1
|
Rathi K, Shukla M, Hassam M, Shrivastava R, Rawat V, Prakash Verma V. Recent advances in the synthesis and antimalarial activity of 1,2,4-trioxanes. Bioorg Chem 2024; 143:107043. [PMID: 38134523 DOI: 10.1016/j.bioorg.2023.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The increasing resistance of various malarial parasite strains to drugs has made the production of a new, rapid-acting, and efficient antimalarial drug more necessary, as the demand for such drugs is growing rapidly. As a major global health concern, various methods have been implemented to address the problem of drug resistance, including the hybrid drug concept, combination therapy, the development of analogues of existing medicines, and the use of drug resistance reversal agents. Artemisinin and its derivatives are currently used against multidrug- resistant P. falciparum species. However, due to its natural origin, its use has been limited by its scarcity in natural resources. As a result, finding a substitute becomes more crucial, and the peroxide group in artemisinin, responsible for the drugs biological action in the form of 1,2,4-trioxane, may hold the key to resolving this issue. The literature suggests that 1,2,4-trioxanes have the potential to become an alternative to current malaria drugs, as highlighted in this review. This is why 1,2,4-trioxanes and their derivatives have been synthesized on a large scale worldwide, as they have shown promising antimalarial activity in vivo and in vitro against Plasmodium species. Consequently, the search for a more convenient, environment friendly, sustainable, efficient, and effective synthetic pathway for the synthesis of 1,2,4-trioxanes continues. The aim of this work is to provide a comprehensive analysis of the synthesis and mechanism of action of 1,2,4-trioxanes. This systematic review highlights the most recent summaries of derivatives of 1,2,4-trioxane compounds and dimers with potential antimalarial activity from January 1988 to 2023.
Collapse
Affiliation(s)
- Komal Rathi
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | - Monika Shukla
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | | | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan 30300, India
| | - Varun Rawat
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India.
| |
Collapse
|
2
|
Khwaza V, Aderibigbe BA. Antifungal Activities of Natural Products and Their Hybrid Molecules. Pharmaceutics 2023; 15:2673. [PMID: 38140014 PMCID: PMC10747321 DOI: 10.3390/pharmaceutics15122673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The increasing cases of drug resistance and high toxicity associated with the currently used antifungal agents are a worldwide public health concern. There is an urgent need to develop new antifungal drugs with unique target mechanisms. Plant-based compounds, such as carvacrol, eugenol, coumarin, cinnamaldehyde, curcumin, thymol, etc., have been explored for the development of promising antifungal agents due to their diverse biological activities, lack of toxicity, and availability. However, researchers around the world are unable to fully utilize the potential of natural products due to limitations, such as their poor bioavailability and aqueous solubility. The development of hybrid molecules containing natural products is a promising synthetic approach to overcome these limitations and control microbes' capability to develop resistance. Based on the potential advantages of hybrid compounds containing natural products to improve antifungal activity, there have been different reported synthesized hybrid compounds. This paper reviews different literature to report the potential antifungal activities of hybrid compounds containing natural products.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| |
Collapse
|
3
|
Marchesi E, Perrone D, Navacchia ML. Molecular Hybridization as a Strategy for Developing Artemisinin-Derived Anticancer Candidates. Pharmaceutics 2023; 15:2185. [PMID: 37765156 PMCID: PMC10536797 DOI: 10.3390/pharmaceutics15092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Artemisinin is a natural compound extracted from Artemisia species belonging to the Asteraceae family. Currently, artemisinin and its derivatives are considered among the most significant small-molecule antimalarial drugs. Artemisinin and its derivatives have also been shown to possess selective anticancer properties, however, there are several limitations and gaps in knowledge that retard their repurposing as effective anticancer agents. Hybridization resulting from a covalent combination of artemisinin with one or more active pharmacophores has emerged as a promising approach to overcome several issues. The variety of hybridization partners allows improvement in artemisinin activity by tuning the ability of conjugated artemisinin to interact with various molecule targets involved in multiple biological pathways. This review highlights the current scenario of artemisinin-derived hybrids with potential anticancer activity. The synthetic approaches to achieve the corresponding hybrids and the structure-activity relationships are discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy
| |
Collapse
|
4
|
Lu DL, Yao YY, Liang YF, Liang C, Lei L, Ma L, Mo DL. Synthesis of Tetrahydro-5 H-indolo[2,3- b]quinolines through Copper-Catalyzed Cascade Reactions of Aza- o-quinone Methides with Indoles. J Org Chem 2023; 88:690-700. [PMID: 36485009 DOI: 10.1021/acs.joc.2c02140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of tetrahydro-5H-indolo[2,3-b]quinolines were prepared in 40-97% yields through a copper(II)-catalyzed cascade reaction of aza-o-quinone methides generated in situ from 2-(chloromethyl)anilines and indoles. Experimental results showed that the reaction underwent double 1,4-additions and sequential intramolecular cyclization. The present method features broad substrate scope, good functional group tolerance, and easy gram scalable preparation of indolo[2,3-b]quinolines.
