1
|
Drobotenko MI, Lyasota OM, Hernandez-Caceres JL, Labrada RR, Svidlov AA, Dorohova АA, Baryshev MG, Nechipurenko YD, Pérez LV, Dzhimak SS. Abnormal open states patterns in the ATXN2 DNA sequence depends on the CAG repeats length. Int J Biol Macromol 2024; 276:133849. [PMID: 39004246 DOI: 10.1016/j.ijbiomac.2024.133849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/04/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Hereditary ataxias are one of the «anticipation diseases» types. Spinocerebral ataxia type 2 occurs when the number of CAG repeats in the coding region of the ATXN2 gene exceeds 34 or more. In healthy people, the CAG repeat region in the ATXN2 gene usually consists of 22-23 CAG trinucleotides. Mutations that increase the length of CAG repeats can cause severe neurodegenerative and neuromuscular disorders known as trinucleotide repeat expansion diseases. The mechanisms causing such diseases are associated with non-canonical configurations that can be formed in the CAG repeat region during replication, transcription or repair. This makes it relevant to study the zones of open states that arise in the region of CAG repeats under torque. The purpose of this work is to study, using mathematical modeling, zones of open states in the region of CAG repeats of the ATXN2 gene, caused by torque. It has been established that the torque effect on the 1st exon of the ATXN2 gene, in addition to the formation of open states in the promoter region, can lead to the formation of additional various sizes open states zones in the CAG repeats region. Moreover, the frequency of additional large zones genesis increases with increasing number of CAG repeats. The inverse of this frequency correlates with the dependence of the disease onset average age on the CAG repeats length. The obtained results will allow us to get closer to understanding the genetic mechanisms that cause trinucleotide repeat diseases.
Collapse
Affiliation(s)
- Mikhail I Drobotenko
- Department of Radiophysics and Nanothechnology, Kuban State University, 350040 Krasnodar, Russian Federation
| | - Oksana M Lyasota
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation
| | | | | | - Alexandr A Svidlov
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation
| | - Аnna A Dorohova
- Department of Radiophysics and Nanothechnology, Kuban State University, 350040 Krasnodar, Russian Federation; Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation
| | - Mikhail G Baryshev
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation
| | - Yury D Nechipurenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | | | - Stepan S Dzhimak
- Department of Radiophysics and Nanothechnology, Kuban State University, 350040 Krasnodar, Russian Federation; Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation.
| |
Collapse
|
2
|
Aguirre Rivera J, Mao G, Sabantsev A, Panfilov M, Hou Q, Lindell M, Chanez C, Ritort F, Jinek M, Deindl S. Massively parallel analysis of single-molecule dynamics on next-generation sequencing chips. Science 2024; 385:892-898. [PMID: 39172826 DOI: 10.1126/science.adn5371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/12/2024] [Indexed: 08/24/2024]
Abstract
Single-molecule techniques are ideally poised to characterize complex dynamics but are typically limited to investigating a small number of different samples. However, a large sequence or chemical space often needs to be explored to derive a comprehensive understanding of complex biological processes. Here we describe multiplexed single-molecule characterization at the library scale (MUSCLE), a method that combines single-molecule fluorescence microscopy with next-generation sequencing to enable highly multiplexed observations of complex dynamics. We comprehensively profiled the sequence dependence of DNA hairpin properties and Cas9-induced target DNA unwinding-rewinding dynamics. The ability to explore a large sequence space for Cas9 allowed us to identify a number of target sequences with unexpected behaviors. We envision that MUSCLE will enable the mechanistic exploration of many fundamental biological processes.
