1
|
Wu T, Zhang F, Cai Q, Wu H, Jiang T, Wang L, Chen X, Gao P, Yang X, Chen Y, Yue C, Tang L, Wang Z. Cardioprotective polyphenols from Geum japonicum var. chinense. PHYTOCHEMISTRY 2024; 218:113935. [PMID: 38029953 DOI: 10.1016/j.phytochem.2023.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Seven undescribed tannins, namely gejaponin A-G, and one dehydrodigallic acid derivative 3,4-dihydroxy-5-(3,4,5-trihydroxy-1-ethoxycarbonyl phenoxy)benzoic acid, together with eighteen known polyphenols were isolated from the 95% ethanol extract of the aerial part of Geum japonicum Thunb. var. chinense F. Bolle. Their structures were elucidated on the basis of comprehensive analysis of UV, IR, NMR, HRMS, and CD spectroscopy experiments. To evaluate their bioactivities, sixteen major compounds were selected to intervene in hydrogen peroxide (H2O2)-induced oxidative damage on H9c2 rat cardiomyoblasts. Some compounds demonstrated high activity in this assay, of which, the known compounds 16 and 21 exhibited strong protective effects against H2O2-induced injury in H9c2 rat cardiomyoblasts, with a comparable cardioprotective activity as that of the positive control trimetazidine, thereby revealing cardioprotective activities from G. japonicum var. chinense.
Collapse
Affiliation(s)
- Tong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingqing Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tong Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoxu Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peiyun Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaoyun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunyu Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Mohamed ME, El-Shafae AM, Fikry E, Elbaramawi SS, Elbatreek MH, Tawfeek N. Casuarina glauca branchlets' extract as a potential treatment for ulcerative colitis: chemical composition, in silico and in vivo studies. Front Pharmacol 2023; 14:1322181. [PMID: 38196993 PMCID: PMC10774231 DOI: 10.3389/fphar.2023.1322181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that is often resistant to current treatment options, leading to a need for alternative therapies. Herbal products have shown promise in managing various conditions, including UC. However, the potential of Casuarina glauca branchlets ethanolic extract (CGBRE) in treating UC has not been explored. This study aimed to analyze the chemical composition of CGBRE and evaluate its efficacy in UC treatment through in silico and in vivo experiments. LC-ESI-MS/MS was used to identify 86 compounds in CGBRE, with 21 potential bioactive compounds determined through pharmacokinetic analysis. Network pharmacology analysis revealed 171 potential UC targets for the bioactive compounds, including EGFR, LRRK2, and HSP90 as top targets, which were found to bind to key CGBRE compounds through molecular docking. Molecular docking findings suggested that CGBRE may be effective in the prevention or treatment of ulcerative colitis mediated by these proteins, where key CGBRE compounds exhibited good binding affinities through formation of numerous interactions. In vivo studies in rats with acetic acid-induced UC demonstrated that oral administration of 300 mg/kg CGBRE for 6 days reduced UC symptoms and colonic expression of EGFR, LRRK2, and HSP90. These findings supported the therapeutic potential of CGBRE in UC and suggested the need for further preclinical and clinical investigation.
