 8877 7471Clinical Laboratory, Huadu Hospital, Southern Medical University, 510800 Guangzhou, P. R. China
| | - Ping Meng
- grid.284723.80000 0000 8877 7471Central Laboratory, Huadu Hospital, Southern Medical University, 510800 Guangzhou, P. R. China
| | - Feng Xiao
- grid.284723.80000 0000 8877 7471Clinical Laboratory, Huadu Hospital, Southern Medical University, 510800 Guangzhou, P. R. China
| |
Collapse
|
22
|
Zhen L, Zhao Q, Lü J, Deng S, Xu Z, Zhang L, Zhang Y, Fan H, Chen X, Liu Z, Gu Y, Yu Z. miR-301a-PTEN-AKT Signaling Induces Cardiomyocyte Proliferation and Promotes Cardiac Repair Post-MI. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:251-262. [PMID: 33230431 PMCID: PMC7515978 DOI: 10.1016/j.omtn.2020.08.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022]
Abstract
Adult hearts are hard to recover after cardiac injury due to the limited proliferative ability of cardiomyocytes. Emerging evidence indicates the induction of cell cycle reentry of cardiomyocytes by special treatment or stimulation, which offers adult heart regenerative potential. Herein, a microRNA (miRNA) screening in cardiomyocytes identified miR-301a enriched specially in the neonatal cardiomyocytes from rats and mice. Overexpression of miR-301a in primary neonatal cardiomyocytes and H9C2 cells induced G1/S transition of the cell cycle, promoted cellular proliferation, and protected cardiomyocytes against hypoxia-induced apoptosis. Adeno-associated virus (AAV)9-mediated cardiac delivery of miR-301a to the mice model with myocardial infarction (MI) dramatically promoted cardiac repair post-MI in vivo. Phosphatase and tensin homolog (PTEN)/phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway was confirmed to mediate miR-301a-induced cell proliferation in cardiomyocytes. Loss of function of PTEN mimicked the miR-301a-induced phenotype, while gain of function of PTEN attenuated the miR-301a-induced cell proliferation in cardiomyocytes. Application of RG7440, a small molecule inhibitor of AKT, blocked the function of miR-301a in cardiomyocytes. The current study revealed a miRNA signaling in inducing the cell cycle reentry of cardiomyocytes in the injured heart, and it demonstrated the miR-301a/PTEN/AKT signaling as a potential therapeutic target to reconstitute lost cardiomyocytes in mammals.
Collapse
Affiliation(s)
- Lixiao Zhen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Qian Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Jinhui Lü
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Shengqiong Deng
- Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Zhen Xu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Lin Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Huimin Fan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19122, USA
| | - Zhongmin Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Yuying Gu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| |
Collapse
|
23
|
Andey T, Attah MM, Akwaaba-Reynolds NA, Cheema S, Parvin-Nejad S, Acquaah-Mensah GK. Enhanced immortalization, HUWE1 mutations and other biological drivers of breast invasive carcinoma in Black/African American patients. Gene 2020; 5:100030. [PMID: 32550556 PMCID: PMC7286073 DOI: 10.1016/j.gene.2020.100030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
Black/African-American (B/AA) breast cancer patients tend to have more aggressive tumor biology compared to White/Caucasians. In this study, a variety of breast tumor molecular expression profiles of patients derived from the two racial groupings were investigated. Breast invasive carcinoma sample data (RNASeq version 2, Reverse Phase Protein Array, mutation, and miRSeq data) from the Cancer Genome Atlas were examined. The results affirm that B/AA patients are more likely than Caucasian patients to harbor the aggressive basal-like or the poor prognosis-associated HER2-enriched molecular subtypes of breast cancer. There is also a higher incidence of the triple-negative breast cancer (TNBC) among B/AA patients than the general population, a fact reflected in the mutation patterns of genes such as PIK3CA and TP53. Furthermore, an immortalization signature gene set, is enriched in samples from B/AA patients. Among stage III patients, TERT, DRAP1, and PQBP1, all members of the immortalization gene signature set, are among master-regulators with increased activity in B/AA patients. Master-regulators driving differences in expression profiles between the two groups include immortalization markers, senescence markers, and immune response and redox gene products. Differences in expression, between B/AA and Caucasian patients, of RB1, hsa-let-7a, E2F1, c-MYC, TERT, and other biomolecules appear to cooperate to enhance entry into the S-phase of the cell cycle in B/AA patients. Higher expression of miR-221, an oncomiR that facilitates entry into the cell cycle S-phase, is regulated by c-MYC, which is expressed more in breast cancer samples from B/AA patients. Furthermore, the cell migration- and invasion-promoting miRNA, miR-135b, has increased relative expression in B/AA patients. Knock down of the immortalization marker TERT inhibited triple-negative breast cancer cell lines (MDA-MB-231 and MDA-MB-468) cell viability and decreased expression of TERT, MYC and WNT11. For those patients with available survival data, prognosis of stage II patients 50 years of age or younger at diagnosis, was distinctly poorer in B/AA patients. Also associated with this subset of B/AA patients are missense mutations in HUWE1 and PTEN expression loss. Relative to Caucasian non-responders to endocrine therapy, B/AA non-responders show suppressed expression of a signature gene set on which biological processes including signaling by interleukins, circadian clock, regulation of lipid metabolism by PPARα, FOXO-mediated transcription, and regulation of TP53 degradation are over-represented. Thus, we identify molecular expression patterns suggesting diminished response to oxidative stress, changes in regulation of tumor suppressors/facilitators, and enhanced immortalization in B/AA patients are likely important in defining the more aggressive molecular tumor phenotype reported in B/AA patients.