Collapse
Affiliation(s)
- Dong-Liu Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Yi-Yun Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Yu-Feng Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.,College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan Second Road, Baise, 533000, China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Lu Lei
- College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan Second Road, Baise, 533000, China
| | - Lu Ma
- College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan Second Road, Baise, 533000, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
5
|
Li D, Yang R, Wu J, Zhong B, Li Y. Comprehensive review of α-carboline alkaloids: Natural products, updated synthesis, and biological activities. Front Chem 2022; 10:988327. [PMID: 36092663 PMCID: PMC9459053 DOI: 10.3389/fchem.2022.988327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
α-carboline (9H-pyrido[2,3-b]indole), contains a pyridine ring fused with an indole backbone, is a promising scaffold for medicinal chemistry. In recent decades, accumulating evidence shows that α-carboline natural products and their derivatives possess diverse bioactivities. However, hitherto, there is no comprehensive review to systematically summarize this important class of alkaloids. In this perspective, this paper represents the first review to provide a comprehensive description of α-carbolines including natural products, updated literature of synthesis, and their diverse biological activities. Their biological activities including antitumor, anti-microbial, anti-Alzheimer’s disease, anti-atherosclerosis, and antioxidant activities were hilighted. And the targets and the main structure activity relationships (SARs) will be presented. Finally, challenges and future directions of this class of compounds will be discussed. This review will be helpful in understanding and encouraging further exploration for this group of alkaloids.
Collapse
Affiliation(s)
- Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Immunotherapeutic Drugs Developing for Childhood Leukemia, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Renze Yang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jun Wu
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Bin Zhong
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Immunotherapeutic Drugs Developing for Childhood Leukemia, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Yan Li,
| |
Collapse
|
6
|
Hu Y, Wang Y, Li N, Chen L, Sun J. Discovery of novel dihydroartemisinin-cinnamic hybrids inducing lung cancer cells apoptosis via inhibition of Akt/Bad signal pathway. Bioorg Chem 2021; 111:104903. [PMID: 33894433 DOI: 10.1016/j.bioorg.2021.104903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/05/2023]
Abstract
A series of dihydroartemisinin-cinnamic acid hybrids were designed, synthesized and evaluated. Most of the tested compounds showed enhanced anti-proliferative activities than artemisinin and dihydroartemisinin, among which 16 g had the superior potency with IC50 values ranging from 5.07 μM to 7.88 μM against four tested cancer cell lines. The cell cycle arrest revealed that 16 g induced A549 cell cycle arrest at G0/G1 phase via regulation of G1-related protein expression (Cdk4). Further mechanism studies reveal that 16 g induced A549 cells apoptosis via inhibiting Akt/Bad pathway. Moreover, 16 g depolarized the mitochondria membrane potentials and induced ROS generation in A549. Additionally, 16 g blocked migration of A549 cells in a concentration-dependent manner. What's more, 16 g is barely nontoxic to zebrafish embryos. Overall, the cell cycle arrest, inhibition of Akt/Bad signal pathway, ROS generation and migration blocked might explain the potent anti-proliferative activities of these compounds.
Collapse
Affiliation(s)
- Yanping Hu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yujin Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
7
|
Zhu S, Yu Q, Huo C, Li Y, He L, Ran B, Chen J, Li Y, Liu W. Ferroptosis: A Novel Mechanism of Artemisinin and its Derivatives in Cancer Therapy. Curr Med Chem 2021; 28:329-345. [PMID: 31965935 DOI: 10.2174/0929867327666200121124404] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artemisinin is a sesquiterpene lactone compound with a special peroxide bridge that is tightly linked to the cytotoxicity involved in fighting malaria and cancer. Artemisinin and its derivatives (ARTs) are considered to be potential anticancer drugs that promote cancer cell apoptosis, induce cell cycle arrest and autophagy, inhibit cancer cell invasion and migration. Additionally, ARTs significantly increase intracellular Reactive Oxygen Species (ROS) in cancer cells, which result in ferroptosis, a new form of cell death, depending on the ferritin concentration. Ferroptosis is regarded as a cancer suppressor and as well as considered a new mechanism for cancer therapy. METHODS The anticancer activities of ARTs and reference molecules were compared by literature search and analysis. The latest research progress on ferroptosis was described, with a special focus on the molecular mechanism of artemisinin-induced ferroptosis. RESULTS Artemisinin derivatives, artemisinin-derived dimers, hybrids and artemisinin-transferrin conjugates, could significantly improve anticancer activity, and their IC50 values are lower than those of reference molecules such as doxorubicin and paclitaxel. The biological activities of linkers in dimers and hybrids are important in the drug design processes. ARTs induce ferroptosis mainly by triggering intracellular ROS production, promoting the lysosomal degradation of ferritin and regulating the System Xc-/Gpx4 axis. Interestingly, ARTs also stimulate the feedback inhibition pathway. CONCLUSION Artemisinin and its derivatives could be used in the future as cancer therapies with broader applications due to their induction of ferroptosis. Meanwhile, more attention should be paid to the development of novel artemisinin-related drugs based on the mechanism of artemisinininduced ferroptosis.
