1
|
Cui X, Chen C, Xie M, Zhao T, Yi J, Sun W, Xiong Z, Hu J, Wong WL, Wu JQ. One-pot sequential synthesis of unsymmetrical diarylmethanes using methylene chloride as a C1-synthon. Org Biomol Chem 2024; 22:7965-7970. [PMID: 39267602 DOI: 10.1039/d4ob01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Bisindolylmethane (BIM) and its derivatives are widely used in the pharmaceutical industry due to their significant biological activities. However, most reported synthetic methods are focused on the synthesis of symmetric BIMs, while the synthesis of unsymmetrical BIMs remains a challenge. Herein, an unprecedented two-step one-pot method to afford unsymmetrically substituted 3,3'-BIM frameworks, using methylene chloride (DCM) as the C1-synthon is reported. In this protocol, the formation of two C-C bonds can be achieved via a one-pot reaction. The utility of commercially available phenols and anilines was also demonstrated in the construction of unsymmetrical diarylmethanes. This protocol provides a straightforward approach to access diverse unsymmetrical diarylmethane derivatives under simple and mild conditions. The broad substrate compatibility and good functional group tolerance of the protocol support its practical application potential.
Collapse
Affiliation(s)
- Xueli Cui
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Chunming Chen
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Mei Xie
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Taotao Zhao
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Jianfeng Yi
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Weiqiang Sun
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Zhuang Xiong
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Jia-Qiang Wu
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| |
Collapse
|
2
|
Huang H, Tang J, Dang K, Tang J, Li E, Fan L, Ye M, Wu G, Su F. Design and synthesis of bis(indolyl)-hydrazide-hydrazone derivatives and their antifungal activities against plant pathogen fungi. Nat Prod Res 2024:1-6. [PMID: 38940256 DOI: 10.1080/14786419.2024.2371994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
A series of bis(indolyl)-hydrazide-hydrazone derivatives were synthesised, and their structures were characterised using 1H-NMR and HRMS. The antifungal activity of the prepared compounds was evaluated against Pyricularia oryzae Cav., Colletotrichum -gloeosporioides Penz., Botrytis cinerea Pers.: Fr. and Rhizoctonia solani Kühn using the mycelial growth rate method. The preliminary bioassays revealed that most of the synthesised compounds exhibited antifungal activity against the four tested fungi and displayed a remarkable inhibitory effect on the mycelium growth of R. solani. In particular, compounds 3b, 3c, and 3k demonstrated significant antifungal activity against R. solani, with EC50 values of 26.42, 20.74, and 22.41 μM, respectively, outperforming the positive control shenqinmycin (47.18 μM) and carvacrol (49.13 μM).
Collapse
Affiliation(s)
- Haowei Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jinrui Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Kunrong Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jiayue Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Enxian Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Liming Fan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Fawu Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Al-Wahaibi LH, Mahmoud MA, Alzahrani HA, Abou-Zied HA, Gomaa HAM, Youssif BGM, Bräse S, Rabea SM. Discovery of new Schiff bases of the disalicylic acid scaffold as DNA gyrase and topoisomerase IV inhibitors endowed with antibacterial properties. Front Chem 2024; 12:1419242. [PMID: 38911996 PMCID: PMC11191877 DOI: 10.3389/fchem.2024.1419242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
DNA gyrase and topoisomerase IV show great potential as targets for antibacterial medicines. In recent decades, various categories of small molecule inhibitors have been identified; however, none have been effective in the market. For the first time, we developed a series of disalicylic acid methylene/Schiff bases hybrids (5a-k) to act as antibacterial agents targeting DNA gyrase and topoisomerase IV. The findings indicated that the new targets 5f-k exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria, with efficacy ranging from 75% to 115% of the standard ciprofloxacin levels. Compound 5h demonstrated the greatest efficacy compared to the other compounds tested, with minimum inhibitory concentration (MIC) values of 0.030, 0.065, and 0.060 μg/mL against S. aureus, E. coli, and P. aeruginosa. 5h had a MIC value of 0.050 μg/mL against B. subtilis, which is five times less potent than ciprofloxacin. The inhibitory efficacy of the most potent antibacterial derivatives 5f, 5h, 5i, and 5k against E. coli DNA gyrase was assessed. The tested compounds demonstrated inhibitory effects on E. coli DNA gyrase, with IC50 values ranging from 92 to 112 nM. These results indicate that 5f, 5h, 5i, and 5k are more effective than the reference novobiocin, which had an IC50 value of 170 nM. Compounds 5f, 5h, 5i, and 5k were subjected to additional assessment against E. coli topoisomerase IV. Compounds 5h and 5i, which have the highest efficacy in inhibiting E. coli gyrase, also demonstrated promising effects on topoisomerase IV. Compounds 5h and 5i exhibit IC50 values of 3.50 µM and 5.80 µM, respectively. These results are much lower and more potent than novobiocin's IC50 value of 11 µM. Docking studies demonstrate the potential of compound 5h as an effective dual inhibitor against E. coli DNA gyrase and topoisomerase IV, with ADMET analysis indicating promising pharmacokinetic profiles for antibacterial drug development.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed A. Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hayat Ali Alzahrani
- Applied Medical Science College, Medical Laboratory Technology Department, Northern Border University, Arar, Saudi Arabia
| | - Hesham A. Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Hesham A. M. Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Safwat M. Rabea
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
- Apogee Pharmaceuticals, Burnaby, BC, Canada
| |
Collapse
|
4
|
Gonçalves RCR, Peñalver P, Costa SPG, Morales JC, Raposo MMM. Polyaromatic Bis(indolyl)methane Derivatives with Antiproliferative and Antiparasitic Activity. Molecules 2023; 28:7728. [PMID: 38067459 PMCID: PMC10707942 DOI: 10.3390/molecules28237728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Bis(indolyl)methanes (BIMs) are a class of compounds that have been recognized as an important core in the design of drugs with important pharmacological properties, such as promising anticancer and antiparasitic activities. Here, we explored the biological activity of the BIM core functionalized with different (hetero)aromatic moieties. We synthesized substituted BIM derivatives with triphenylamine, N,N-dimethyl-1-naphthylamine and 8-hydroxylquinolyl groups, studied their photophysical properties and evaluated their in vitro antiproliferative and antiparasitic activities. The triphenylamine BIM derivative 2a displayed an IC50 of 3.21, 3.30 and 3.93 μM against Trypanosoma brucei, Leishmania major and HT-29 cancer cell line, respectively. The selectivity index demonstrated that compound 2a was up to eight-fold more active against the parasites and HT-29 than against the healthy cell line MRC-5. Fluorescence microscopy studies with MRC-5 cells and T. brucei parasites incubated with derivative 2a indicate that the compound seems to accumulate in the cell's mitochondria and in the parasite's nucleus. In conclusion, the BIM scaffold functionalized with the triphenylamine moiety proved to be the most promising antiparasitic and anticancer agent of this series.