Collapse
Affiliation(s)
- Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Azza M. El-Shafae
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Fikry
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar S. Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mahmoud H. Elbatreek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Ivanov I, Vasileva A, Tasheva D, Dimitrova M. Isolation and characterization of natural inhibitors of post-proline specific peptidases from the leaves of Cotinus coggygria Scop. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116508. [PMID: 37264880 DOI: 10.1016/j.jep.2023.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cotinus coggygria has a number of applications in traditional medicine most of which are connected with its anti-inflammatory and anti-oxidant properties. Since inflammation and oxidative stress are recognized as triggering factors for cancer, anti-cancer activity has also been documented and the possible mechanisms of this activity are under investigation. Important components of C. coggygria extracts are shown to be hydrolysable gallotannins of which pentagalloyl-O-glucose has been studied in details. This compound inhibits various enzymes including prolyl oligopeptidase which is involved in tumorigenesis and tumour growth. According to our pilot studies, oligo-O-galloylglucoses with more than five galloyl residues are also presented in the herb of Bulgarian origin, but their activities have not been examined. AIM OF THE STUDY To establish an extraction method by which it is possible to concentrate high molecular hydrolysable gallotannins from dried leaves of Cotinus coggygria and to determine their inhibitory properties towards prolyl oligopeptidase and fibroblast activation protein α. MATERIALS AND METHODS Dried leaves of C. coggygria were extracted using different solvents in single-phase or biphasic systems under various extraction conditions. Main compounds of the extracts were identified by using high performance liquid chromatography and liquid chromatography - high resolution mass spectrometry. The extracts' inhibitory properties towards prolyl oligopeptidase and fibroblast activation protein α were studied on recombinant human enzymes by enzyme kinetic analyses using a fluorogenic substrate. RESULTS Ethyl acetate/water (pH 3.0) extraction of dried plant leaves proved to be the most efficient method for isolation of high molecular hydrolysable gallotannins which can be further concentrated by precipitation of dicyclohexylammonium salts in ethyl acetate. The main components of those extracts were oligo-O-galloyl glucoses with more than five gallic acid residues. They were shown to inhibit both enzymes studied but were about 30 times more effective inhibitors of prolyl oligopeptidase. CONCLUSIONS C. coggygria from Bulgarian origin is shown to possess a substantial quantity of oligo-O-galloyl glucoses with more than five gallic acid residues which has not been described thus far in the same herb from other sources. An extraction method useable for concentrating those compounds is established. They are found to inhibit prolyl oligopeptidase with a very good selectivity to fibroblast activation protein α. The previously described antitumor activity of this plant may be at least in part due to the inhibition of the above enzymes which has been shown to participate in the genesis and development of various types of tumors.
Collapse
Affiliation(s)
- Ivaylo Ivanov
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 2, Zdrave Str., Sofia, 1431, Bulgaria.
| | - Anelia Vasileva
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 2, Zdrave Str., Sofia, 1431, Bulgaria
| | - Donka Tasheva
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1, J. Bourchier blvd., Sofia, 1164, Bulgaria
| | - Mashenka Dimitrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum - Bulgarian Academy of Sciences, "Acad. G. Bonchev" Str., Bl. 25, Sofia, 1113, Bulgaria
| |
Collapse
|
4
|
Chen M, Li N, Zhu HT, Zhang M, Duan ZH, Wang D, Yang CR, Zhang YJ. New Hydrolyzable Tannin with Potent Antioxidant and α-Glucosidase Inhibitory Activity from Black Tea Produced from Camellia taliensis. Foods 2023; 12:2512. [PMID: 37444250 DOI: 10.3390/foods12132512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Camellia taliensis (W. W. Smith) Melchior, belonging to the genus Camellia sect. Thea., is mainly distributed from northern Myanmar to western and southwestern Yunnan province of China, and its leaves have been used to make various teas by the locals of its growing regions. The chemical constituents of C. taliensis are significantly related to those of cultivated tea plants, C. sinensis and C. sinensis var. assamica. The HPLC-ESI-MS analysis of black tea prepared from the leaves of C. taliensis showed a rich existence of polyphenols. Further comprehensive chemical study led to the separation and recognition of 32 compounds (1-32), including one new hydrolyzable tannin, 1-O-galloyl-4,6-tetrahydroxydibenzofurandicarboxyl-β-D-glucopyranose (1), and one new natural product (24). The known compounds referred to seven hydrolyzable tannins (2-8), 10 flavonols and glycosides (9-18), and 14 simple phenolics (19-32). Their structures were elucidated by comprehensive spectroscopic analyses. Among them, 20 compounds (2, 3, 6, 7, 8, 15, 17, 18, 20-22, 24-32) were isolated from black tea for the first time. Most isolates displayed obvious antioxidant activities on DPPH and ABTS+ assays, and the hydrolyzable tannins 1, 3-5, 7, and 8 exhibited stronger inhibitory activities on α-glycosidase than quercetin and acarbose (IC50 = 5.75 and 223.30 μM, respectively), with IC50 values ranging from 0.67 to 2.01 μM.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Man Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