Collapse
Affiliation(s)
- J Aguirre Rivera
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - G Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - A Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - M Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - Q Hou
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - M Lindell
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, 75144 Uppsala, Sweden
| | - C Chanez
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - F Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - M Jinek
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - S Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| |
Collapse
|
3
|
Hartmann A, Sreenivasa K, Schenkel M, Chamachi N, Schake P, Krainer G, Schlierf M. An automated single-molecule FRET platform for high-content, multiwell plate screening of biomolecular conformations and dynamics. Nat Commun 2023; 14:6511. [PMID: 37845199 PMCID: PMC10579363 DOI: 10.1038/s41467-023-42232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Single-molecule FRET (smFRET) has become a versatile tool for probing the structure and functional dynamics of biomolecular systems, and is extensively used to address questions ranging from biomolecular folding to drug discovery. Confocal smFRET measurements are amongst the widely used smFRET assays and are typically performed in a single-well format. Thus, sampling of many experimental parameters is laborious and time consuming. To address this challenge, we extend here the capabilities of confocal smFRET beyond single-well measurements by integrating a multiwell plate functionality to allow for continuous and automated smFRET measurements. We demonstrate the broad applicability of the multiwell plate assay towards DNA hairpin dynamics, protein folding, competitive and cooperative protein-DNA interactions, and drug-discovery, revealing insights that would be very difficult to achieve with conventional single-well format measurements. For the adaptation into existing instrumentations, we provide a detailed guide and open-source acquisition and analysis software.
Collapse
Affiliation(s)
- Andreas Hartmann
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany.
| | - Koushik Sreenivasa
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
- Department of Bionanoscience, Delft University of Technology, 2629HZ, Delft, Netherlands
| | - Mathias Schenkel
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Neharika Chamachi
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Philipp Schake
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Georg Krainer
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010, Graz, Austria
| | - Michael Schlierf
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany.
- Physics of Life, DFG Cluster of Excellence, TU Dresden, 01062, Dresden, Germany.
- Faculty of Physics, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
4
|
Xu P, Zhang J, Pan F, Mahn C, Roland C, Sagui C, Weninger K. Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity. J Mol Biol 2023; 435:168086. [PMID: 37024008 PMCID: PMC10191799 DOI: 10.1016/j.jmb.2023.168086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
DNA trinucleotide repeat (TRs) expansion beyond a threshold often results in human neurodegenerative diseases. The mechanisms causing expansions remain unknown, although the tendency of TR ssDNA to self-associate into hairpins that slip along their length is widely presumed related. Here we apply single molecule FRET (smFRET) experiments and molecular dynamics simulations to determine conformational stabilities and slipping dynamics for CAG, CTG, GAC and GTC hairpins. Tetraloops are favored in CAG (89%), CTG (89%) and GTC (69%) while GAC favors triloops. We also determined that TTG interrupts near the loop in the CTG hairpin stabilize the hairpin against slipping. The different loop stabilities have implications for intermediate structures that may form when TR-containing duplex DNA opens. Opposing hairpins in the (CAG) ∙ (CTG) duplex would have matched stability whereas opposing hairpins in a (GAC) ∙ (GTC) duplex would have unmatched stability, introducing frustration in the (GAC) ∙ (GTC) opposing hairpins that could encourage their resolution to duplex DNA more rapidly than in (CAG) ∙ (CTG) structures. Given that the CAG and CTG TR can undergo large, disease-related expansion whereas the GAC and GTC sequences do not, these stability differences can inform and constrain models of expansion mechanisms of TR regions.
Collapse
Affiliation(s)
- Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA. https://twitter.com/@XPengning
| | - Jiahui Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Chelsea Mahn
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
5
|
Ten TB, Zvoda V, Sarangi MK, Kuznetsov SV, Ansari A. "Flexible hinge" dynamics in mismatched DNA revealed by fluorescence correlation spectroscopy. J Biol Phys 2022; 48:253-272. [PMID: 35451661 PMCID: PMC9411374 DOI: 10.1007/s10867-022-09607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/22/2022] [Indexed: 10/18/2022] Open
Abstract
Altered unwinding/bending fluctuations at DNA lesion sites are implicated as plausible mechanisms for damage sensing by DNA-repair proteins. These dynamics are expected to occur on similar timescales as one-dimensional (1D) diffusion of proteins on DNA if effective in stalling these proteins as they scan DNA. We examined the flexibility and dynamics of DNA oligomers containing 3 base pair (bp) mismatched sites specifically recognized in vitro by nucleotide excision repair protein Rad4 (yeast ortholog of mammalian XPC). A previous Forster resonance energy transfer (FRET) study mapped DNA conformational distributions with cytosine analog FRET pair primarily sensitive to DNA twisting/unwinding deformations (Chakraborty et al. Nucleic Acids Res. 46: 1240-1255 (2018)). These studies revealed B-DNA conformations for nonspecific (matched) constructs but significant unwinding for mismatched constructs specifically recognized by Rad4, even in the absence of Rad4. The timescales of these unwinding fluctuations, however, remained elusive. Here, we labeled DNA with Atto550/Atto647N FRET dyes suitable for fluorescence correlation spectroscopy (FCS). With these probes, we detected higher FRET in specific, mismatched DNA compared with matched DNA, reaffirming unwinding/bending deformations in mismatched DNA. FCS unveiled the dynamics of these spontaneous deformations at ~ 300 µs with no fluctuations detected for matched DNA within the ~ 600 ns-10 ms FCS time window. These studies are the first to visualize anomalous unwinding/bending fluctuations in mismatched DNA on timescales that overlap with the < 500 µs "stepping" times of repair proteins on DNA. Such "flexible hinge" dynamics at lesion sites could arrest a diffusing protein to facilitate damage interrogation and recognition.