Collapse
Affiliation(s)
- Raquel C. R. Gonçalves
- Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (R.C.R.G.); (S.P.G.C.)
- Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento 17, 18016 Armilla, Granada, Spain; (P.P.); (J.C.M.)
| | - Susana P. G. Costa
- Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (R.C.R.G.); (S.P.G.C.)
| | - Juan C. Morales
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento 17, 18016 Armilla, Granada, Spain; (P.P.); (J.C.M.)
| | - Maria Manuela M. Raposo
- Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (R.C.R.G.); (S.P.G.C.)
| |
Collapse
|
5
|
Xu R, Chen K, Han X, Lou Y, Gu S, Gao Y, Shang S, Song Z, Song J, Li J. Design and Synthesis of Antifungal Candidates Containing Triazole Scaffold from Natural Rosin against Valsa mali for Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37318049 DOI: 10.1021/acs.jafc.3c02002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two series of dehydroabietyl-1,2,4-triazole-4-Schiff-based derivatives were synthesized from rosin to control plant fungal diseases. In vitro evaluation and screening of the antifungal activity were performed using Valsa mali, Colletotrichum orbiculare, Fusarium graminearum, Sclerotinia sclerotiorum, and Gaeumannomyces graminis. Compound 3f showed excellent fungicidal activity against V. mali (EC50 = 0.537 μg/mL), which was significantly more effective than the positive control fluconazole (EC50 = 4.707 μg/mL). Compound 3f also had a considerable protective effect against V. mali (61.57%-92.16%), which was slightly lower than that of fluconazole (85.17-100%) at 25-100 μg/mL. Through physiological and biochemical analyses, the preliminary mode of action of compound 3f against V. mali was explored. Ultrastructural observation of mycelia showed that compound 3f hindered the growth of the mycelium and destroyed the ultrastructure of V. mali seriously. Conductivity analysis and laser scanning confocal microscope staining showed that compound 3f changed cell-membrane permeability and caused accumulation of reactive oxygen species. The enzyme activity results showed that compound 3f significantly inhibited the activity of CYP51 (59.70%), SOD (76.9%), and CAT (67.86%). Molecular docking identified strong interaction energy between compound 3f and crystal structures of CYP51 (-11.18 kcal/mol), SOD (-9.25 kcal/mol), and CAT (-8.79 kcal/mol). These results provide guidance for the discovery of natural product-based antifungal pesticide candidates.
Collapse
Affiliation(s)
- Renle Xu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Kun Chen
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xu Han
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shihao Gu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jian Li
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
6
|
Teli P, Sahiba N, Sethiya A, Soni J, Agarwal S. Triethylammonium Hydrogen Sulfate Ionic Liquid-Assisted Highly Efficient Synthesis of Bis(indoyl)methanes. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2181829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Jay Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
7
|
Antioxidant activity of new synthesized imine and its corresponding α-aminophosphonic acid: Experimental and theoretical evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Li R, Zhang Z, Li H, Ji J, Liu C, Dong C, Zhang Y, Hong J. Synthesis and Biological Activity of Aminoisoquinoline Schiff Bases. HETEROCYCLES 2023. [DOI: 10.3987/com-22-14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Dong K, Li J, Li RP, Mao M, Liu J, Wang X, Tang S. One-Pot Sequential Synthesis of 3,3'- or 2,3'-Bis(indolyl)methanes by Using 1,3-Dithiane as the Methylene Source. J Org Chem 2022; 87:14930-14939. [PMID: 36259953 DOI: 10.1021/acs.joc.2c01844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A simple and efficient method for structurally diverse symmetrical and unsymmetrical 3,3'- and 2,3'-bisindolylmethanes has been developed through a one-pot sequential reaction using 1,3-dithiane as the methylene source. The important AhR agonists ICZ and malassezin were synthesized with excellent efficiency by this straightforward approach.