Collapse
Key Words
- ARACNe, Algorithm for the Reconstruction of Accurate Cellular Networks
- African
- B/AA, Black/African-American breast cancer patients
- B/AA50, Black/African-American stage II breast invasive carcinoma patients diagnosed at age 50 years or younger
- BrCA, breast invasive carcinoma
- Breast invasive carcinoma
- DE, differential expression
- DM, differential mutation
- EMT, Epithelial-Mesenchymal Transition
- GSEA, Gene Set Enrichment Analysis
- Immortalization
- Molecular subtype
- RMA, robust multi-array average
- RPPA, Reverse Phase Protein Array
- Race
- TCGA, the Cancer Genome Atlas
- TNBC, triple-negative breast cancer
- TRN, Transcriptional Regulatory Network
- Triple-negative breast cancer
- VIPER, Virtual Inference of Protein activity by Enriched Regulon Analysis
- W50, White stage II breast invasive carcinoma patients diagnosed at age 50 years or younger
Collapse
Affiliation(s)
- Terrick Andey
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster St, Worcester, MA 01608, USA
| | | | - Nana Adwoa Akwaaba-Reynolds
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster St, Worcester, MA 01608, USA
| | - Sana Cheema
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster St, Worcester, MA 01608, USA
| | - Sara Parvin-Nejad
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster St, Worcester, MA 01608, USA
| | - George K. Acquaah-Mensah
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster St, Worcester, MA 01608, USA
| |
Collapse
|
24
|
Sun Q, Hao Q, Lin YC, Song YJ, Bangru S, Arif W, Tripathi V, Zhang Y, Cho JH, Freier SM, Jenkins LM, Ma J, Yoon JH, Kalsotra A, Lal A, Prasanth SG, Prasanth KV. Antagonism between splicing and microprocessor complex dictates the serum-induced processing of lnc- MIRHG for efficient cell cycle reentry. RNA (NEW YORK, N.Y.) 2020; 26:1603-1620. [PMID: 32675111 PMCID: PMC7566567 DOI: 10.1261/rna.075309.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
Cellular quiescence and cell cycle reentry regulate vital biological processes such as cellular development and tissue homeostasis and are controlled by precise regulation of gene expression. The roles of long noncoding RNAs (lncRNAs) during these processes remain to be elucidated. By performing genome-wide transcriptome analyses, we identify differential expression of several hundreds of lncRNAs, including a significant number of the less-characterized class of microRNA-host-gene (MIRHG) lncRNAs or lnc-MIRHGs, during cellular quiescence and cell cycle reentry in human diploid fibroblasts. We observe that MIR222HG lncRNA displays serum-stimulated RNA processing due to enhanced splicing of the host nascent pri-MIR222HG transcript. The pre-mRNA splicing factor SRSF1 negatively regulates the microprocessor-catalyzed cleavage of pri-miR-222, thereby increasing the cellular pool of the mature MIR222HG Association of SRSF1 to pri-MIR222HG, including to a mini-exon, which partially overlaps with the primary miR-222 precursor, promotes serum-stimulated splicing over microRNA processing of MIR222HG Further, we observe that the increased levels of spliced MIR222HG in serum-stimulated cells promote the cell cycle reentry post quiescence in a microRNA-independent manner. MIR222HG interacts with DNM3OS, another lncRNA whose expression is elevated upon serum-stimulation, and promotes cell cycle reentry. The double-stranded RNA binding protein ILF3/2 complex facilitates MIR222HG:DNM3OS RNP complex assembly, thereby promoting DNM3OS RNA stability. Our study identifies a novel mechanism whereby competition between the splicing and microprocessor machinery modulates the serum-induced RNA processing of MIR222HG, which dictates cell cycle reentry.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yo-Chuen Lin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Vidisha Tripathi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang Zhang
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Susan M Freier
- Ionis Pharmaceuticals Inc., Carlsbad, California 92008, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Jian Ma
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
25
|
Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188413. [PMID: 32827583 DOI: 10.1016/j.bbcan.2020.188413] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Micro RNAs (miRNAs) are small non-coding RNAs that are essential for regulation of gene expression of the target genes. Large number of miRNAs are organized into defined units known as miRNA clusters (MCs). The MCs consist of two or more than two miRNA encoding genes driven by a single promoter, transcribed together in the same orientation, that are not separated from each other by a transcription unit. Aberrant miRNA clusters expression is reported in breast cancer (BC), exhibiting both pro-tumorogenic and anti-tumorigenic role. Altered MCs expression facilitates to breast carcinogenesis by promoting the breast cells to acquire the various hallmarks of the cancer. Since miRNA clusters contain multiple miRNA encoding genes, targeting cluster may be more attractive than targeting individual miRNAs. Besides targeting dysregulated miRNA clusters in BC, studies have focused on the mechanism of action, and its contribution to the progression of the BC. The present review provides a comprehensive overview of dysregulated miRNA clusters and its role in the acquisition of cancer hallmarks in BC. More specifically, we have presented the regulation, differential expression, classification, targets, mechanism of action, and signaling pathways of miRNA clusters in BC. Additionally, we have also discussed the potential utility of the miRNA cluster as a diagnostic and prognostic indicator in BC.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
26
|
Khalife H, Skafi N, Fayyad-Kazan M, Badran B. MicroRNAs in breast cancer: New maestros defining the melody. Cancer Genet 2020; 246-247:18-40. [PMID: 32805688 DOI: 10.1016/j.cancergen.2020.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs, short non-coding single-stranded RNAs, are important regulators and gatekeepers of the coding genes in the human genome. MicroRNAs are highly conserved among species and expressed in different tissues and cell types. They are involved in almost all the biological processes as apoptosis, proliferation, cell cycle arrest and differentiation. Playing all these roles, it is not surprising that the deregulation of the microRNA profile causes a number of diseases including cancer. Breast cancer, the most commonly diagnosed malignancy in women, accounts for the highest cancer-related deaths worldwide. Different microRNAs were shown to be up or down regulated in breast cancer. MicroRNAs can function as oncogenes or tumor suppressors according to their targets. In this review, the most common microRNAs implicated in breast cancer are fully illustrated with their targets. Besides, the review highlights the effect of exosomal microRNA on breast cancer and the effect of microRNAs on drug and therapies resistance as well as the miRNA-based therapeutic strategies used until today.
Collapse
Affiliation(s)
- Hoda Khalife
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| | - Najwa Skafi
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Bassam Badran
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| |
Collapse
|
27
|
Xu P, Lv D, Wang X, Wang Y, Hou C, Gao K, Guo X. Inhibitory effects of Bombyx mori antimicrobial peptide cecropins on esophageal cancer cells. Eur J Pharmacol 2020; 887:173434. [PMID: 32763299 DOI: 10.1016/j.ejphar.2020.173434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 12/29/2022]
Abstract
Bombyx mori antimicrobial peptides (BmAMPs) are important effectors in silkworm immune system. They can inhibit and kill a variety of bacteria and fungi. Recent studies have shown that some kinds of BmAMPs exert strong inhibitory effects on a variety of tumor cells. In the present study, the antitumor activity of BmAMP Cecropin A (BmCecA) and BmAMP Cecropin D (BmCecD) was investigated against human esophageal cancer cells and their antitumor mechanism preliminary explored. Cell Counting Kit-8 and colony formation assays indicated that BmCecA and BmCecD suppressed cell proliferation and reduced colony formation of both Eca109 and TE13 cells in a dose-dependent manner, but exhibited no inhibitory effect on normal human embryonic kidney 293T cells. Wound healing and invasion experiments indicated that both BmCecA and BmCecD inhibited migration and invasion of Eca109 and TE13 cells in vitro. Annexin V/propidium iodide staining and flow cytometry detection suggested that BmCecA induced the apoptosis of Eca109 cells in a dose-dependent manner. RT-qPCR and western blot analysis showed that BmCecA induced apoptosis of Eca109 cells through the activation of a mitochondria-mediated caspase pathway, the upregulation of B-cell lymphoma 2 (Bcl-2)-associated X protein and the downregulation of Bcl-2. In addition, BmCecA significantly inhibited the growth of xenograft tumors in Eca109-bearing mice. These results suggested that BmCecA and BmCecD might serve as potential therapeutic agents for the treatment of cancer in the future.