Collapse
Affiliation(s)
- Timour B Ten
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Viktoriya Zvoda
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Manas K Sarangi
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
- Present Address: Department of Physics, Indian Institute of Technology, Patna, 801103, India
| | - Serguei V Kuznetsov
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Anjum Ansari
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
6
|
Ha B, Kim TJ, Moon E, Giaccia AJ, Pratx G. Flow radiocytometry using droplet optofluidics. Biosens Bioelectron 2021; 194:113565. [PMID: 34492500 PMCID: PMC8530933 DOI: 10.1016/j.bios.2021.113565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Flow-based cytometry methods are widely used to analyze heterogeneous cell populations. However, their use for small molecule studies remains limited due to bulky fluorescent labels that often interfere with biochemical activity in cells. In contrast, radiotracers require minimal modification of their target molecules and can track biochemical processes with negligible interference and high specificity. Here, we introduce flow radiocytometry (FRCM) that broadens the scope of current cytometry methods to include beta-emitting radiotracers as probes for single cell studies. FRCM uses droplet microfluidics and radiofluorogenesis to translate the radioactivity of single cells into a fluorescent signal that is then read out using a high-throughput optofluidic device. As a proof of concept, we quantitated [18F]fluorodeoxyglucose radiotracer uptake in single human breast cancer cells and successfully assessed the metabolic flux of glucose and its heterogeneity at the cellular level. We believe FRCM has potential applications ranging from analytical assays for cancer and other diseases to development of small-molecule drugs.
Collapse
Affiliation(s)
- Byunghang Ha
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305-5847, USA; Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305-3011, USA.
| | - Tae Jin Kim
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305-5847, USA
| | - Ejung Moon
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305-5847, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305-5847, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305-5847, USA.
| |
Collapse
|
7
|
Qiao Y, Luo Y, Long N, Xing Y, Tu J. Single-Molecular Förster Resonance Energy Transfer Measurement on Structures and Interactions of Biomolecules. MICROMACHINES 2021; 12:492. [PMID: 33925350 PMCID: PMC8145425 DOI: 10.3390/mi12050492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) inherits the strategy of measurement from the effective "spectroscopic ruler" FRET and can be utilized to observe molecular behaviors with relatively high throughput at nanometer scale. The simplicity in principle and configuration of smFRET make it easy to apply and couple with other technologies to comprehensively understand single-molecule dynamics in various application scenarios. Despite its widespread application, smFRET is continuously developing and novel studies based on the advanced platforms have been done. Here, we summarize some representative examples of smFRET research of recent years to exhibit the versatility and note typical strategies to further improve the performance of smFRET measurement on different biomolecules.
Collapse
Affiliation(s)
- Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yuhan Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Naiyun Long
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China;
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| |
Collapse
|
8
|
DNA hybridisation kinetics using single-molecule fluorescence imaging. Essays Biochem 2021; 65:27-36. [PMID: 33491734 PMCID: PMC8056036 DOI: 10.1042/ebc20200040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/05/2023]
Abstract
Deoxyribonucleic acid (DNA) hybridisation plays a key role in many biological processes and nucleic acid biotechnologies, yet surprisingly there are many aspects about the process which are still unknown. Prior to the invention of single-molecule microscopy, DNA hybridisation experiments were conducted at the ensemble level, and thus it was impossible to directly observe individual hybridisation events and understand fully the kinetics of DNA hybridisation. In this mini-review, recent single-molecule fluorescence-based studies of DNA hybridisation are discussed, particularly for short nucleic acids, to gain more insight into the kinetics of DNA hybridisation. As well as looking at single-molecule studies of intrinsic and extrinsic factors affecting DNA hybridisation kinetics, the influence of the methods used to detect hybridisation of single DNAs is considered. Understanding the kinetics of DNA hybridisation not only gives insight into an important biological process but also allows for further advancements in the growing field of nucleic acid biotechnology.