5
|
He YC, Gong C, Lei XL, Gao W, Yang JF, Bae YS, Kim JK, Seo CG, Park SY, Choi SE, Li BT. A New Gallotannin from the Extractives of Camellia oleifera Fruit Shell. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Mastihubová M, Mastihuba V. From Hamamelitannin Synthesis to the Study of Enzymatic Acylations of D-Hamamelose. Biomolecules 2023; 13:biom13030519. [PMID: 36979454 PMCID: PMC10046410 DOI: 10.3390/biom13030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The bioactive natural substance, hamamelitannin, was effectively synthesized in two ways. The chemical acylation of 2,3-O-isopropylidene-α,β-D-hamamelofuranose promoted by Bu2SnO using 3,4,5-tri-O-acetylgalloyl chloride, followed by the deprotection provided hamamelitannin in 79%. Pilot enzymatic benzoylation of D-hamamelose using vinyl benzoate (4 equiv.) and Lipozyme TL IM as a biocatalyst in t-butyl methyl ether (t-BuMeO) gave mainly benzoylated furanoses (89%), of which tribenzoates reached (52%). Enzymatic galloylation of 2,3-O-isopropylidene-α,β-D-hamamelofuranose with vinyl gallate under the catalysis of Lipozyme TL IM in t-butyl alcohol (t-BuOH) or t-BuMeO provided only the 5-O-galloylated product. The reaction in t-BuMeO proceeded in a shorter reaction time (61 h) and higher yield (82%). The more hydrophobic vinyl 3,4,5-tri-O-acetylgallate in the same reactions gave large amounts of acetylated products. Vinyl gallate and triacetylgallate in the enzymatic acylation of D-hamamelose with Lipozyme TL IM in t-BuMeO yielded 2′,5-diacylated hamamelofuranoses in a yield below 20%. The use of other vinyl gallates hydrophobized by methylation or benzylation provided 2′,5-diacylated hamamelofuranoses in good yields (65–84%). The reaction with silylated vinyl gallate did not proceed. The best results were obtained with vinyl 2,3,5-tri-O-benzyl gallate, and the only product, 2′,5-diacylated hamamelofuranoside precipitated from the reaction mixture (84% in 96 h). After debenzylation, hamamelitannin was obtained an 82% yield from hamamelose in two steps. This synthesis is preparatively undemanding and opens the way to multigram preparations of bioactive hamamelitannin and its analogues.
Collapse
|
7
|
Charette AB, Pauvert Y, Gaudreault R. Improved Total Synthesis of 1,3,6-Trigalloyl-β-d-glucose from Glucose. SYNTHESIS-STUTTGART 2023. [DOI: 10.1055/s-0042-1752404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
AbstractA total synthesis of the naturally occurring 1,3,6-trigalloyl-β-d-glucose is reported. The highlights of the synthesis include a regioselective benzylation of levoglucosan, followed by a 1,6-ring opening via acetolysis. Galloyl substituents were introduced via esterification, and the mixture of anomers obtained could be fully converted into the targeted β-anomer via selective hydrazinolysis followed by activation of the anomeric position by a trichloroacetimidate of the 1′-anomeric hydroxyl group. 1,3,6-Trigalloyl-β-d-glucose and its synthetic α-anomer were obtained in an overall yield of 31% and 22%, respectively, from levoglucosan or in an overall yield of 37% of the β-isomer exclusively by recycling the α-isomer.
Collapse
Affiliation(s)
- André B. Charette
- FRQNT-Center in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal
| | - Yann Pauvert
- FRQNT-Center in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal
| | | |
Collapse
|
8
|
Hu B, Hu H, Pu C, Peng D, Wei Z, Kuang H, Wang Q. New Ionone Glycosides from the Aerial Parts of Allium sativum and Their Anti-Platelet Aggregation Activity. PLANTA MEDICA 2023. [PMID: 36513370 DOI: 10.1055/a-1997-5692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The bulbs of Allium sativum known as garlic are widely used as food or seasoning. In China they have been used as a traditional Chinese medicine (TCM) since ancient times for the treatment of scabies, tuberculosis, pertussis, diarrhea and dysentery. A. sativum has reportedly shown platelet aggregation inhibition and has been used in the treatment of cardiovascular diseases. However, there are only few studies focussing on the aerial parts, which are normally discarded during harvest. In this study, two new ionone glycosides, dasuanxinosides D and E (1, 2: ), are isolated from the aerial parts together with 13 known compounds including alkanes derivatives and alkyl glycosides (3 - 15: ), which are reported for the first time from this plant. Their structures are identified by extensive NMR and HRMS analyses. The isolated compounds are evaluated for their inhibitory effect on adenosine diphosphate (ADP)-induced platelet aggregation in vitro.