Collapse
Affiliation(s)
- Ping Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Dingding Lv
- Nursing School, Zhenjiang College, Zhenjiang, 21200, Jiangsu, China
| | - Xihui Wang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yongsheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Chengxiang Hou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Kun Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
| |
Collapse
|
28
|
Yan Y, Xu Y, Ni G, Wang S, Li X, Gao J, Zhang H. MicroRNA-221 promotes proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) by targeting tissue inhibitor of metalloproteinases-3 (TIMP3). Cardiovasc Diagn Ther 2020; 10:646-657. [PMID: 32968621 PMCID: PMC7487395 DOI: 10.21037/cdt-20-328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/09/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Aberrant vascular smooth muscle cell (VSMC) proliferation and migration play an important role in the development of cardiovascular diseases including pulmonary arterial hypertension (PAH). MicroRNAs (miRNAs, miRs) have been considered to be implicated in the progression of PAH pathogenesis. In this study, we aim to clarify the role of miR-221 on proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) and identify the target genes involved in this biological process. METHODS PASMCs were isolated from the pulmonary arteries of male Sprague-Dawley (SD) rats. Cell proliferation of PASMCs was detected by 5-ethynyl-2'-deoxyuridine (EdU) assay. Cell migration was determined by a scratch wound assay. Quantitative real-time PCR was used to determine the expression of miR-221 while western blot analysis was used to determine the expression of TIMP3. Luciferase assay was used to confirm that TIMP3 was a direct target gene of miR-221. Monocrotaline (MCT) induced-PAH rat model was established and miR-221 and TIMP3 levels were checked in lung tissue and PASMCs from PAH rats. RESULTS miR-221 was able to promote the proliferation and migration PASMCs. TIMP3 were negatively regulated by miR-221 at the protein level in PASMCs. In addition, TIMP3 was identified to be a direct target gene of miR-221 in PASMCs based on luciferase assays. TIMP3 knockdown abolished the inhibitory effect of miR-221 inhibitor on PASMCs proliferation and migration, suggesting TIMP3 mediated the effects of miR-221 in PASMCs. Finally, we found that miR-221 was increased while TIMP3 was down-regulated in PASMCs in MCT-treated rats. CONCLUSIONS In conclusion, miR-221 promotes PASMCs proliferation and migration by targeting TIMP3. MiR-221 and TIMP3 could be potential therapeutic targets for the treatment of PAH.
Collapse
Affiliation(s)
- Yan Yan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Gao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Lü J, Zhang C, Han J, Xu Z, Li Y, Zhen L, Zhao Q, Guo Y, Wang Z, Bischof E, Yu Z. Starvation stress attenuates the miRNA-target interaction in suppressing breast cancer cell proliferation. BMC Cancer 2020; 20:627. [PMID: 32631271 PMCID: PMC7339532 DOI: 10.1186/s12885-020-07118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background Emerging evidence has demonstrated the limited access to metabolic substrates as an effective approach to block cancer cell growth. The mechanisms remain unclear. Our previous work has revealed that miR-221/222 plays important role in regulating breast cancer development and progression through interaction with target gene p27. Results Herein, we determined the miRNA-mRNA interaction in breast cancer cells under induced stress status of starvation. Starvation stimulation attenuated the miR-221/222-p27 interaction in MDA-MB-231 cells, thereby increased p27 expression and suppressed cell proliferation. Through overexpression or knockdown of miR-221/222, we found that starvation-induced stress attenuated the negative regulation of p27 expression by miR-221/222. Similar patterns for miRNA-target mRNA interaction were observed between miR-17-5p and CyclinD1, and between mR-155 and Socs1. Expression of Ago2, one of the key components of RNA-induced silencing complex (RISC), was decreased under starvation-induced stress status, which took responsibility for the impaired miRNA-target interaction since addition of exogenous Ago2 into MDA-MB-231 cells restored the miR-221/222-p27 interaction in starvation condition. Conclusions We demonstrated the attenuated interaction between miR-221/222 and p27 by starvation-induced stress in MDA-MB-231 breast cancer cells. The findings add a new page to the general knowledge of negative regulation of gene expression by miRNAs, also demonstrate a novel mechanism through which limited access to nutrients suppresses cancer cell proliferation. These insights provide a basis for development of novel therapeutic options for breast cancer.
Collapse
Affiliation(s)
- Jinhui Lü
- Research Center for Translational Medicine, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Chuyi Zhang
- Research Center for Translational Medicine, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Junyi Han
- Department of Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhen Xu
- Research Center for Translational Medicine, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yuan Li
- Research Center for Translational Medicine, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lixiao Zhen
- Research Center for Translational Medicine, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Qian Zhao
- Research Center for Translational Medicine, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yuefan Guo
- Research Center for Translational Medicine, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhaohui Wang
- Research Center for Translational Medicine, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Jinzhou Medical University, Liaoning, China
| | - Evelyne Bischof
- Shanghai University of Medicine and Health Sciences Clinical Medicine Division, Shanghai, China. .,Division of Internal Medicine, University Hospital of Basel, Petersgraben 4, 4051, Basel l, Switzerland.
| | - Zuoren Yu
- Research Center for Translational Medicine, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
30
|
Zhang S, Wang Y, Wang Y, Peng J, Yuan C, Zhou L, Xu S, Lin Y, Du Y, Yang F, Zhang J, Dai H, Yin W, Lu J. Serum miR-222-3p as a Double-Edged Sword in Predicting Efficacy and Trastuzumab-Induced Cardiotoxicity for HER2-Positive Breast Cancer Patients Receiving Neoadjuvant Target Therapy. Front Oncol 2020; 10:631. [PMID: 32426280 PMCID: PMC7212359 DOI: 10.3389/fonc.2020.00631] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background: We aimed to explore whether the expression of serum miR-222-3p might contribute to early prediction of therapeutic response, clinical outcomes, and adverse events for HER2-positive breast cancer patients receiving neoadjuvant therapy (NAT). Methods: A total of 65 HER2-positive breast cancer patients receiving NAT were analyzed. The concentration of serum miR-222-3p was detected by quantitative real-time PCR. Logistic regression analysis was used to identify the association of serum miR-222-3p with pathological complete response (pCR). The relationship of serum miR-222-3p with disease-free survival (DFS) and overall survival (OS) was examined via log-rank test and Cox proportional hazards analysis. The ordered logistic regression was applied to evaluate the association between serum miR-222-3p and adverse events. Results: The miR-222-3p low group was more likely to achieve pCR [odds ratio (OR) = 0.258, P = 0.043]. The interaction between miR-222-3p and presenting Ki67 level was also detected for pCR (OR = 49.230, Pinteraction = 0.025). The miR-222-3p low group was correlated with superior DFS (P = 0.029) and OS (P = 0.0037). The expression of serum miR-222-3p was the independent protective factor for trastuzumab-induced cardiotoxicity (P < 0.05) and anemia (P = 0.013). Conclusions: Serum miR-222-3p is the potential factor to predict pCR, survival benefit and trastuzumab-induced cardiotoxicity for HER2-positive breast cancer patients receiving NAT.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chenwei Yuan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuguang Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yueyao Du
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fan Yang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
31
|
Amini S, Abak A, Sakhinia E, Abhari A. MicroRNA-221 and MicroRNA-222 in Common Human Cancers: Expression, Function, and Triggering of Tumor Progression as a Key Modulator. Lab Med 2020; 50:333-347. [PMID: 31049571 DOI: 10.1093/labmed/lmz002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/28/2018] [Accepted: 01/19/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short (~22 nucleotides [nt]), single-stranded RNA oligonucleotides that are regulatory in nature and are often dysregulated in various diseases, including cancer. miRNAs can act as oncomiRs (miRNAs associated with cancer) or tumor suppressor miRNAs and have the potential to be a diagnostic, prognostic, noninvasive biomarker for these diseases. MicroRNA-221 (miR-221) and microRNA-222 (miR-222) are homologous miRNAs, located on the human chromosome Xp11.3, which factored significantly in impairment in the regulation of a wide range of cancers. In this review, we have highlighted the most consistently reported dysregulated miRNAs that trigger human tissues to express cancerous features and surveyed the role of those miRNAs in metastasis, apoptosis, angiogenesis, and tumor prognosis. Also, we applied the causes of drug resistance and the role of coordinated actions of these miRNAs to epigenetic changes and selected miRNAs as a potential type of cancer treatment.