Collapse
Affiliation(s)
- Kang Dong
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jia Li
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Rui-Peng Li
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Mingming Mao
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jian Liu
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaolei Wang
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shouchu Tang
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
10
|
Garrido-Zoido JM, Cajina F, Matamoros E, Gil MV, Cintas P, Palacios JC. A synthetically benign one-pot construction of enamino-xanthene dyes. Org Biomol Chem 2022; 20:8108-8119. [PMID: 36214790 DOI: 10.1039/d2ob01358d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polyhydroxylated phenols are components of biomass and precursors of pigments in plants. This paper reports a novel entry to xanthene dyes, involving the reaction of 2,4,6-trihydroxybenzaldehyde with primary aliphatic amines. This catalyst-free synthesis exhibits a high atom economy and can be conducted under eco-friendly conditions and operational simplicity.
Collapse
Affiliation(s)
- Juan Manuel Garrido-Zoido
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Franklin Cajina
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Esther Matamoros
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - M Victoria Gil
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Juan C Palacios
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| |
Collapse
|
11
|
Comprehensive Empirical Model of Substitution—Influence on Hydrogen Bonding in Aromatic Schiff Bases. Int J Mol Sci 2022; 23:ijms232012439. [DOI: 10.3390/ijms232012439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, over 500 structures of tri-ring aromatic Schiff bases with different substitution patterns were investigated to develop a unified description of the substituent effect on the intramolecular hydrogen bridge. Both proximal and distal effects were examined using Density Functional Theory (DFT) in the gas phase and with solvent reaction field (Polarizable Continuum Model (PCM) and water as the solvent). In order to investigate and characterize the non-covalent interactions, a topological analysis was performed using the Quantum Theory of Atoms In Molecules (QTAIM) theory and Non-Covalent Interactions (NCI) index. The obtained results were summarized as the generalized, empirical model of the composite substituent effect, assessed using an additional group of simple ring-based Schiff bases. The composite substituent effect has been divided into separate increments describing the different interactions of the hydrogen bridge and the substituent: the classical substituent effect, involving resonance and induction mediated through the ring, steric increment based on substituent proximity to the bridge elements, and distal increment, derived from substitution on the distal ring.
Collapse
|
12
|
Enoxacin-based derivatives: antimicrobial and antibiofilm agent: a biology-oriented drug synthesis (BIODS) approach. Future Med Chem 2022; 14:947-962. [PMID: 35695000 DOI: 10.4155/fmc-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: To find alternative molecules against Klebsiella pneumonia, Proteus mirabilis and methicillin-resistant Staphylococcus aureus, new enoxacin derivatives were synthesized and screened. Methods: All derivatives exhibited promising antibacterial activities as compared to standard enoxacin (2 μg/ml) and standard cefixime (82 μg/ml). Compounds 2, 3 and 5 significantly downregulated the gene expression of biofilm-forming genes. Conclusion: Based on our results, these molecules may serve as potential drug candidates to cure several bacterial infections in the future.
Collapse
|
13
|
Srikanth D, Vinayak Joshi S, Ghouse Shaik M, Pawar G, Bujji S, Kanchupalli V, Chopra S, Nanduri S. A Comprehensive Review on Potential Therapeutic Inhibitors of Nosocomial Acinetobacter baumannii Superbugs. Bioorg Chem 2022; 124:105849. [DOI: 10.1016/j.bioorg.2022.105849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
|
14
|
Synthesis, activity and in silico studies of novel bisindolylmethanes from xylochemical 5-hydroxymethylfurfural as antidiabetic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
A facile synthesis and structural elucidation for furfural based chromophores: Prediction of linear and nonlinear optical properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
. D, Sharma YB, Pant S, Dhaked DK, Guru MM. Borane-Catalyzed Dehydrogenative C‒C Bond Formation of Indoles with N-Tosylhydrazones: An Experimental and Computational Study. Org Chem Front 2022. [DOI: 10.1039/d2qo00552b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel dehydrogenative C‒C bond formation of indoles and N-tosylhydrazones to di(indolyl)methanes (DIMs) has been demonstrated using tris(pentafluorophenyl)borane as catalyst. A wide range of functional groups can be tolerated under...