Collapse
Affiliation(s)
- Bin Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
- Key Laboratory of Chinese Materia Medica, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haibo Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Chuan Pu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Donghui Peng
- Key Laboratory of Chinese Materia Medica, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zheng Wei
- Key Laboratory of Chinese Materia Medica, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Ganzhou people's Hospital, Ganzhou, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiuhong Wang
- College of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
9
|
Structural Characterization and Assessment of Anti-Inflammatory Activities of Polyphenols and Depsidone Derivatives from Melastoma malabathricum subsp. normale. Molecules 2022; 27:molecules27051521. [PMID: 35268622 PMCID: PMC8912040 DOI: 10.3390/molecules27051521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
The roots of Melastoma malabathricum subsp. normale (D. Don) Karst. Mey have been used in traditional ethnic medicine systems in China to treat inflammation-triggered ailments, such as trauma, toothache, and fever. Therefore, the aim of this study is to screen for compounds with anti-inflammatory activity in the title plant. The extract of M. malabathricum subsp. normale roots was separated using various chromatographic methods, such as silica gel, ODS C18, MCI gel, and Sephadex LH-20 column chromatography, as well as semi-preparative HPLC. One new complex tannin, named whiskey tannin D (1), and an undescribed tetracyclic depsidone derivative, named guanxidone B (2), along with nine known polyphenols (2–10) and three known depsidone derivatives (12–14) were obtained from this plant. The structures of all compounds were elucidated by extensive NMR and CD experiments in conjunction with HR-ESI-MS data. All these compounds were isolated from this plant for the first time. Moreover, compounds 1–4, 8, and 10–14 were obtained for the first time from the genus Melastoma, and compounds 1, 2, and 11–14 have not been reported from the family Melastomataceae. This is the first report of complex tannin and depsidone derivatives from M. malabathricum subsp. normale, indicating their chemotaxonomic significance to this plant. Compounds 1–12 were investigated for their anti-inflammatory activities on the production of the nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and compounds 1, 11, and 12 showed anti-inflammatory activities with IC50 values of 6.46 ± 0.23 µM, 8.02 ± 0.35 µM, and 9.82 ± 0.43 µM, respectively. The structure–activity relationship showed that the catechin at glucose C-1 in ellagitannin was the key to its anti-inflammatory activity, while CH3O- at C-16 of aromatic ring A in depsidone derivatives had little effect on its anti-inflammatory activity. The study of structure–activity relationships is helpful to quickly discover new anti-inflammatory drugs. The successful isolation and structure identification of these compounds, especially complex tannin 1, not only provide materials for the screening of anti-inflammatory compounds, but also provide a basis for the study of chemical taxonomy of the genus Melastoma.
Collapse
|
10
|
El-Hawary SS, Mohammed R, Lithy NM, AbouZid SF, Mansour MA, Almahmoud SA, Huwaimel B, Amin E. Digalloyl Glycoside: A Potential Inhibitor of Trypanosomal PFK from Euphorbia abyssinica J.F. Gmel. PLANTS (BASEL, SWITZERLAND) 2022; 11:173. [PMID: 35050063 PMCID: PMC8779944 DOI: 10.3390/plants11020173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Human African trypanosomiasis is an endemic infectious disease caused by Trypanosoma brucei via the bite of tsetse-fly. Most of the drugs used for the treatment, e.g., Suramin, have shown several problems, including the high level of toxicity. Accordingly, the discovery of anti-trypanosomal drugs from natural sources has become an urgent requirement. In our previous study on the anti-trypanosomal potential of Euphorbia species, Euphorbia abyssinica displayed significant anti-trypanosomal activity. Therefore, a phytochemical investigation of the methanolic extract of E. abyssinica was carried out. Twelve compounds, including two triterpenes (1, 2); one sterol-glucoside (4); three ellagic acid derivatives (3, 9, 11); three gallic acid derivatives (5, 6, 10); and three flavonoids (7, 8, 12), were isolated. The structures of isolated compounds were determined through different spectroscopic techniques. Compound (10) was obtained for the first time from genus Euphorbia while all other compounds except compound (4), were firstly reported in E. abyssinica. Consequently, an in silico study was used to estimate the anti-trypanosomal activity of the isolated compounds. Several compounds displayed interesting activity where 1,6-di-O-galloyl-d-glucose (10) appeared as the most potent inhibitor of trypanosomal phosphofructokinase (PFK). Moreover, molecular dynamics (MD) simulations and ADMET calculations were performed for 1,6-di-O-galloyl-d-glucose. In conclusion, 1,6-di-O-galloyl-d-glucose revealed high binding free energy as well as desirable molecular dynamics and pharmacokinetic properties; therefore, it could be suggested for further in vitro and in vivo studies for trypanosomiasis.