Collapse
Affiliation(s)
- Sima Amini
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Tabriz Genetic Analysis Center (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry and Clinical Laboratory, Division of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Li S, Li Q, Lü J, Zhao Q, Li D, Shen L, Wang Z, Liu J, Xie D, Cho WC, Xu S, Yu Z. Targeted Inhibition of miR-221/222 Promotes Cell Sensitivity to Cisplatin in Triple-Negative Breast Cancer MDA-MB-231 Cells. Front Genet 2020; 10:1278. [PMID: 32010177 PMCID: PMC6971202 DOI: 10.3389/fgene.2019.01278] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Cisplatin has been widely used in the treatment of a various types of cancers including triple-negative breast cancer (TNBC) by damaging DNA and inducing apoptosis. However, its anti-cancer effects are often limited due to chemo-resistance, which is one of the main reasons causing cancer relapse and metastasis. To overcome resistance, cisplatin is often used in combination with other drugs or molecules. Our study found that the targeted inhibition of miR-221/222 in MDA-MB-231 cells promoted cisplatin-induced cell apoptosis, and increased the cell sensitivity to cisplatin in vitro. Much higher expression levels of miR-221/222 were detected in the cisplatin-resistant MDA-MB-231 cells and in cisplatin-resistant breast cancer patients. The combination chemotherapy of cisplatin with anti-miR-221/222 showed much higher efficiency in suppressing tumor growth in the mice transplanted with MDA-MB-231 cells. In addition, anti-miR-221 and anti-miR-222 showed synergetic effects on improving sensitivity to cisplatin in MDA-MB-231 cells. Suppression of SOCS1-STAT3-Bcl-2 pathway and activation of p53-Pten signaling both contribute to anti-miR-221/222-induced sensitivity to cisplatin in MDA-MB-231 cells. These findings suggest the potential of a novel approach for the combination chemotherapy of cisplatin with small non-coding RNA in treatment of human TNBC.
Collapse
Affiliation(s)
- Shujun Li
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Maternal and Children Health Management, The Third Hospital of BaoGang Group, Baotou, China
| | - Qun Li
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Li
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathological Physiology, Tongji University School of Medicine, Shanghai, China
| | - Lei Shen
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongrui Wang
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjun Liu
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongping Xie
- Department of Pathological Physiology, Tongji University School of Medicine, Shanghai, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathological Physiology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Ritter A, Hirschfeld M, Berner K, Rücker G, Jäger M, Weiss D, Medl M, Nöthling C, Gassner S, Asberger J, Erbes T. Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int J Oncol 2019; 56:47-68. [PMID: 31789396 PMCID: PMC6910196 DOI: 10.3892/ijo.2019.4920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Due to the positive association between neoadjuvant chemotherapy (NACT) and the promising early response rates of patients with triple negative breast cancer (TNBC), including probabilities of pathological complete response, NACT is increasingly used in TNBC management. Liquid biopsy-based biomarkers with the power to diagnose the early response to NACT may support established monitoring tools, which are to a certain extent imprecise and costly. Simple serum- or urine-based analyses of non-coding RNA (ncRNA) expression may allow for fast, minimally-invasive testing and timely adjustment of the therapy regimen. The present study investigated breast cancer-related ncRNAs [microRNA (miR)-7, -9, -15a, -17, -18a, -19b, -21, -30b, -222 and -320c, PIWI-interacting RNA-36743 and GlyCCC2] in triple positive BT-474 cells and three TNBC cell lines (BT-20, HS-578T and MDA-MB-231) treated with various chemotherapeutic agents using reverse transcription-quantitative PCR. Intracellular and secreted microvesicular ncRNA expression levels were analysed using a multivariable statistical regression analysis. Chemotherapy-driven effects were investigated by analysing cell cycle determinants at the mRNA and protein levels. Serum and urine specimens from 8 patients with TNBC were compared with 10 healthy females using two-sample t-tests. Samples from the patients with TNBC were compared at two time points. Chemotherapeutic treatments induced distinct changes in ncRNA expression in TNBC cell lines and the BT-474 cell line in intra- and extracellular compartments. Serum and urine-based ncRNA expression analysis was able to discriminate between patients with TNBC and controls. Time point comparisons in the urine samples of patients with TNBC revealed a general rise in the level of ncRNA. Serum data suggested a potential association between piR-36743, miR-17, -19b and -30b expression levels and an NACT-driven complete clinical response. The present study highlighted the potential of ncRNAs as liquid biopsy-based biomarkers in TNBC chemotherapy treatment. The ncRNAs tested in the present study have been previously investigated for their involvement in BC or TNBC chemotherapy responses; however, these previous studies were restricted to patient tissue or in vitro models. The data from the present study offer novel insight into ncRNA expression in liquid samples from patients with TNBC, and the study serves as an initial step in the evaluation of ncRNAs as diagnostic biomarkers in the monitoring of TNBC therapy.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79104 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Markus Medl
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Sandra Gassner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| |
Collapse
|
34
|
Zhang P, Yu J, Gui Y, Sun C, Han W. Inhibition of miRNA-222-3p Relieves Staphylococcal Enterotoxin B-Induced Liver Inflammatory Injury by Upregulating Suppressors of Cytokine Signaling 1. Yonsei Med J 2019; 60:1093-1102. [PMID: 31637892 PMCID: PMC6813146 DOI: 10.3349/ymj.2019.60.11.1093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Staphylococcal enterotoxin B (SEB) has been well-documented to induce liver injury. miRNA-222-3p (miR-222-3p) was implicated in SEB-induced lung injury and several liver injuries. This study aimed to explore the role of miR-222-3p in SEB-induced liver injury. MATERIALS AND METHODS Expression of miR-222-3p and suppressors of cytokine signaling 1 (SOCS1) was detected using real-time quantitative PCR and western blot. Liver injury was determined by levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and inflammatory cytokines, numbers of infiltrating mononuclear cells using AST/ALT assay kit, enzyme-linked immunosorbent assay (ELISA), and hematoxylin-eosin staining, respectively. Target binding between miR-222-3p and SOCS1 was predicted on targetScan software, and confirmed by luciferase reporter assay. RESULTS SEB induced liver injury in D-galactosamine (D-gal)-sensitized mice, as demonstrated by increased serum levels of AST and ALT, elevated release of interferon-gamma (INF-γ), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-2, and promoted infiltrating immune cells into liver. Expression of miR-222-3p was dramatically upregulated, and SOCS1 was downregulated in SEB-induced liver injury both in mice and splenocytes. Moreover, miR-222-3p knockout (KO) mice exhibited alleviated liver injury accompanied with SOCS1 upregulation. Besides, splenocytes under SEB challenge released less INF-γ, TNF-α, IL-6, and IL-2 during miR-222-3p knockdown. Mechanically, SOCS1 was targeted and downregulated by miR-222-3p. Upregulation of SOCS1 attenuated INF-γ, TNF-α, IL-6, and IL-2 release in SEB-induced splenocytes; downregulation of SOCS1 could block the suppressive role of miR-222-3p knockdown in SEB-induced splenocytes. CONCLUSION Inhibition of miR-222-3p relieves SEB-induced liver inflammatory injury by upregulating SOCS1, thereby providing the first evidence of miR-222-3p in SEB-induced liver injury.