Collapse
|
17
|
Patterson WJ, Lucas K, Jones VA, Chen Z, Bardelski K, Guarino‐Hotz M, Brindle CS. Triarylmethyl Cation‐Catalyzed Three‐Component Coupling for the Synthesis of Unsymmetrical Bisindolylmethanes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Kelly Lucas
- Department of Chemistry Trinity College 300 Summit Street Hartford CT 06105 USA
| | - Vanessa A. Jones
- Department of Chemistry Trinity College 300 Summit Street Hartford CT 06105 USA
| | - Zhenghua Chen
- Department of Chemistry Trinity College 300 Summit Street Hartford CT 06105 USA
| | - Kevin Bardelski
- Department of Chemistry Trinity College 300 Summit Street Hartford CT 06105 USA
| | | | - Cheyenne S. Brindle
- Department of Chemistry Trinity College 300 Summit Street Hartford CT 06105 USA
| |
Collapse
|
18
|
Tirmazi SAAS, Qadir MA, Ahmed M, Imran M, Hussain R, Sharif M, Yousaf M, Muddassar M. Levofloxacin and sulfa drugs linked via Schiff bases: Exploring their urease inhibition, enzyme kinetics and in silico studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Sadiq Z, Ghani A, Shujaat S, Hussain EA, Alissa SA, Iqbal M. SiO2-KHSO4 catalyst based rapid synthesis of structurally modified bis(3-indolyl)methanes via N-substituted indole. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Azimi F, Ghasemi JB, Azizian H, Najafi M, Faramarzi MA, Saghaei L, Sadeghi-Aliabadi H, Larijani B, Hassanzadeh F, Mahdavi M. Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: Kinetics and molecular dynamics simulation study. Int J Biol Macromol 2020; 166:1082-1095. [PMID: 33157144 DOI: 10.1016/j.ijbiomac.2020.10.263] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/17/2023]
Abstract
A series of novel pyrazole-phenyl semicarbazone derivatives were designed, synthesized, and screened for in vitro α-glucosidase inhibitory activity. Given the importance of hydrogen bonding in promoting the α-glucosidase inhibitory activity, pharmacophore modification was established. The docking results rationalized the idea of the design. All newly synthesized compounds exhibited excellent in vitro yeast α-glucosidase inhibition (IC50 values in the range of 65.1-695.0 μM) even much more potent than standard drug acarbose (IC50 = 750.0 μM). Among them, compounds 8o displayed the most potent α-glucosidase inhibitory activity (IC50 = 65.1 ± 0.3 μM). Kinetic study of compound 8o revealed that it inhibited α-glucosidase in a competitive mode (Ki = 87.0 μM). Limited SAR suggested that electronic properties of substitutions have little effect on inhibitory potential of compounds. Cytotoxic studies demonstrated that the active compounds (8o, 8k, 8p, 8l, 8i, and 8a) compounds are also non-cytotoxic. The binding modes of the most potent compounds 8o, 8k, 8p, 8l and 8i was studied through in silico docking studies. Molecular dynamic simulations have been performed in order to explain the dynamic behavior and structural changes of the systems by the calculation of the root mean square deviation (RMSD) and root mean square fluctuation (RMSF).
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Sustainable antimicrobial modified chitosan and its nanoparticles hydrogels: Synthesis and characterization. Int J Biol Macromol 2020; 162:1388-1397. [DOI: 10.1016/j.ijbiomac.2020.08.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 11/19/2022]
|
22
|
Saglam MF, Bingul M, Şenkuytu E, Boga M, Zorlu Y, Kandemir H, Sengul IF. Synthesis, characterization, UV–Vis absorption and cholinesterase inhibition properties of bis-indolyl imine ligand systems. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Kanwal, Mungroo MR, Anwar A, Ali F, Khan S, Abdullah MA, Siddiqui R, Khan KM, Khan NA. Synthetic nanoparticle-conjugated bisindoles and hydrazinyl arylthiazole as novel antiamoebic agents against brain-eating amoebae. Exp Parasitol 2020; 218:107979. [PMID: 32866583 DOI: 10.1016/j.exppara.2020.107979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Balamuthia mandrillaris and Naegleria fowleri are free-living amoebae that can cause life-threatening infections involving the central nervous system. The high mortality rates of these infections demonstrate an urgent need for novel treatment options against the amoebae. Considering that indole and thiazole compounds possess wide range of antiparasitic properties, novel bisindole and thiazole derivatives were synthesized and evaluated against the amoebae. The antiamoebic properties of four synthetic compounds i.e., two new bisindoles (2-Bromo-4-(di (1H-indol-3-yl)methyl)phenol (denoted as A1) and 2-Bromo-4-(di (1H-indol-3-yl)methyl)-6-methoxyphenol (A2)) and two known thiazole (4-(3-Nitrophenyl)-2-(2-(pyridin-3-ylmethylene)hydrazinyl)thiazole (A3) and 4-(Biphenyl-4-yl)-2-(2-(1-(pyridin-4-yl)ethylidene)hydrazinyl)thiazole (A4)) were evaluated against B. mandrillaris and N. fowleri. The ability of silver nanoparticle (AgNPs) conjugation to enrich antiamoebic activities of the compounds was also investigated. The synthetic heterocyclic compounds demonstrated up to 53% and 69% antiamoebic activities against B. mandrillaris and N. fowleri respectively, while resulting in up to 57% and 68% amoebistatic activities, respectively. Antiamoebic activities of the compounds were enhanced by up to 71% and 51% against B. mandrillaris and N. fowleri respectively, after conjugation with AgNPs. These compounds exhibited potential antiamoebic effects against B. mandrillaris and N. fowleri and conjugation of synthetic heterocyclic compounds with AgNPs enhanced their activity against the amoebae.
Collapse
Affiliation(s)
- Kanwal
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Mohammad Ridwane Mungroo
- Department of Biological Sciences, School of Science and Technology, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia.
| | - Farman Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Simal Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia
| | - Mohd Azmuddin Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates.