Collapse
Affiliation(s)
- Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qin Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunsong Huo
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yuanpeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Botian Ran
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ji Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yonghao Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wanhong Liu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Gao F, Sun Z, Kong F, Xiao J. Artemisinin-derived hybrids and their anticancer activity. Eur J Med Chem 2020; 188:112044. [PMID: 31945642 DOI: 10.1016/j.ejmech.2020.112044] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
The emergence of drug-resistance and the low specificity of anticancer agents are the major challenges in the treatment of cancer and can result in many side effects, creating an urgent demand to develop novel anticancer agents. Artemisinin-derived compounds, bearing a peroxide-containing sesquiterpene lactone moiety, could form free radicals with high reactivity and possess diverse pharmaceutical properties including in vitro and in vivo anticancer activity besides their typical antimalarial activity. Hybrid molecules have the potential to improve the specificity and overcome the drug resistance, therefore hybridization of artemisinin skeleton with other anticancer pharmacophores may provide novel anticancer candidates with high specificity and great potency against drug-resistant cancers. The review outlines the recent advances of artemisinin-derived hybrids as potential anticancer agents, and the structure-activity relationships are also discussed to provide an insight for rational designs of novel hybrids with high activity.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| | - Zhou Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| |
Collapse
|
9
|
Structural Modifications of Nature-Inspired Indoloquinolines: A Mini Review of Their Potential Antiproliferative Activity. Molecules 2019; 24:molecules24112121. [PMID: 31195640 PMCID: PMC6600460 DOI: 10.3390/molecules24112121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 02/04/2023] Open
Abstract
Cryptolepine, neocryptolepine and isocryptolepine are naturally occurring indoloquinoline alkaloids with various spectrum of biological properties. Structural modification is an extremely effective means to improve their bioactivities. This review enumerates several neocryptolepine and isocryptolepine analogues with potent antiproliferative activity against MV4-11 (leukemia), A549 (lung cancer), HCT116 (colon cancer) cell lines in vitro. Its activity towards normal mouse fibroblasts BALB/3T3 was also evaluated. Furthermore, structure activity relationships (SAR) are briefly discussed. The anticancer screening of neocryptolepine derivatives was performed in order to determine their cytotoxic and growth inhibitory activities across the JFCR39 cancer cell line panel.
Collapse
|
10
|
Synthesis and electrochemical, spectral, and biological evaluation of novel 9,10-anthraquinone derivatives containing piperidine unit as potent antiproliferative agents. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.07.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Luan S, Zhong H, Zhao X, Yang J, Jing Y, Liu D, Zhao L. Synthesis, anticancer evaluation and pharmacokinetic study of novel 10-O-phenyl ethers of dihydroartemisinin. Eur J Med Chem 2017; 141:584-595. [DOI: 10.1016/j.ejmech.2017.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022]
|
12
|
Zyad A, Tilaoui M, Jaafari A, Oukerrou MA, Mouse HA. More insights into the pharmacological effects of artemisinin. Phytother Res 2017; 32:216-229. [PMID: 29193409 DOI: 10.1002/ptr.5958] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Artemisinin is one of the most widely prescribed drugs against malaria and has recently received increased attention because of its other potential biological effects. The aim of this review is to summarize recent discoveries of the pharmaceutical effects of artemisinin in basic science along with its mechanistic action, as well as the intriguing results of recent clinical studies, with a focus on its antitumor activity. Scientific evidence indicates that artemisinin exerts its biological activity by generating reactive oxygen species that damage the DNA, mitochondrial depolarization, and cell death. In the present article review, scientific evidence suggests that artemisinin is a potential therapeutic agent for various diseases. Thus, this review is expected to encourage interested scientists to conduct further preclinical and clinical studies to evaluate these biological activities.