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Clinical Laboratory, the Third People's Hospital of Dalian, Dalian, China
| | - Jingda Yu
- Department of Clinical Laboratory, the Baotou Medical College of Inner Mongolia University of Science and Technology, Inner Mongolia, China
| | - Yifang Gui
- Department of Clinical Laboratory, the Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Cui Sun
- Department of Clinical Laboratory, the Third People's Hospital of Dalian, Dalian, China
| | - Weiping Han
- Department of Clinical Laboratory, the Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
35
|
Kabekkodu SP, Shukla V, Varghese VK, Adiga D, Vethil Jishnu P, Chakrabarty S, Satyamoorthy K. Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1563. [PMID: 31436881 DOI: 10.1002/wrna.1563] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/05/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
MiRNAs are class of noncoding RNA important for gene expression regulation in many plants, animals and viruses. MiRNA clusters contain a set of two or more miRNA encoding genes, transcribed together as polycistronic miRNAs. Currently, there are approximately 159 miRNA clusters reported in the human genome consisting of miRNAs ranging from two or more miRNA genes. A large proportion of clustered miRNAs resides in and around the fragile sites or cancer associated genomic hotspots and plays an important role in carcinogenesis. Altered expression of miRNA cluster can be pro-tumorigenic or anti-tumorigenic and can be targeted for clinical management of cancer. Over the past few years, manipulation of miRNA clusters expression is attempted for experimental purpose as well as for diagnostic, prognostic and therapeutic applications in cancer. Re-expression of miRNAs by epigenetic therapy, genome editing such as clustered regulatory interspaced short palindromic repeats (CRISPR) and miRNA mowers showed promising results in cancer therapy. In this review, we focused on the potential of miRNA clusters as a biomarker for diagnosis, prognosis, targeted therapy as well as strategies for modulating their expression in a therapeutic context. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Processing > Processing of Small RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
36
|
Klinge CM. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018; 4:E40. [PMID: 30545127 PMCID: PMC6316884 DOI: 10.3390/ncrna4040040] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are regulators of intracellular and intercellular signaling in breast cancer. ncRNAs modulate intracellular signaling to control diverse cellular processes, including levels and activity of estrogen receptor α (ERα), proliferation, invasion, migration, apoptosis, and stemness. In addition, ncRNAs can be packaged into exosomes to provide intercellular communication by the transmission of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) to cells locally or systemically. This review provides an overview of the biogenesis and roles of ncRNAs: small nucleolar RNA (snRNA), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), miRNAs, and lncRNAs in breast cancer. Since more is known about the miRNAs and lncRNAs that are expressed in breast tumors, their established targets as oncogenic drivers and tumor suppressors will be reviewed. The focus is on miRNAs and lncRNAs identified in breast tumors, since a number of ncRNAs identified in breast cancer cells are not dysregulated in breast tumors. The identity and putative function of selected lncRNAs increased: nuclear paraspeckle assembly transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), steroid receptor RNA activator 1 (SRA1), colon cancer associated transcript 2 (CCAT2), colorectal neoplasia differentially expressed (CRNDE), myocardial infarction associated transcript (MIAT), and long intergenic non-protein coding RNA, Regulator of Reprogramming (LINC-ROR); and decreased levels of maternally-expressed 3 (MEG3) in breast tumors have been observed as well. miRNAs and lncRNAs are considered targets of therapeutic intervention in breast cancer, but further work is needed to bring the promise of regulating their activities to clinical use.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
37
|
Chen X, Chen Y, Huang HM, Li HD, Bu FT, Pan XY, Yang Y, Li WX, Li XF, Huang C, Meng XM, Li J. SUN2: A potential therapeutic target in cancer. Oncol Lett 2018; 17:1401-1408. [PMID: 30675193 PMCID: PMC6341589 DOI: 10.3892/ol.2018.9764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
The incidence of cancer is increasing at an alarming rate despite recent advances in prevention strategies, diagnostics and therapeutics for various types of cancer. The identification of novel biomarkers to aid in prognosis and treatment for cancer is urgently required. Uncontrolled proliferation and dysregulated apoptosis are characteristics exhibited by cancer cells in the initiation of various types of cancer. Notably, aberrant expression of crucial oncogenes or cancer suppressors is a defining event in cancer occurrence. Research has demonstrated that SAD1/UNC84 domain protein-2 (SUN2) serves a suppressive role in breast cancer, atypical teratoid/rhabdoid tumors and lung cancer progression. Furthermore, SUN2 inhibits cancer cell proliferation, migration and promotes apoptosis. Recent reports have also shown that SUN2 serves prominent roles in resistance to the excessive DNA damage that destabilizes the genome and promotes cancer development, and these functions of SUN2 are critical for evading initiation of cancer. Additionally, increasing evidence has demonstrated that SUN2 is involved in maintaining cell nuclear structure and appears to be a central component for organizing the natural nuclear architecture in cancer cells. The focus of the present review is to provide an overview on the pharmacological functions of SUN2 in cancers. These findings suggest that SUN2 may serve as a promising therapeutic target and novel predictive marker in various types of cancer.