Collapse
|
9
|
Morten MJ, Steinmark IE, Magennis SW. Probing DNA Dynamics: Stacking‐Induced Fluorescence Increase (SIFI) versus FRET. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael J. Morten
- School of ChemistryUniversity of Glasgow Joseph Black Building University Avenue Glasgow G12 8QQ UK
| | - I. Emilie Steinmark
- School of ChemistryUniversity of Glasgow Joseph Black Building University Avenue Glasgow G12 8QQ UK
| | - Steven W. Magennis
- School of ChemistryUniversity of Glasgow Joseph Black Building University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
10
|
Abstract
In this study, we propose a microchip that is sequentially capable of fluorescently staining and washing DNAs. The main advantage of this microchip is that it allows for one-step preparation of small amounts of solution without degrading microscopic bio-objects such as the DNAs, cells, and biomolecules to be stained. The microchip consists of two inlets, the main channel, staining zone, washing zone, and one outlet, and was processed using a femtosecond laser system. High molecular transport of rhodamine B to deionized water was observed in the performance test of the microchip. Results revealed that the one-step procedure of on-chip DNA staining and washing was excellent compared to the conventional staining method. The one-step preparation of stained and washed DNAs through the microchip will be useful for preparing small volumes of experimental samples.
Collapse
|
11
|
Dietz MS, Wehrheim SS, Harwardt MLIE, Niemann HH, Heilemann M. Competitive Binding Study Revealing the Influence of Fluorophore Labels on Biomolecular Interactions. NANO LETTERS 2019; 19:8245-8249. [PMID: 31621335 DOI: 10.1021/acs.nanolett.9b03736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fluorescence methods are important tools in modern biology. Direct labeling of biomolecules with a fluorophore might, however, change interaction surfaces. Here, we introduce a competitive binding assay in combination with fluorescence correlation spectroscopy that reports binding affinities of both labeled and unlabeled biomolecules to their binding target. We investigated how fluorophore labels at different positions of a DNA oligonucleotide affect hybridization to a complementary oligonucleotide and found dissociation constants varying within 2 orders of magnitude. We next demonstrated that placing a fluorophore label at position Leu280 in the protein ligand internalin B does not alter the binding affinity to the MET receptor tyrosine kinase, compared to unlabeled internalin B. Our approach is simple to implement and can be applied to investigate the influence of fluorophore labels in a large variety of biomolecular interactions.
Collapse
Affiliation(s)
- Marina S Dietz
- Single-Molecule Biophysics, Institute of Physical and Theoretical Chemistry , Goethe-University Frankfurt , Max-von-Laue-Straße 7 , 60438 Frankfurt/Main , Germany
| | - S Sophia Wehrheim
- Single-Molecule Biophysics, Institute of Physical and Theoretical Chemistry , Goethe-University Frankfurt , Max-von-Laue-Straße 7 , 60438 Frankfurt/Main , Germany
| | - Marie-Lena I E Harwardt
- Single-Molecule Biophysics, Institute of Physical and Theoretical Chemistry , Goethe-University Frankfurt , Max-von-Laue-Straße 7 , 60438 Frankfurt/Main , Germany
| | - Hartmut H Niemann
- Structural Biochemistry, Department of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Mike Heilemann
- Single-Molecule Biophysics, Institute of Physical and Theoretical Chemistry , Goethe-University Frankfurt , Max-von-Laue-Straße 7 , 60438 Frankfurt/Main , Germany
| |
Collapse
|
12
|
Schärfen L, Schlierf M. Real-time monitoring of protein-induced DNA conformational changes using single-molecule FRET. Methods 2019; 169:11-20. [DOI: 10.1016/j.ymeth.2019.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/21/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
|
13
|
Gong W, Das P, Samanta S, Xiong J, Pan W, Gu Z, Zhang J, Qu J, Yang Z. Redefining the photo-stability of common fluorophores with triplet state quenchers: mechanistic insights and recent updates. Chem Commun (Camb) 2019; 55:8695-8704. [PMID: 31073568 DOI: 10.1039/c9cc02616a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Light microscopy can offer certain advantages over electron microscopy in terms of acquiring detailed insights into the biological/intra-cellular milieu. In recent years, with the development of new fluorescence imaging technologies, it has become extremely important to assess the role of designing appropriate fluorophores in acquiring desired biological information without encountering any untoward hitches. Over the years, external fluorophores have been prevalently used in fluorescence microscopy and single-molecule fluorescence microscopy-based studies. Photostable fluorogenic probes with high extinction coefficients and quantum yields, exhibiting minimum autofluorescence and photobleaching properties, are preferred in single-molecule microscopy as they can tolerate long-term laser exposure. Therefore, the development of triplet state quenchers and/or any other suitable new strategy to ensure the photo-stability of the fluorophores during long-term live cell imaging exercises is highly anticipated. In this feature article, various strategies for stabilizing fluorophores, including the mechanisms of TSQ-induced stabilization, have been thoroughly reviewed considering contemporary literature reports and applications.