| |
Collapse
|
24
|
Uddin I, Ullah H, Bibi A, Taha M, Khan F, Rahim F, Wadood A, Ahmad N, Khan AA, Ahmad F, Rehman ZU, Khan KM. Synthesis, in vitro alpha glucosidase, urease activities and molecular docking study of bis-indole bearing Schiff base analogs. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cdc.2020.100396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Singh A, Kaur G, Banerjee B. Recent Developments on the Synthesis of Biologically Significant bis/tris(indolyl)methanes under Various Reaction Conditions: A Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200228092752] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bis(indolyl)methane skeleton is the main building block of many naturally occurring bioactive compounds. Bis(indolyl)methanes are found to possess a wide range of pharmaceuitical efficacies. These important scaffolds are being used as anti-cancer, antioxidant, anti-bacterial, anti-inflammatory, and anti-proliferative agents. In this review, we summarized the latest developments on the synthesis of various bis/tris(indolyl)methane derivatives from the reactions of two equivalents of indoles and one equivalent of aldehydes or indole-3-carbaldehydes under various reaction conditions. More than hundred different catalysts were employed for these transformations which include various metal catalysts, ionic liquids, organocatalysts, surfactants, homogeneous, heterogeneous catalysts etc.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh, 174301, India
| | - Gurpreet Kaur
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh, 174301, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh, 174301, India
| |
Collapse
|
26
|
Abid O, Imran S, Taha M, Ismail NH, Jamil W, Kashif SM, Khan KM, Yusoff J. Synthesis, β-glucuronidase inhibition and molecular docking studies of cyano-substituted bisindole hydrazone hybrids. Mol Divers 2020; 25:995-1009. [PMID: 32301032 DOI: 10.1007/s11030-020-10084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/03/2020] [Indexed: 11/30/2022]
Abstract
The β-glucuronidase, a lysosomal enzyme, catalyzes the cleavage of glucuronosyl-O-bonds. Its inhibitors play a significant role in different medicinal therapies as they cause a decrease in carcinogen-induced colonic tumors by reducing the level of toxic substances present in the intestine. Among those inhibitors, bisindole derivatives had displayed promising β-glucuronidase inhibition activity. In the current study, hydrazone derivatives of bisindolymethane (1-30) were synthesized and evaluated for in vitro β-glucuronidase inhibitory activity. Twenty-eight analogs demonstrated better activity (IC50 = 0.50-46.5 µM) than standard D-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 µM). Compounds with hydroxyl group like 6 (0.60 ± 0.01 µM), 20 (1.50 ± 0.10 µM) and 25 (0.50 ± 0.01 µM) exhibited the most potent inhibitory activity, followed by analogs with fluorine 21 (3.50 ± 0.10 µM) and chlorine 23 (8.20 ± 0.20 µM) substituents. The presence of hydroxyl group at the aromatic side chain was observed as the main contributing factor in the inhibitory potential. From the docking studies, it was predicted that the active compounds can fit properly in the binding groove of the β-glucuronidase and displayed significant binding interactions with essential residues.
Collapse
Affiliation(s)
- Obaidurahman Abid
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia.,Faculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia.,Department of Chemistry, Faculty of Science, Nangarhar University, Jalalabad, Nangarhar, 2601, Afghanistan
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia. .,Faculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia.
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia.,Faculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Waqas Jamil
- Institute of Advanced Research Studies in Chemical Sciences, University of Sindh Jamshoro, Hyderabad, 76080, Pakistan
| | - Syed Muhammad Kashif
- Institute of Advanced Research Studies in Chemical Sciences, University of Sindh Jamshoro, Hyderabad, 76080, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Juliana Yusoff
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
27
|
Puthran D, Poojary B, Nayak SG, Purushotham N, Bhat M, Hedge H. Novel Schiff bases–based thiophenes: Design, synthesis and biological evaluation. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Divyaraj Puthran
- Department of Studies in ChemistryMangalore University Mangalagangothri India
- Process and Development Lab, Solara Active Pharma Sciences, Ltd New Mangalore India
| | - Boja Poojary
- Department of Studies in ChemistryMangalore University Mangalagangothri India
| | | | - Nikil Purushotham
- Department of Studies in ChemistryMangalore University Mangalagangothri India
| | - Manjunath Bhat
- Research and Development Lab, Ark Gen Pharma Private Limited Bangalore India
| | - Hemant Hedge
- Department of ChemistryManipal Academy of Higher Education Manipal India
| |
Collapse
|
28
|
Kundu S, Kayet A, Baidya R, Satyanarayana L, Maiti DK. Nanofibrils of a Cu II-Thiophenyltriazine-Based Porous Polymer: A Diverse Heterogeneous Nanocatalyst. ACS OMEGA 2020; 5:394-405. [PMID: 31956787 PMCID: PMC6964281 DOI: 10.1021/acsomega.9b02904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Herein, we report knitting of a thiophenyltriazine-based porous organic polymer (TTPOP) with high surface area and high abundance of nitrogen and sulfur sites, synthesized through a simple one-step Friedel-Crafts reaction of 2,4,6-tri(thiophen-2-yl)-1,3,5-triazine and formaldehyde dimethyl acetal in the presence of anhydrous FeCl3, and thereafter grafting of Cu(OAc)2·H2O in the porous polymer framework to achieve the potential catalyst (CuII-TTPOP). TTPOP and CuII-TTPOP were characterized thoroughly utilizing solid-state 13C-CP MAS NMR, Fourier transform infrared, wide-angle powder X-ray diffraction, thermogravimetric analysis, and X-ray photoelectron spectroscopy and surface imaging by transmission electron microscopy and field emission scanning electron microscopy. The porosity of the nanomaterials was observed in the surface imaging and verified through conducting N2 gas adsorption techniques. Keeping in mind the tremendous importance of C-C and C-N coupling and cyclization processes, the newly synthesized CuII-TTPOP was employed successfully for a wide range of organic catalytic transformations under mild conditions to afford directly valuable diindolylmethanes and spiro-analogues, phthalimidines, propargyl amines, and their sugar-based chiral compounds with high yields using readily available substrates. The highly stable new heterogeneous catalyst showed outstanding sustainability, robustness, simple separation, and recyclability.