Collapse
Affiliation(s)
- Xin Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yu Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hui-Min Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hai-Di Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Fang-Tian Bu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xue-Yin Pan
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yang Yang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wan-Xia Li
- Department of Pharmacy, Anqing Municipal Hospital, Anqing, Anhui 246003, P.R. China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
38
|
Howard EW, Yang X. microRNA Regulation in Estrogen Receptor-Positive Breast Cancer and Endocrine Therapy. Biol Proced Online 2018; 20:17. [PMID: 30214383 PMCID: PMC6134714 DOI: 10.1186/s12575-018-0082-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
As de novo and acquired resistance to standard first line endocrine therapies is a growing clinical challenge for estrogen receptor-positive (ER+) breast cancer patients, understanding the mechanisms of resistance is critical to develop novel therapeutic strategies to prevent therapeutic resistance and improve patient outcomes. The widespread post-transcriptional regulatory role that microRNAs (miRNAs) can have on various oncogenic pathways has been well-documented. In particular, several miRNAs are reported to suppress ERα expression via direct binding with the 3’ UTR of ESR1 mRNA, which can confer resistance to estrogen/ERα-targeted therapies. In turn, estrogen/ERα activation can modulate miRNA expression, which may contribute to ER+ breast carcinogenesis. Given the reported oncogenic and tumor suppressor functions of miRNAs in ER+ breast cancer, the targeted regulation of specific miRNAs is emerging as a promising strategy to treat ER+ breast cancer and significantly improve patient responsiveness to endocrine therapies. In this review, we highlight the major miRNA-ER regulatory mechanisms in context with ER+ breast carcinogenesis, as well as the critical miRNAs that contribute to endocrine therapy resistance or sensitivity. Collectively, this comprehensive review of the current literature sheds light on the clinical applications and challenges associated with miRNA regulatory mechanisms and novel miRNA targets that may have translational value as potential therapeutics for the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| |
Collapse
|
39
|
Mandujano-Tinoco EA, García-Venzor A, Melendez-Zajgla J, Maldonado V. New emerging roles of microRNAs in breast cancer. Breast Cancer Res Treat 2018; 171:247-259. [PMID: 29948402 DOI: 10.1007/s10549-018-4850-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/03/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND MicroRNAs constitute a large family of non-coding RNAs, which actively participate in tumorigenesis by regulating a set of mRNAs of distinct signaling pathways. An altered expression of these molecules has been found in different tumorigenic processes of breast cancer, the most common type of cancer in the female population worldwide. PURPOSE The objective of this review is to discuss how miRNAs become master regulators in breast tumorigenesis. METHODS An integrative review of miRNAs and breast cancer literature from the last 5 years was done on PubMed. We summarize recent works showing that the defects on the biogenesis of miRNAs are associated with different breast cancer characteristics. Then, we show several examples that demonstrate the link between cellular processes regulated by miRNAs and the hallmarks of breast cancer. Finally, we examine the complexity in the regulation of these molecules as they are modulated by other non-coding RNAs and the clinical applications of miRNAs as they could serve as good diagnostic and classification tools. CONCLUSION The information presented in this review is important to encourage new directed studies that consider microRNAs as a good tool to improve the diagnostic and treatment alternatives in breast cancer.
Collapse
Affiliation(s)
- Edna Ayerim Mandujano-Tinoco
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico.,Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra". Calz., México-Xochimilco 289, Arenal de Guadalupe, 14389, Mexico, CDMX, Mexico
| | - Alfredo García-Venzor
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico
| | - Vilma Maldonado
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico.
| |
Collapse
|
40
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
41
|
Peng J, Zhou Y, Deng Z, Zhang H, Wu Y, Song T, Yang Y, Wei H, Peng J. miR-221 negatively regulates inflammation and insulin sensitivity in white adipose tissue by repression of sirtuin-1 (SIRT1). J Cell Biochem 2018; 119:6418-6428. [PMID: 29236311 DOI: 10.1002/jcb.26589] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022]
Abstract
It is well known that obesity-induced white adipose tissue inflammation is an important reason for insulin-resistance and type 2 diabetes mellitus. Sirtuin-1 (SIRT1) is an important regulator of inflammtion response pathways in white adipose tissue. Here, we found that miR-221 negatively regulated SIRT1 in white adipose tissue during inflammation and HFD-induced obesity. MiR-221 is a putative oncogene which has been found overexpressed in a number of human tumors. Recently, it has also found that miR-221 was increased in obese adipose tissue and may be involved in inflammation and insulin-resistance. However the specific mechanism remains to be elucidated. In our present study, we found that overexpression of miR-221 decreased the protein abundance of SIRT1 and caused inflammation and insulin-resistance in differentiated 3T3-L1 cells. Conversely, miR-221 inhibition increased the protein levels, ameliorated inflammation, and improved insulin sensitivity. Moreover, inhibition of SIRT1 by EX527 significantly diminished the downregulation of the inflammation and insulin-resistance levels induced by the miR-221 inhibitor. In conclusion, our data suggest that miR-221 promotes white adipose tissue inflammation and decreases insulin sensitivity in obesity, at least in part, through suppressing SIRT1.
Collapse
Affiliation(s)
- Jie Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zhao Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Hong Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yinghui Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yang Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| |
Collapse
|
42
|
Nejad C, Stunden HJ, Gantier MP. A guide to miRNAs in inflammation and innate immune responses. FEBS J 2018; 285:3695-3716. [DOI: 10.1111/febs.14482] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/08/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Charlotte Nejad
- Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton Australia
- Department of Molecular and Translational Science Monash University Clayton Australia
| | - H. James Stunden
- Institute of Innate Immunity Biomedical Center University Hospitals Bonn Bonn Germany
| | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton Australia
- Department of Molecular and Translational Science Monash University Clayton Australia
| |
Collapse
|
43
|
Hoppe R, Fan P, Büttner F, Winter S, Tyagi AK, Cunliffe H, Jordan VC, Brauch H. Profiles of miRNAs matched to biology in aromatase inhibitor resistant breast cancer. Oncotarget 2018; 7:71235-71254. [PMID: 27659519 PMCID: PMC5342075 DOI: 10.18632/oncotarget.12103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022] Open
Abstract
Aromatase inhibitor (AI) resistance during breast cancer treatment is mimicked by MCF-7:5C (5C) and MCF-7:2A (2A) cell lines that grow spontaneously. Survival signaling is reconfigured but cells are vulnerable to estradiol (E2)-inducible apoptosis. These model systems have alterations of stress related pathways including the accumulation of endoplasmic reticulum, oxidative, and inflammatory stress that occur prior to E2-induced apoptosis. We investigated miRNA expression profiles of 5C and 2A to characterize their AI resistance phenotypes. Affymetrix GeneChip miRNA2.0 arrays identified 184 miRNAs differentially expressed in 2A and 5C compared to E2-free wild-type MCF-7:WS8. In 5C, 34 miRNAs of the DLK1-DIO3 locus and miR-31 were overexpressed, whereas miR-222 was low. TCGA data revealed poor and favorable overall survival for low miR-31 and miR-222 levels, respectively (HR=3.0, 95% CI:1.9-4.8; HR=0.3, 95% CI:0.1-0.6). Targets of deregulated miRNAs were identified using CLIP-confirmed TargetScan predictions. KEGG enrichment analyses for 5C- and 2A-specific target gene sets revealed pathways associated with cell proliferation including insulin, mTOR, and ErbB signaling as well as immune response and metabolism. Key genes overrepresented in 5C- and 2A-specific pathway interaction networks including EGFR, IGF1R and PIK3R1 had lower protein levels in 5C compared to 2A and were found to be differentially modulated by respective miRNA sets. Distinct up-regulated miRNAs from the DLK1-DIO3 locus may cause these attenuative effects as they are predicted to interact with corresponding 3′ untranslated regions. These new miRNA profiles become an important regulatory database to explore E2-induced apoptotic mechanisms of clinical relevance for the treatment of resistant breast cancer.