Collapse
Affiliation(s)
- Wanjun Gong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gao S, Li R, Cui M, Liu Y, Xie L. A Multichannel Time-Tagged Time-Resolved (TTTR) Model for Quantification of Oligomer Concentrations Based on Antibunching Effect. ACS OMEGA 2018; 3:14302-14308. [PMID: 31458120 PMCID: PMC6644909 DOI: 10.1021/acsomega.8b01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/16/2018] [Indexed: 06/10/2023]
Abstract
Molecule/protein aggregation causes many devastating and incurable diseases in human bodies. For example, studies have revealed that protein oligomers formed at the early stage are toxic and may be mostly responsible for some diseases. In the fundamental research, differentiation of different protein oligomers and quantification of the concentrations are important and challenging. Here, we have developed a multichannel time-tagged time-resolved (TTTR) confocal fluorescence model based on antibunching effect to solve the problem. The key point of the model is that n-oligomers labeled with n-dyes cannot emit more than n photons at one time. By assuming that all labeling dyes behave perfectly as noninteractive individual dyes, the analytic relationship between photon-emission probability and oligomer concentrations has been derived. Simulations have been carried out to verify the model, in which differentiation and concentration quantification of up to tetraoligomers can be realized with a relative error <10% in an eight-channel TTTR confocal setup with eight single-photon detectors.
Collapse
Affiliation(s)
- Shanshan Gao
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
| | - Ruiru Li
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, P. R.
China
| | - Menghua Cui
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, P. R.
China
- Academy
for Advanced Interdisciplinary Studies, Peking University, No.
5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Ying Liu
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
| | - Liming Xie
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, P. R.
China
| |
Collapse
|
15
|
Ripp S, Turunen P, Minot ED, Rowan AE, Blank KG. Deciphering Design Principles of Förster Resonance Energy Transfer-Based Protease Substrates: Thermolysin-Like Protease from Geobacillus stearothermophilus as a Test Case. ACS OMEGA 2018; 3:4148-4156. [PMID: 31458650 PMCID: PMC6641592 DOI: 10.1021/acsomega.7b02084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/19/2018] [Indexed: 06/10/2023]
Abstract
Protease activity is frequently assayed using short peptides that are equipped with a Förster resonance energy transfer (FRET) reporter system. Many frequently used donor-acceptor pairs are excited in the ultraviolet range and suffer from low extinction coefficients and quantum yields, limiting their usefulness in applications where a high sensitivity is required. A large number of alternative chromophores are available that are excited in the visible range, for example, based on xanthene or cyanine core structures. These alternatives are not only larger in size but also more hydrophobic. Here, we show that the hydrophobicity of these chromophores not only affects the solubility of the resulting FRET-labeled peptides but also their kinetic parameters in a model enzymatic reaction. In detail, we have compared two series of 4-8 amino acid long peptides, designed to serve as substrates for the thermolysin-like protease (TLP-ste) from Geobacillus stearothermophilus. These peptides were equipped with a carboxyfluorescein donor and either Cy5 or its sulfonated derivative Alexa Fluor 647 as the acceptor. We show that the turnover rate k cat is largely unaffected by the choice of the acceptor fluorophore, whereas the K M value is significantly lower for the Cy5- than for the Alexa Fluor 647-labeled substrates. TLP-ste is a rather nonspecific protease with a large number of hydrophobic amino acids surrounding the catalytic site, so that the fluorophore itself may form additional interactions with the enzyme. This hypothesis is supported by the result that the difference between Cy5- and Alexa Fluor 647-labeled substrates becomes less pronounced with increasing peptide length, that is, when the fluorophore is positioned at a larger distance from the catalytic site. These results suggest that fluorophores may become an integral part of FRET-labeled peptide substrates and that K M and k cat values are generally only valid for a specific combination of the peptide sequence and FRET pair.