Collapse
Affiliation(s)
- Sudipta
K. Kundu
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Anirban Kayet
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Ramlal Baidya
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Lanka Satyanarayana
- Analytical
Department, CSIR-Indian Institute of Chemical
Technology, Uppal Road, Hyderabad 500007, India
| | - Dilip K. Maiti
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
29
|
|
30
|
Taha M, Shah SAA, Khan A, Arshad F, Ismail NH, Afifi M, Imran S, Choudhary MI. Synthesis of 3,4,5-trihydroxybenzohydrazone and evaluation of their urease inhibition potential. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
31
|
Yusuf M, Thakur S. Synthesis, characterization &
in vitro
antimicrobial‐antioxidant studies of novel
N
,1‐diphenyl‐4,5‐dihydro‐1
H
‐1,2,4‐triazol‐3‐amine derivatives. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mohamad Yusuf
- Department of ChemistryPunjabi University Patiala India
| | - Saloni Thakur
- Department of ChemistryPunjabi University Patiala India
| |
Collapse
|
32
|
Gan KC, Sim KM, Lim TM, Teo KC. Synthesis, Cytotoxic, Antibacterial and Free Radical Scavenging Activities of Schiff Bases Derived from 1,2,4-Triazole. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666190315154512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
:
A series of new 1,2,4-triazole Schiff bases incorporating a chlorinated indole moiety were
prepared from the condensation reaction of 4-amino-5-mercapto-3-[(5-chloro-2-methyl-1H-indol-3-
yl)methyl]1,2,4-triazole with substituted benzaldehydes in the presence of (+)-tartaric acid as an acidic
catalyst. The structures of Schiff bases were elucidated by FTIR, NMR and mass spectral data. The cytotoxic,
antibacterial and free radical scavenging activities of Schiff bases were performed using MTT,
96-well microbroth dilution and DPPH assays, respectively. Schiff bases 3k and 3l with both electron
donating groups at meta and para positions of the phenyl ring demonstrated higher cytotoxic activity
against COLO-205 and A549 cell lines. On the other hand, Schiff base 3f comprising p-chlorophenyl
substituent exhibited significant inhibition against Bacillus cereus and Staphylococcus aureus at MIC
3.91 μg/ml and 15.63 μg/ml, respectively. The results of the free radical scavenging activity revealed
that Schiff bases with the presence of a Cl or OCH3 group in the para position of the phenyl ring act as
a better antioxidant than BHT.
Collapse
Affiliation(s)
- Kwang-Chun Gan
- Department of Chemical Science, Faculty of Science, University Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Kooi-Mow Sim
- Department of Chemical Science, Faculty of Science, University Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Tuck-Meng Lim
- Department of Chemical Science, Faculty of Science, University Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Kah-Cheng Teo
- Department of Biomedical Science, Faculty of Science, University Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
33
|
Puthran D, Poojary B, Purushotham N, Harikrishna N, Nayak SG, Kamat V. Synthesis of novel Schiff bases using 2-Amino-5-(3-fluoro-4-methoxyphenyl)thiophene-3-carbonitrile and 1,3-Disubstituted pyrazole-4-carboxaldehydes derivatives and their antimicrobial activity. Heliyon 2019; 5:e02233. [PMID: 31485504 PMCID: PMC6717141 DOI: 10.1016/j.heliyon.2019.e02233] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/06/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022] Open
Abstract
2-Amino-5-(3-fluoro-4-methoxyphenyl)thiophene-3-carbonitrile have been synthesized from 1-(3-fluoro-4-methoxyphenyl)ethanone, malononitrile, a mild base and sulfur powder using Gewald synthesis technique and the intermediate was treated with 1,3-disubstituted pyrazole-4-carboxaldehyde to obtain the novel Schiff bases. 1,3-disubstituted pyrazole-4-carboxaldehyde derivatives have been synthesized by Vilsmeier-Haack reaction in the course of a multi-step reaction. The structure of novel compounds were established on the basis of their elemental analyses IR, 1H NMR, 13C NMR, and mass spectral data and then screened for their in vitro antimicrobial activity. Among them 5a, 5c, 5f and 5h showed excellent activity when compared to other derivatives. Remaining derivatives showed moderate activity.
Collapse
Affiliation(s)
- Divyaraj Puthran
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, Karnataka, 574199, India
- Solara Active Pharma Sciences, No. 120 A&B, Industrial Area, Baikampady, New Mangalore, Karnataka, 575011, India
| | - Boja Poojary
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, Karnataka, 574199, India
- Corresponding author.
| | - Nikil Purushotham
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, Karnataka, 574199, India
| | - Nandam Harikrishna
- Alivira Animal Health, Plot No.104-109,112,113 JNPC, Special Economic Zone, Paravada Mandal, Visakhapatnam, Andhra Pradesh-531019, India
| | - Soukhyarani Gopal Nayak
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, Karnataka, 574199, India
| | - Vinuta Kamat
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, Karnataka, 574199, India
| |
Collapse
|
34
|
Kaur M, Kaur H, Kapila A, Reenu. Tautomerism, spectroscopic and computational analysis of Schiff base and its diphenyltin (IV) complex. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Gupta GR, Shah J, Vadagaonkar KS, Lavekar AG, Kapdi AR. Hetero-bimetallic cooperative catalysis for the synthesis of heteroarenes. Org Biomol Chem 2019; 17:7596-7631. [DOI: 10.1039/c9ob01152h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering the synthesis of 5- and 6-membered as well as condensed heteroarenes, focussing on the combinations in cooperative catalytic systems in strategies used to achieve selectivity and also highlights the mode of action for the cooperative catalysis leading to the synthesis of commercially and biologically relevant heteroarenes.