Collapse
Affiliation(s)
- Seham S. El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt;
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
| | - Nadia M. Lithy
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef, Beni-Suef 62521, Egypt;
| | - Sameh Fekry AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mostafa A. Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University Beni-Suef, Beni-Suef 62521, Egypt;
| | - Suliman A. Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 34464, Saudi Arabia;
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| |
Collapse
|
11
|
Orabi MAA, Zidan SAH, Attia GH, Alyami HS, Matsunami K, Hatano T. Ellagitannins and simple phenolics from the halophytic plant Tamarix nilotica. Nat Prod Res 2020; 36:177-185. [DOI: 10.1080/14786419.2020.1774757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-branch, Assiut 71524, Egypt
| | - Sabry A. H. Zidan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-branch, Assiut 71524, Egypt
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gouda H. Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Hamad S. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tsutomu Hatano
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan
| |
Collapse
|
12
|
Shipton ML, Riley AM, Rossi AM, Brearley CA, Taylor CW, Potter BVL. Both d- and l-Glucose Polyphosphates Mimic d- myo-Inositol 1,4,5-Trisphosphate: New Synthetic Agonists and Partial Agonists at the Ins(1,4,5)P 3 Receptor. J Med Chem 2020; 63:5442-5457. [PMID: 32286062 PMCID: PMC7260056 DOI: 10.1021/acs.jmedchem.0c00215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Chiral sugar derivatives are potential
cyclitol surrogates of the
Ca2+-mobilizing intracellular messenger d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. Six novel polyphosphorylated analogues derived from both d- and l-glucose were synthesized. Binding to Ins(1,4,5)P3 receptors [Ins(1,4,5)P3R] and the ability to release
Ca2+ from intracellular stores via type 1 Ins(1,4,5)P3Rs were investigated. β-d-Glucopyranosyl 1,3,4-tris-phosphate,
with similar phosphate regiochemistry and stereochemistry to Ins(1,4,5)P3, and α-d-glucopyranosyl 1,3,4-tris-phosphate
are full agonists, being equipotent and 23-fold less potent than Ins(1,4,5)P3, respectively, in Ca2+-release assays and similar
to Ins(1,4,5)P3 and 15-fold weaker in binding assays. They
can be viewed as truncated analogues of adenophostin A and refine
understanding of structure-activity relationships for this Ins(1,4,5)P3R agonist. l-Glucose-derived ligands, methyl α-l-glucopyranoside 2,3,6-trisphosphate and methyl α-l-glucopyranoside 2,4,6-trisphosphate, are also active, while
their corresponding d-enantiomers, methyl α-d-glucopyranoside 2,3,6-trisphosphate and methyl α-d-glucopyranoside 2,4,6-trisphosphate, are inactive. Interestingly,
both l-glucose-derived ligands are partial agonists: they
are among the least efficacious agonists of Ins(1,4,5)P3R yet identified, providing new leads for antagonist development.