Collapse
Affiliation(s)
- Sophie Ripp
- Institute
for Molecules and Materials, Department of Molecular Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Petri Turunen
- Institute
for Molecules and Materials, Department of Molecular Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ethan D. Minot
- Department
of Physics, Oregon State University, 301 Weniger Hall, Corvallis, Oregon 97331-6507, United States
| | - Alan E. Rowan
- Institute
for Molecules and Materials, Department of Molecular Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Kerstin G. Blank
- Institute
for Molecules and Materials, Department of Molecular Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Mechano(bio)chemistry,
Max Planck Institute of Colloids and Interfaces, Potsdam-Golm Science Park, 14424 Potsdam, Germany
| |
Collapse
|
16
|
Hartmann A, Berndt F, Ollmann S, Krainer G, Schlierf M. In situ temperature monitoring in single-molecule FRET experiments. J Chem Phys 2018; 148:123330. [DOI: 10.1063/1.5008966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Andreas Hartmann
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Frederic Berndt
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Simon Ollmann
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Georg Krainer
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Michael Schlierf
- B CUBE–Center for Molecular Bioengineering, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| |
Collapse
|
17
|
Vandenberk N, Barth A, Borrenberghs D, Hofkens J, Hendrix J. Evaluation of Blue and Far-Red Dye Pairs in Single-Molecule Förster Resonance Energy Transfer Experiments. J Phys Chem B 2018. [DOI: 10.1021/acs.jpcb.8b00108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Niels Vandenberk
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Anders Barth
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science, Nanosystems Initiative Munich and Centre for Nanoscience, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), Diepenbeek, B-3590, Belgium
| |
Collapse
|
18
|
Krainer G, Hartmann A, Anandamurugan A, Gracia P, Keller S, Schlierf M. Ultrafast Protein Folding in Membrane-Mimetic Environments. J Mol Biol 2018; 430:554-564. [DOI: 10.1016/j.jmb.2017.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/12/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023]
|
19
|
Grieb MS, Nivina A, Cheeseman BL, Hartmann A, Mazel D, Schlierf M. Dynamic stepwise opening of integron attC DNA hairpins by SSB prevents toxicity and ensures functionality. Nucleic Acids Res 2017; 45:10555-10563. [PMID: 28985409 PMCID: PMC5737091 DOI: 10.1093/nar/gkx670] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/22/2017] [Indexed: 11/22/2022] Open
Abstract
Biologically functional DNA hairpins are found in archaea, prokaryotes and eukaryotes, playing essential roles in various DNA transactions. However, during DNA replication, hairpin formation can stall the polymerase and is therefore prevented by the single-stranded DNA binding protein (SSB). Here, we address the question how hairpins maintain their functional secondary structure despite SSB’s presence. As a model hairpin, we used the recombinogenic form of the attC site, essential for capturing antibiotic-resistance genes in the integrons of bacteria. We found that attC hairpins have a conserved high GC-content near their apical loop that creates a dynamic equilibrium between attC fully opened by SSB and a partially structured attC-6–SSB complex. This complex is recognized by the recombinase IntI, which extrudes the hairpin upon binding while displacing SSB. We anticipate that this intriguing regulation mechanism using a base pair distribution to balance hairpin structure formation and genetic stability is key to the dissemination of antibiotic resistance genes among bacteria and might be conserved among other functional hairpins.