Collapse
Affiliation(s)
- Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Ping Fan
- Department of Breast Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Florian Büttner
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Amit K Tyagi
- Department of Breast Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Heather Cunliffe
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - V Craig Jordan
- Department of Breast Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
44
|
Chen J, Chen Z, Huang J, Chen F, Ye W, Ding G, Wang X. Bioinformatics identification of dysregulated microRNAs in triple negative breast cancer based on microRNA expression profiling. Oncol Lett 2017; 15:3017-3023. [PMID: 29435032 PMCID: PMC5778821 DOI: 10.3892/ol.2017.7707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) accounts for approximately 15-20% of all breast cancer cases and is usually more aggressive with a poorer clinical outcome compared with other breast cancer subtypes. Evidence of the involvement of microRNAs (miRNAs) in cancer has provided an opportunity for the development of novel effective therapeutic targets in TNBC. In the present study, the miRNA expression profiles of the human breast cancer cell line, MDA-MB-231, and MCF-7 cells, was evaluated by using miRNA microarray analysis. A total of 107 differentially expressed miRNAs (57 upregulated and 50 downregulated) were identified in MDA-MB-231 cells compared with MCF-7 cells. Five prominently dysregulated miRNAs (miR-200c-3p, miR-221-3p, miR-222-3p, miR-192-5p and miR-146a) were further confirmed by reverse transcription-quantitative polymerase chain reaction. In addition, gene ontology analysis and pathway enrichment analysis revealed that the dysregulated miRNAs and predicted targets were found to be involved in the mitogen-activated protein kinase, Wnt, and transforming growth factor-β signaling pathways, which were known to contribute to TNBC progression and metastasis. Finally, miRNA gene network analyses suggested that miR-200c may serve as a crucial miRNA in breast cancer. Taken together, these findings may provide a comprehensive view of the function of aberrant miRNAs involved in TNBC, and dysregulated miRNAs hold promise as potential biomarkers and therapeutic targets for patients with TNBC.
Collapse
Affiliation(s)
- Junqing Chen
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Zhanhong Chen
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Jian Huang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Feng Chen
- Department of Breast Surgical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Weiwu Ye
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Guojun Ding
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaojia Wang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
45
|
Yu F, Pillman KA, Neilsen CT, Toubia J, Lawrence DM, Tsykin A, Gantier MP, Callen DF, Goodall GJ, Bracken CP. Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acids Res 2017; 45:11371-11385. [PMID: 28981911 PMCID: PMC5737821 DOI: 10.1093/nar/gkx788] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Deep-sequencing reveals extensive variation in the sequence of endogenously expressed microRNAs (termed ‘isomiRs’) in human cell lines and tissues, especially in relation to the 3′ end. From the immunoprecipitation of the microRNA-binding protein Argonaute and the sequencing of associated small RNAs, we observe extensive 3′-isomiR variation, including for miR-222 where the majority of endogenously expressed miR-222 is extended by 1–5 nt compared to the canonical sequence. We demonstrate this 3′ heterogeneity has dramatic implications for the phenotype of miR-222 transfected cells, with longer isoforms promoting apoptosis in a size (but not 3′ sequence)-dependent manner. The transfection of longer miR-222 isomiRs did not induce an interferon response, but did downregulate the expression of many components of the pro-survival PI3K-AKT pathway including PIK3R3, a regulatory subunit whose knockdown phenocopied the expression of longer 222 isoforms in terms of apoptosis and the inhibition of other PI3K-AKT genes. As this work demonstrates the capacity for 3′ isomiRs to mediate differential functions, we contend more attention needs to be given to 3′ variance given the prevalence of this class of isomiR.
Collapse
Affiliation(s)
- Feng Yu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Corine T Neilsen
- School of Health, Medical and Applied Sciences, Central Queensland University, Queensland 4000, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - David M Lawrence
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - David F Callen
- School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| |
Collapse
|
46
|
Deng L, Lei Q, Wang Y, Wang Z, Xie G, Zhong X, Wang Y, Chen N, Qiu Y, Pu T, Bu H, Zheng H. Downregulation of miR-221-3p and upregulation of its target gene PARP1 are prognostic biomarkers for triple negative breast cancer patients and associated with poor prognosis. Oncotarget 2017; 8:108712-108725. [PMID: 29312562 PMCID: PMC5752475 DOI: 10.18632/oncotarget.21561] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 09/13/2017] [Indexed: 02/05/2023] Open
Abstract
The purpose of this study was to identify microRNAs (miRNAs) closely associated with the prognosis of triple-negative breast cancer (TNBC) and their possible targets. This study recruited 125 early-stage TNBC patients, including 40 cases in the experimental group (20 cases with poor prognoses vs. 20 cases with good prognoses) and 85 cases in the validation group (27 cases with poor prognoses vs. 58 cases with good prognoses). In the experimental group, miRNA microarray showed 34 differentially expressed miRNAs in patients with different prognoses. We selected 5 miRNAs for validation. The differential expression of miR-221-3p was further verified in the experimental and validation groups using real-time polymerase chain reaction (PCR). High miR-221-3p expression was associated with better 5-year disease-free survival (DFS) (HR = 0.480; 95% CI, 0.263-0.879; p = 0.017) of TNBC patients. High expression of its target gene PARP1 predicted poorer 5-year DFS (HR = 2.236, 95% CI, 1.209-4.136, p = 0.010). MiR-221-3p down-regulated PARP1 by targeting its 3'-untranslated region. In conclusion, low miR-221-3p expression may contribute to the poor outcome of TNBC patients through regulating PARP1. MiR-221-3p likely plays a role as a PARP1 inhibitor by directly regulating PARP1 expression, thereby affecting the prognoses of TNBC patients.
Collapse
Affiliation(s)
- Ling Deng
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, National Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Lei
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, National Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiation Oncology, Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing, China
| | - Yu Wang
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, National Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Wang
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, National Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guiqin Xie
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, National Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaorong Zhong
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, National Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanping Wang
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, National Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Nianyong Chen
- Cancer center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Tianjie Pu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zheng
- Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, National Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Cancer center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Di Fazio P, Maass M, Roth S, Meyer C, Grups J, Rexin P, Bartsch DK, Kirschbaum A. Expression of hsa-let-7b-5p, hsa-let-7f-5p, and hsa-miR-222-3p and their putative targets HMGA2 and CDKN1B in typical and atypical carcinoid tumors of the lung. Tumour Biol 2017; 39:1010428317728417. [PMID: 29017393 DOI: 10.1177/1010428317728417] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Typical and atypical carcinoid tumors belong to the neuroendocrine lung tumors. They have low recurrence and proliferation rate, lymph node, and distant metastases. Nevertheless, these tumors have shown a more aggressive behavior. In the last years, microRNAs were screened as new tumor markers for their potential diagnostic and therapeutic relevance. The expression of hsa-let-7b-5p, hsa-let-7f-5p, hsa-miR-222-3p, and their targets HMGA2 (high-mobility group A2) and CDKN1B (cyclin-dependent kynase inhibitor 1B, p27kip1) was evaluated in this rare small group of patients. We analyzed the clinical data of all typical and atypical carcinoid tumors of patients who underwent surgical operation at Marburg University Hospital (n = 18) from 2000. Quantitative reverse transcription polymerase chain reaction was performed in formalin-fixed paraffin-embedded tumor tissue versus four tumor-free lung tissue samples. HMGA2 was stable or downregulated; only one patient showed a significant overexpression. CDKN1B showed a significant overexpression or a stable level; it was downregulated in two samples only. Hsa-miR-222-3p resulted almost stable or overexpressed except for two samples (significantly downregulated). Hsa-let-7f-5p was stable or overexpressed in the majority of analyzed samples, whereas hsa-let-7b-5p was significantly downregulated. HMGA2 and CDKN1B are differently expressed between atypical and typical carcinoid tumors, thus representing valid biomarkers for the classification of the two tumor groups. Hsa-let-7f-5p and HMGA2 are inversely correlated. Hsa-miR-222-3p does not correlate with its predicted target CDKN1B.