Collapse
Affiliation(s)
- Megan L Shipton
- Drug Discovery & Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U. K
| | - Andrew M Riley
- Drug Discovery & Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U. K
| | - Ana M Rossi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U. K
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U. K
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U. K
| | - Barry V L Potter
- Drug Discovery & Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U. K
| |
Collapse
|
13
|
Bunse M, Lorenz P, Stintzing FC, Kammerer DR. Characterization of Secondary Metabolites in Flowers of Sanguisorba officinalis L. by HPLC-DAD-MS n and GC/MS. Chem Biodivers 2020; 17:e1900724. [PMID: 32096590 DOI: 10.1002/cbdv.201900724] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
The investigations reported here focus on an in-depth characterization of the secondary metabolite profile of Sanguisorba officinalis flowers. For this purpose, fresh flowers were extracted with MeOH/H2 O and EtOH/H2 O and the resulting crude extracts fractionated using CH2 Cl2 , AcOEt, and BuOH. Individual compounds were characterized by high performance liquid chromatography and gas chromatography coupled with mass spectrometric detection (HPLC-DAD-MSn and GC/MS). MeOH/H2 O extraction and LC/MSn investigations revealed the occurrence of flavonoid glycosides (quercetin, kaempferol), ellagitannin glycosides and four anthocyanins. Among the latter, two components, i. e., cyanidin-malonyl-glucose and cyanidin-galloyl-hexose, have not been reported for S. officinalis so far. Furthermore, phenylethylamine was characterized for the first time in Sanguisorba by pH value dependent extraction with CH2 Cl2 . In addition, AcOEt and BuOH extracts were analyzed by GC/MS both prior to and after acid hydrolysis of secondary metabolites. For this purpose, the extracts were treated with 1 n HCl solution (105 °C, 1 h) and derivatized with BSTFA. Analyses revealed the occurrence of several classes of phenolic compounds, such as gallic acid, hydroxybenzoic acid, hydroxycinnamic acid and ellagic acid derivatives. Additionally, the most prominent ursane-type triterpenoid (ziyu-glycoside I) from Sanguisorba and its corresponding aglycone isomers were detected and assigned based on their characteristic fragmentation patterns.
Collapse
Affiliation(s)
- Marek Bunse
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany.,Department of Plant Systems Biology, Hohenheim University, Garbenstraße 30, DE-70599, Stuttgart, Germany
| | - Peter Lorenz
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| | - Florian C Stintzing
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| | - Dietmar R Kammerer
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| |
Collapse
|
14
|
Wang R, Sun J, Jin M, Ye C, Wang J, Jin L, Ma YJ, Zhou W, Li G. Two new phenolic glycosides with anti-complementary activity from the roots of Sanguisorba officinalis L. Nat Prod Res 2020; 35:4423-4432. [PMID: 32037886 DOI: 10.1080/14786419.2020.1723092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sanguisorba officinalis L. is a traditional herbal plant that belongs to the genus Sanguisorba and the family Rosaceae. Two new phenolic glycosides (1-2), ten known phenolics (3-12), and six known monoterpenoid glycosides (13-18) were isolated from the roots of S. officinalis using silica gel column and preparative middle pressure liquid chromatography (MPLC). The chemical structures were elucidated based on extensive spectroscopic experiments, including 1D and 2D NMR as well as HR-ESI-MS, and comparison with those reported in the literature. Compounds 3-5, and 13 were isolated from the Rosaceae family and compound 7 was obtained from the genus Sanguisorba for the first time. Additionally, all compounds were evaluated for their anti-complementary activities against the classical pathway. Furthermore, compounds 1, 5, 9, and 14 showed significant anti-complementary activities with the 50% haemolytic inhibition concentrations (CH50) values of 0.40 ± 0.03, 0.57 ± 0.01, 0.51 ± 0.07, and 0.53 ± 0.05 mM, respectively.
Collapse
Affiliation(s)
- Rongshen Wang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Jinfeng Sun
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Mei Jin
- Department of Pharmacy, Yanbian University Hospital, Yanji, P. R. China
| | - Chao Ye
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Jiaming Wang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Long Jin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Ying Jie Ma
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China.,The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wei Zhou
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Gao Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| |
Collapse
|
15
|
Hricovíniová J, Ševčovičová A, Hricovíniová Z. Evaluation of the genotoxic, DNA-protective and antioxidant profile of synthetic alkyl gallates and gallotannins using in vitro assays. Toxicol In Vitro 2020; 65:104789. [PMID: 32035223 DOI: 10.1016/j.tiv.2020.104789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
New gallotanins, methyl 2,3,4,6-tetra-O-galloyl-α-D-glucoside (G4Glc), methyl 2,3,4,6-tetra-O-galloyl-α-D-mannoside (G4Man), and methyl 2,3,4-tri-O-galloyl-α-L-rhamnoside (G3Rham), have been synthesized in order to study the protective effects of synthetic polyphenols that are structurally related with natural compounds. Apart from spectral analysis, examination of antioxidant ability and protective efficiency showed the differences among newly prepared compounds and commercial antioxidants - gallic acid (GA), methyl gallate (MG), and octyl gallate (OG) applying radical scavenging 1,1-diphenyl-2-picryl-hydrazyl (DPPH), reducing power and iron-chelating assays. The genotoxicity and DNA-protective potential of tested compounds on human peripheral blood mononuclear cells (PBMCs) were evaluated using the single-cell gel electrophoresis (comet assay) and DNA-topology assay. Experimental data revealed that gallotannins G3Rham, G4Man, and G4Glc possess significant radical scavenging/antioxidant activities and manifest very low genotoxic effect on human PBMCs. Moreover, tested compounds considerably reduce the level of DNA damage induced by hydrogen peroxide or Fe2+-ions. The results imply that new synthetic gallotannins can be considered as nontoxic agents for subsequent design of new antioxidants with potential biomedical applications.