Collapse
Affiliation(s)
- Maj Svea Grieb
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| | - Aleksandra Nivina
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, 28 rue du Dr. Roux, 75724 Paris, France.,CNRS UMR3525, 75724 Paris, France.,Paris Descartes University, 75006 Paris, France
| | - Bevan L Cheeseman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Andreas Hartmann
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, 28 rue du Dr. Roux, 75724 Paris, France.,CNRS UMR3525, 75724 Paris, France
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| |
Collapse
|
20
|
Sánchez-Rico C, Voith von Voithenberg L, Warner L, Lamb DC, Sattler M. Effects of Fluorophore Attachment on Protein Conformation and Dynamics Studied by spFRET and NMR Spectroscopy. Chemistry 2017; 23:14267-14277. [PMID: 28799205 DOI: 10.1002/chem.201702423] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Indexed: 12/28/2022]
Abstract
Fluorescence-based techniques are widely used to study biomolecular conformations, intra- and intermolecular interactions, and conformational dynamics of macromolecules. Especially for fluorescence-based single-molecule experiments, the choice of the fluorophore and labeling position are highly important. In this work, we studied the biophysical and structural effects that are associated with the conjugation of fluorophores to cysteines in the splicing factor U2AF65 by using single pair Förster resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) spectroscopy. It is shown that certain acceptor fluorophores are advantageous depending on the experiments performed. The effects of dye attachment on the protein conformation were characterized using heteronuclear NMR experiments. The presence of hydrophobic and aromatic moieties in the fluorophores can significantly affect the conformation of the conjugated protein, presumably by transient interactions with the protein surface. Guidelines are provided for carefully choosing fluorophores, considering their photophysical properties and chemical features for the design of FRET experiments, and for minimizing artifacts.
Collapse
Affiliation(s)
- Carolina Sánchez-Rico
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Lena Voith von Voithenberg
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science, Nanosystems Initiative Munich and Centre for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Lisa Warner
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science, Nanosystems Initiative Munich and Centre for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
21
|
Krainer G, Gracia P, Frotscher E, Hartmann A, Gröger P, Keller S, Schlierf M. Slow Interconversion in a Heterogeneous Unfolded-State Ensemble of Outer-Membrane Phospholipase A. Biophys J 2017. [PMID: 28629619 DOI: 10.1016/j.bpj.2017.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Structural and dynamic investigations of unfolded proteins are important for understanding protein-folding mechanisms as well as the interactions of unfolded polypeptide chains with other cell components. In the case of outer-membrane proteins (OMPs), unfolded-state properties are of particular physiological relevance, because these proteins remain unfolded for extended periods of time during their biogenesis and rely on interactions with binding partners to support proper folding. Using a combination of ensemble and single-molecule spectroscopy, we have scrutinized the unfolded state of outer-membrane phospholipase A (OmpLA) to provide a detailed view of its structural dynamics on timescales from nanoseconds to milliseconds. We find that even under strongly denaturing conditions and in the absence of residual secondary structure, OmpLA populates an ensemble of slowly (>100 ms) interconverting and conformationally heterogeneous unfolded states that lack the fast chain-reconfiguration motions expected for an unstructured, fully unfolded chain. The drastically slowed sampling of potentially folding-competent states, as compared with a random-coil polypeptide, may contribute to the slow in vitro folding kinetics observed for many OMPs. In vivo, however, slow intramolecular long-range dynamics might be advantageous for entropically favored binding of unfolded OMPs to chaperones and, by facilitating conformational selection after release from chaperones, for preserving binding-competent conformations before insertion into the outer membrane.
Collapse
Affiliation(s)
- Georg Krainer
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany; Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Pablo Gracia
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Erik Frotscher
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Andreas Hartmann
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Philip Gröger
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany.
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
22
|
Farooq S, Hohlbein J. Camera-based single-molecule FRET detection with improved time resolution. Phys Chem Chem Phys 2016; 17:27862-72. [PMID: 26439729 DOI: 10.1039/c5cp04137f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The achievable time resolution of camera-based single-molecule detection is often limited by the frame rate of the camera. Especially in experiments utilizing single-molecule Förster resonance energy transfer (smFRET) to probe conformational dynamics of biomolecules, increasing the frame rate by either pixel-binning or cropping the field of view decreases the number of molecules that can be monitored simultaneously. Here, we present a generalised excitation scheme termed stroboscopic alternating-laser excitation (sALEX) that significantly improves the time resolution without sacrificing highly parallelised detection in total internal reflection fluorescence (TIRF) microscopy. In addition, we adapt a technique known from diffusion-based confocal microscopy to analyse the complex shape of FRET efficiency histograms. We apply both sALEX and dynamic probability distribution analysis (dPDA) to resolve conformational dynamics of interconverting DNA hairpins in the millisecond time range.