Collapse
Affiliation(s)
- Gaurav R. Gupta
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Jagrut Shah
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| | | | - Aditya G. Lavekar
- Former Research Fellow
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Anant R. Kapdi
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
36
|
Sapari S, Wong S, Ngatiman MF, Misral H, Hasbullah SA. Crystal structure and Hirshfeld analysis of 2-[bis-(1-methyl-1 H-indol-3-yl)meth-yl]benzoic acid. Acta Crystallogr E Crystallogr Commun 2018; 74:1580-1583. [PMID: 30443385 PMCID: PMC6218917 DOI: 10.1107/s2056989018014160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/08/2018] [Indexed: 11/10/2022]
Abstract
In the title compound, C26H22N2O2, the dihedral angles between the 1-methyl-indole units (A and B) and the benzoic acid moiety (C) are A/B = 64.87 (7), A/C = 80.92 (8) and B/C = 75.05 (8)°. An intra-molecular C-H⋯O inter-action arising from the methyne group helps to establish the conformation. In the crystal, R 2 2(8) carb-oxy-lic acid inversion dimers linked by pairs of O-H⋯O hydrogen bonds are observed. A Hirshfeld surface analysis shows that the greatest contributions are from H⋯H, C⋯H/H⋯C and O⋯H/H⋯O contacts (percentage values = 54.6%, 29.6% and 10.1%, respectively).
Collapse
Affiliation(s)
- Suhaila Sapari
- Centre of Advanced Materials and Renewable Resources, Faculty of Science and Technology, National University of Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Sheryn Wong
- Centre of Advanced Materials and Renewable Resources, Faculty of Science and Technology, National University of Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohammad Fadzlee Ngatiman
- Center for Research and Instrumentation Management, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Huda Misral
- Centre of Advanced Materials and Renewable Resources, Faculty of Science and Technology, National University of Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Centre of Advanced Materials and Renewable Resources, Faculty of Science and Technology, National University of Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
37
|
El-Ghamry H, El-Wakiel N, Khamis A. Synthesis, structure, antiproliferative activity and molecular docking of divalent and trivalent metal complexes of 4H
-3,5-diamino-1,2,4-triazole and α-hydroxynaphthaldehyde Schiff base ligand. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4583] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hoda El-Ghamry
- Department of Chemistry, Faculty of Science; Tanta University; Tanta 31527 Egypt
- Department of Chemistry, Faculty of Applied Science; Umm Al-Qura University; Makkah Kingdom of Saudi Arabia
| | - Nadia El-Wakiel
- Department of Chemistry, Faculty of Science; Tanta University; Tanta 31527 Egypt
| | - Abeer Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science; Tanta University; Tanta 31527 Egypt
| |
Collapse
|
38
|
Maestro A, Martín-Encinas E, Alonso C, Martinez de Marigorta E, Rubiales G, Vicario J, Palacios F. Synthesis of novel antiproliferative hybrid bis-(3-indolyl)methane phosphonate derivatives. Eur J Med Chem 2018; 158:874-883. [PMID: 30253344 DOI: 10.1016/j.ejmech.2018.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
An efficient synthetic methodology for the preparation of phosphorus substituted bis-(3-indolyl)methane through a double nucleophilic addition of indole derivatives to an in situ generated α-iminophosphonate is reported. In addition, bis-(3-indolyl)methane substrates showed in vitro cytotoxicity, inhibiting the growth of carcinoma human tumor cell lines A549 (carcinomic human alveolar basal epithelial cell) and SKOV03 (human ovarian carcinoma).
Collapse
|
39
|
|
40
|
Taha M, Rashid U, Imran S, Ali M. Rational design of bis-indolylmethane-oxadiazole hybrids as inhibitors of thymidine phosphorylase. Bioorg Med Chem 2018; 26:3654-3663. [DOI: 10.1016/j.bmc.2018.05.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/29/2018] [Accepted: 05/26/2018] [Indexed: 10/16/2022]
|
41
|
Cooper L, Alonso JM, Eagling L, Newson H, Herath S, Thomson C, Lister A, Howsham C, Cox B, Muñoz MP. Synthesis of a Novel Type of 2,3'-BIMs via Platinum-Catalysed Reaction of Indolylallenes with Indoles. Chemistry 2018; 24:6105-6114. [PMID: 29393548 PMCID: PMC5947743 DOI: 10.1002/chem.201705417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/17/2022]
Abstract
Optimisation, scope and mechanism of the platinum-catalysed addition of indoles to indolylallenes is reported here to give 2,3'-BIMs with a novel core structure very relevant for pharmaceutical industry. The reaction is modulated by the electronic properties of the substituents on both indoles, with the 2,3'-BIMs favoured when electron donating groups are present. Although simple at first, a complex mechanism has been uncovered that explains the different behaviour of these systems with platinum when compared with other metals (e.g. gold). Detailed labelling studies have shown Pt-catalysed 6-endo-trig cyclisation of the indollylallene as the first step of the reaction and the involvement of two cyclic vinyl-platinum intermediates in equilibrium through a platinum carbene, as the key intermediates of the catalytic cycle towards the second nucleophilic attack and formation of the BIMs.