Collapse
Affiliation(s)
- Abdelmajid Zyad
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Mounir Tilaoui
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Abdeslam Jaafari
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Moulay Ali Oukerrou
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Hassan Ait Mouse
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| |
Collapse
|
13
|
Pham NN, Janke S, Salman GA, Dang TT, Le TS, Spannenberg A, Ehlers P, Langer P. Convenient Synthesis of 11-Substituted 11H
-Indolo[3,2-c
]quinolines by Sequential Chemoselective Suzuki Reaction/Double C-N Coupling. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700913] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ngo Nghia Pham
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18059 Rostock Germany
- Faculty of Chemistry; VNU University of Science Hanoi (VNU-HUS); 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
| | - Sophie Janke
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Ghazwan Ali Salman
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Department of Chemistry; College of Science; University Al-Mustansiriyah; Palestine St, Mustansiriya Baghdad Iraq
| | - Tuan Thanh Dang
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Thanh Son Le
- Faculty of Chemistry; VNU University of Science Hanoi (VNU-HUS); 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
| | - Anke Spannenberg
- Leibniz Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Peter Ehlers
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Peter Langer
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
14
|
Wong YK, Xu C, Kalesh KA, He Y, Lin Q, Wong WSF, Shen HM, Wang J. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med Res Rev 2017. [PMID: 28643446 DOI: 10.1002/med.21446] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Artemisinin and its derivatives (collectively termed as artemisinins) are among the most important and effective antimalarial drugs, with proven safety and efficacy in clinical use. Beyond their antimalarial effects, artemisinins have also been shown to possess selective anticancer properties, demonstrating cytotoxic effects against a wide range of cancer types both in vitro and in vivo. These effects appear to be mediated by artemisinin-induced changes in multiple signaling pathways, interfering simultaneously with multiple hallmarks of cancer. Great strides have been taken to characterize these pathways and to reveal their anticancer mechanisms of action of artemisinin. Moreover, encouraging data have also been obtained from a limited number of clinical trials to support their anticancer property. However, there are several key gaps in knowledge that continue to serve as significant barriers to the repurposing of artemisinins as effective anticancer agents. This review focuses on important and emerging aspects of this field, highlighting breakthroughs in unresolved questions as well as novel techniques and approaches that have been taken in recent studies. We discuss the mechanism of artemisinin activation in cancer, novel and significant findings with regards to artemisinin target proteins and pathways, new understandings in artemisinin-induced cell death mechanisms, as well as the practical issues of repurposing artemisinin. We believe these will be important topics in realizing the potential of artemisinin and its derivatives as safe and potent anticancer agents.
Collapse
Affiliation(s)
- Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chengchao Xu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Karunakaran A Kalesh
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Yingke He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigang Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Ali W, Dahiya A, Pandey R, Alam T, Patel BK. Microwave-Assisted Cascade Strategy for the Synthesis of Indolo[2,3-b]quinolines from 2-(Phenylethynyl)anilines and Aryl Isothiocynates. J Org Chem 2017; 82:2089-2096. [DOI: 10.1021/acs.joc.6b02912] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wajid Ali
- Department
of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anjali Dahiya
- Department
of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ramdhari Pandey
- Department
of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tipu Alam
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Bhisma K. Patel
- Department
of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
16
|
Yan Z, Wan C, Wan J, Wang Z. An efficient iron-promoted synthesis of 6H-indolo[2,3-b]quinolines and neocryptolepine derivatives. Org Biomol Chem 2016; 14:4405-8. [DOI: 10.1039/c6ob00469e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A facile and practical method for the preparation of 6H-indolo[2,3-b]quinolines and neocryptolepines was developed under the promotion of ferric trichloride.
Collapse
Affiliation(s)
- Zicong Yan
- Hefei National Laboratory for Physical Sciences at Microscale
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Changfeng Wan
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| | - Jianyong Wan
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
17
|
Guo S, Tao L, Zhang W, Zhang X, Fan X. Regioselective Synthesis of Indolo[1,2-c]quinazolines and 11H-Indolo[3,2-c]quinolines via Copper-Catalyzed Cascade Reactions of 2-(2-Bromoaryl)-1H-indoles with Aldehydes and Aqueous Ammonia. J Org Chem 2015; 80:10955-64. [DOI: 10.1021/acs.joc.5b02076] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shenghai Guo
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Li Tao
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Wenwen Zhang
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xinying Zhang
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xuesen Fan
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
18
|
Bräutigam M, Teusch N, Schenk T, Sheikh M, Aricioglu RZ, Borowski SH, Neudörfl JM, Baumann U, Griesbeck AG, Pietsch M. Selective Inhibitors of Glutathione Transferase P1 with Trioxane Structure as Anticancer Agents. ChemMedChem 2015; 10:629-39. [DOI: 10.1002/cmdc.201402553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 11/09/2022]
|