Collapse
Affiliation(s)
- Shazia Farooq
- Laboratory of Biophysics, Wageningen UR, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| | | |
Collapse
|
23
|
Hartmann A, Krainer G, Keller S, Schlierf M. Quantification of Millisecond Protein-Folding Dynamics in Membrane-Mimetic Environments by Single-Molecule Förster Resonance Energy Transfer Spectroscopy. Anal Chem 2015; 87:11224-32. [PMID: 26457727 DOI: 10.1021/acs.analchem.5b03207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An increasing number of membrane proteins in different membrane-mimetic systems have become accessible to reversible unfolding experiments monitored by well-established ensemble techniques. However, only little information is available about kinetic processes during membrane-protein folding, mainly because of experimental challenges and a lack of methods suitable for observing highly dynamic membrane proteins. Here, we present single-molecule Förster resonance energy transfer (smFRET) confocal spectroscopy as a powerful tool in kinetic studies of membrane-protein folding in membrane-mimetic environments. We have developed a rigorous workflow demonstrating how to identify and quantify such dynamic processes using a set of qualitative, semiquantitative, and quantitative analytical tools. Using this workflow, we analyzed urea-induced folding and unfolding experiments on the α-helical membrane protein Mistic in the presence of the zwitterionic detergent n-dodecylphosphocholine (DPC). We identified two-state interconversion dynamics on the millisecond time scale of a protein folding into and out of detergent micelles. Our results demonstrate that smFRET is a promising tool for probing the chemical physics of membrane-protein structure and dynamics in the complex and anisotropic environment of a hydrophilic/hydrophobic interface, providing insights into protein interconversion dynamics without the need and challenges of synchronization.
Collapse
Affiliation(s)
- Andreas Hartmann
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden , Arnoldstr. 18, 01307 Dresden, Germany
| | - Georg Krainer
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden , Arnoldstr. 18, 01307 Dresden, Germany.,Molecular Biophysics, University of Kaiserslautern , Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern , Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Michael Schlierf
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden , Arnoldstr. 18, 01307 Dresden, Germany
| |
Collapse
|
24
|
Krainer G, Hartmann A, Schlierf M. farFRET: Extending the Range in Single-Molecule FRET Experiments beyond 10 nm. NANO LETTERS 2015; 15:5826-5829. [PMID: 26104104 DOI: 10.1021/acs.nanolett.5b01878] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) has become a powerful nanoscopic tool in studies of biomolecular structures and nanoscale objects; however, conventional smFRET measurements are generally blind to distances above 10 nm thus impeding the study of long-distance phenomena. Here, we report the development of farFRET, a technique that extends the range in smFRET measurements beyond the 10 nm line by enhanced energy transfer using multiple acceptors. We demonstrate that farFRET can be readily employed to quantify FRET efficiencies and conformational dynamics using double-stranded DNA molecules, RecA-filament formation on single-stranded DNA and Holliday junction dynamics. farFRET allows quantitative measurements of large biomolecular complexes and nanostructures thus bridging the remaining gap to superresolution microscopy.
Collapse
Affiliation(s)
- Georg Krainer
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden , Arnoldstraße 18, 01307 Dresden, Germany
- Molecular Biophysics, University of Kaiserslautern , Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany
| | - Andreas Hartmann
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden , Arnoldstraße 18, 01307 Dresden, Germany
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden , Arnoldstraße 18, 01307 Dresden, Germany
| |
Collapse
|
25
|
Special issue: single molecule techniques. Molecules 2015; 20:7772-4. [PMID: 26007165 PMCID: PMC6272226 DOI: 10.3390/molecules20057772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/04/2022] Open
Abstract
Technological advances in the detection and manipulation of single molecules have enabled new insights into the function, structure and interactions of biomolecules. This Special Issue was launched to account for the rapid progress in the field of “Single Molecule Techniques”. Four original research articles and seven review articles provide an introduction, as well as an in-depth discussion, of technical developments that are indispensable for the characterization of individual biomolecules. Fluorescence microscopy takes center stage in this Special Issue because it is one of the most sensitive and flexible techniques, which has been adapted in many variations to the specific demands of single molecule analysis. Two additional articles are dedicated to single molecule detection based on atomic force microscopy.
Collapse
|