Collapse
Affiliation(s)
- Lisa Cooper
- School of ChemistryUniversity of East AngliaEarlham RoadNorwichNR4 7TJUK
| | - José Miguel Alonso
- School of ChemistryUniversity of East AngliaEarlham RoadNorwichNR4 7TJUK
| | - Louise Eagling
- School of ChemistryUniversity of East AngliaEarlham RoadNorwichNR4 7TJUK
- Novartis Pharmaceuticals (UK) LimitedRH12 5AB, HorshamWest SussexUK
| | - Helen Newson
- School of ChemistryUniversity of East AngliaEarlham RoadNorwichNR4 7TJUK
- Novartis Pharmaceuticals (UK) LimitedRH12 5AB, HorshamWest SussexUK
| | - Sachini Herath
- School of ChemistryUniversity of East AngliaEarlham RoadNorwichNR4 7TJUK
| | | | - Andrew Lister
- Novartis Pharmaceuticals (UK) LimitedRH12 5AB, HorshamWest SussexUK
| | | | - Brian Cox
- Novartis Pharmaceuticals (UK) LimitedRH12 5AB, HorshamWest SussexUK
| | - María Paz Muñoz
- School of ChemistryUniversity of East AngliaEarlham RoadNorwichNR4 7TJUK
| |
Collapse
|
42
|
Oxindole based oxadiazole hybrid analogs: Novel α -glucosidase inhibitors. Bioorg Chem 2018; 76:273-280. [DOI: 10.1016/j.bioorg.2017.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 02/03/2023]
|
43
|
Tran PH, Nguyen XTT, Chau DKN. A Brønsted-Acidic Ionic Liquid Gel as an Efficient and Recyclable Heterogeneous Catalyst for the Synthesis of Bis(indolyl)methanes under Solvent-Free Sonication. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700596] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Phuong Hoang Tran
- Department of Organic Chemistry; Faculty of Chemistry; University of Science, Vietnam National University; Ho Chi Minh City 721337 Vietnam
| | - Xuan-Trang Thi Nguyen
- Department of Organic Chemistry; Faculty of Chemistry; University of Science, Vietnam National University; Ho Chi Minh City 721337 Vietnam
| | - Duy-Khiem Nguyen Chau
- Department of Organic Chemistry; Faculty of Chemistry; University of Science, Vietnam National University; Ho Chi Minh City 721337 Vietnam
| |
Collapse
|
44
|
Taha M, Shah SAA, Imran S, Afifi M, Chigurupati S, Selvaraj M, Rahim F, Ullah H, Zaman K, Vijayabalan S. Synthesis and in vitro study of benzofuran hydrazone derivatives as novel alpha-amylase inhibitor. Bioorg Chem 2017; 75:78-85. [PMID: 28918064 DOI: 10.1016/j.bioorg.2017.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
|
45
|
Synthesis and study of the α -amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorg Chem 2017; 74:179-186. [PMID: 28826047 DOI: 10.1016/j.bioorg.2017.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
|
46
|
Synthesis, α -glucosidase inhibitory activity and in silico study of tris -indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorg Chem 2017; 74:30-40. [DOI: 10.1016/j.bioorg.2017.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022]
|
47
|
Arshia, Khan AK, Khan KM, Ahmed A, Taha M, Perveen S. Antibiofilm potential of synthetic 2-amino-5-chlorobenzophenone Schiff bases and its confirmation through fluorescence microscopy. Microb Pathog 2017; 110:497-506. [DOI: 10.1016/j.micpath.2017.07.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 11/16/2022]
|
48
|
Kayet A, Singh VK. A one-pot synthesis of 2,2'-disubstituted diindolylmethanes (DIMs) via a sequential Sonogashira coupling and cycloisomerization/C3-functionalization of 2-iodoanilines. Org Biomol Chem 2017; 15:6997-7007. [PMID: 28792550 DOI: 10.1039/c7ob01701d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A Pd(ii)-Ag(i) catalyzed highly efficient synthesis of diindolylmethane has been developed. This transformation consists of a one-pot sequential Sonogashira coupling (and desilylation) followed by cycloisomerization/C3-functionalization of 2-iodoanilines. Six new bonds (four C-C and two C-N) are formed in a one-pot fashion. A variety of diindolylmethanes were obtained in excellent yields (up to 94%) under mild reaction conditions and this strategy is amenable to gram scale synthesis also. The products were transformed into various synthetically useful compounds.
Collapse
Affiliation(s)
- Anirban Kayet
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-462 066, India.
| | | |
Collapse
|
49
|
Zhang Y, Zhang SX, Fu LN, Guo QX. Highly Efficient Atom-Economic Synthesis of Chiral Bis(indolyl)methanes Bearing Quaternary Stereogenic Carbon Centers. ChemCatChem 2017. [DOI: 10.1002/cctc.201700368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yan Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University Institution; Chongqing 400715 China
| | - Si-Xiang Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University Institution; Chongqing 400715 China
| | - Li-Na Fu
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University Institution; Chongqing 400715 China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University Institution; Chongqing 400715 China
| |
Collapse
|
50
|
Zhang J, Tan W, Li Q, Dong F, Luan F, Guo Z. The influence of starch derivatives with benzene or halogenated benzene on antibacterial activity. STARCH-STARKE 2017. [DOI: 10.1002/star.201600350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai P. R. China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai P. R. China
| | - Fang Luan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|