Collapse
Affiliation(s)
- Pietro Di Fazio
- 1 Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Moritz Maass
- 1 Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Silvia Roth
- 1 Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Christian Meyer
- 1 Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Joana Grups
- 1 Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Peter Rexin
- 2 Institute for Pathology, Philipps University of Marburg, Marburg, Germany
| | - Detlef K Bartsch
- 1 Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Andreas Kirschbaum
- 1 Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
48
|
Yu J, Zhang W, Qian H, Tang H, Lin W, Lu B. SOCS1 regulates hepatic regenerative response and provides prognostic makers for acute obstructive cholangitis. Sci Rep 2017; 7:9482. [PMID: 28842621 PMCID: PMC5573403 DOI: 10.1038/s41598-017-09865-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
Acute obstructive cholangitis (AOC) is a common and severe infectious diseases that occurs in an obstructed biliary system. The suppressors of cytokine signaling (SOCS) family include well-known negative regulators of cytokine receptor signaling. However, few studies have been conducted to determine their function in AOC. In this study, we showed that SOCS1 expression aberrantly changed and was associated with AOC prognosis in rat models. Decreased SOCS1 expression enhances regenerative response after biliary drainage (BD) resulting from AOC by upregulating hepatocyte growth factor (HGF) signaling. To detect SOCS1 expression in the liver less invasively and to predict the prognosis for AOC after BD, miR-221 and miR-222 were investigated. Ectopic SOCS1 expression indirectly decreases miR-221/222 expression through Met in vitro. An inverse correlation between SOCS1 expression and miR-221/222 expression in liver tissue or in serum was verified in rats. Serum from AOC patients showed that lower expression of circulating miR-221/222 after endoscopic nasobiliary drainage was associated with delayed restoration of liver function. Our results showed that SOCS1 regulates hepatic regenerative response, and indirectly detecting downstream molecules, such as miR-221/222, may provide prognostic makers for AOC.
Collapse
Affiliation(s)
- Jianhua Yu
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Weiguang Zhang
- Department of Molecular Medicine and Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, China
| | - Hongwei Qian
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Haijun Tang
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Weiguo Lin
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Baochun Lu
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China.
| |
Collapse
|
49
|
Deng S, Zhao Q, Zhen L, Zhang C, Liu C, Wang G, Zhang L, Bao L, Lu Y, Meng L, Lü J, Yu P, Lin X, Zhang Y, Chen YH, Fan H, Cho WC, Liu Z, Yu Z. Neonatal Heart-Enriched miR-708 Promotes Proliferation and Stress Resistance of Cardiomyocytes in Rodents. Am J Cancer Res 2017. [PMID: 28638481 PMCID: PMC5479282 DOI: 10.7150/thno.16478] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adult heart has limited potential for regeneration after pathological injury due to the limited cell proliferation of cardiomyocytes and the quiescent status of progenitor cells. As such, induction of cell-cycle reentry of cardiomyocytes is one of the key strategies for regeneration of damaged heart. In this study, a subset of miRNAs including miR-708 were identified to be much more abundant in the embryonic and neonatal cardiomyocytes than that in adult rodents. Overexpression of miR-708 promoted cellular proliferation of H9C2 cells or primary cardiomyocytes from neonatal rats or mice in vitro. Lipid nanoparticle delivery of miR-708 promoted myocardial regeneration and heart function recovery in vivo. In addition, miR-708 protected cardiomyocytes against stress-induced apoptosis under hypoxia or isoproterenol treatments. miR-708 inhibited the expression of MAPK14, which has been demonstrated arresting the cell cycle in cardiomyocytes. The cell proliferation-promoting function of miR-708 was dependent at least partly on the expression of MAPK14. These findings strengthen the potential of applying miRNAs to reconstitute lost cardiomyocytes in injured hearts, and may provide a novel miRNA candidate for promoting heart regeneration.
Collapse
|
50
|
Han SH, Kim HJ, Gwak JM, Kim M, Chung YR, Park SY. MicroRNA-222 Expression as a Predictive Marker for Tumor Progression in Hormone Receptor-Positive Breast Cancer. J Breast Cancer 2017; 20:35-44. [PMID: 28382093 PMCID: PMC5378578 DOI: 10.4048/jbc.2017.20.1.35] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023] Open
Abstract
Purpose The microRNA-221/222 (miR-221/222) gene cluster has been reported to be associated with the promotion of epithelial-mesenchymal transition (EMT), downregulation of estrogen receptor-α, and tamoxifen resistance in breast cancer. We studied the expression of miR-222 in human breast cancer samples to analyze its relationship with clinicopathologic features of the tumor, including estrogen receptor status, expression of EMT markers, and clinical outcomes. Methods Quantitative real-time polymerase chain reaction was performed to detect the expression of miR-222 in 197 invasive breast cancers. Expression of EMT markers (vimentin, smooth muscle actin, osteonectin, N-cadherin, and E-cadherin) was evaluated using immunohistochemistry. Results High miR-222 levels were associated with high T stage, high histologic grade, high Ki-67 proliferation index, and HER2 gene amplification. Its expression was significantly higher in the luminal B and human epidermal growth factor receptor 2-positive (HER2+) subtypes than in the luminal A and triple-negative subtypes. In the hormone receptor-positive subgroup, there was a significant negative correlation between miR-222 and estrogen receptor expression, and miR-222 expression was associated with EMT marker expression. In the group as a whole, high miR-222 expression was not associated with clinical outcome. However, subgroup analyses by hormone receptor status revealed that high miR-222 expression was a poor prognostic factor in the hormone receptor-positive subgroup, but not in the hormone receptor-negative subgroup. Conclusion This study showed that miR-222 is associated with down-regulation of the estrogen receptor, EMT, and tumor progression in hormone receptor-positive breast cancer, indicating that miR-222 might be associated with endocrine therapy resistance and poor clinical outcome in hormone receptor-positive breast cancer.
Collapse
Affiliation(s)
- Song-Hee Han
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyun Jeong Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Moon Gwak
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Mimi Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yul Ri Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea.; Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|