Collapse
Affiliation(s)
- Jana Hricovíniová
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic
| | - Andrea Ševčovičová
- Department of Genetics, Faculty of Natural Sciences Comenius University, Mlynská dolina, 842 15 Bratislava, Slovak Republic
| | - Zuzana Hricovíniová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovak Republic.
| |
Collapse
|
16
|
Comprehensive identification and quantification of unexploited phenolic compounds from red and yellow araçá (Psidium cattleianum Sabine) by LC-DAD-ESI-MS/MS. Food Res Int 2020; 131:108978. [PMID: 32247464 DOI: 10.1016/j.foodres.2020.108978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 01/05/2023]
Abstract
LC-DAD-ESI-MS/MS was used to comprehensively characterise the non-extractable phenolic compounds (NEPC) in red and yellow araçá genotypes. Results showed a total of 45 and 43 phenolic compounds in the NEPC fraction and, similarly, 51 and 50 compounds in extractable phenolic compounds (EPC) fraction from red and yellow araçá, respectively. Gallic acid and ellagic acid were the unique compounds found in both fractions. The NEPC fraction represented about 35% (m/m) of the total phenolic content and was characterised by an abundance of phenolic acids, while the EPC fraction was rich in flavanols. Although NEPC represented one-third of the total phenolic compounds found in araçá, its antioxidant capacity (against peroxyl radical) was 50% higher than the EPC fraction. The results of this work show that the NEPC fraction of araçá has great diversity and a relatively high concentration of low-molecular-weight phenolic compounds with high antioxidant capacity.
Collapse
|
17
|
Khan BA, Mahmood T, Menaa F, Shahzad Y, Yousaf AM, Hussain T, Ray SD. New Perspectives on the Efficacy of Gallic Acid in Cosmetics & Nanocosmeceuticals. Curr Pharm Des 2019; 24:5181-5187. [PMID: 30657034 DOI: 10.2174/1381612825666190118150614] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Gallic acid (GA-3,4,5-trihydroxybenzoic acid), a phenolic phytochemical, is a ubiquitous secondary metabolite found in most plants, with appreciable concentrations in grapes seed, rose flowers, sumac, oak and witch hazel. GA often results from the hydrolysis of terpenes and the polyphenol tannic acid. APPLICATIONS It exhibits powerful antioxidant, anti-inflammatory, antimicrobial, and anti-cancer activities. Most intriguing benefit has been reported to be on the skin. Due to these beneficial properties, GA and its derivatives (e.g. lipid-soluble phenols such as synthetic gallic esters aka gallates) have been extensively used as an adjuvant in a number of therapeutic formulations, as a substitute of hydrocortisone in children with atopic dermatitis (AD) and other skin conditions (hyperpigmentation, wound healing), and as a cosmetic ingredient. GA has a USFDA GRAS status (generally recognized as safe), exhibiting fairly low systemic toxicity and associated mortality at acute doses in many experimental models. Despite anti-skin aging benefits obtained with relatively safe GA formulations, few cases of gallate-induced skin allergic have been reported in humans. Therefore, approaches to improve the bioavailability and biodegradability of this poor-water soluble and non-biodegradable phenolic compound are warranted. PURPOSE This review has focused on the recently reported biological activities pertaining to the skin as well as the pharmacological properties of GA and its derivatives with special emphasis on its use in (nano-) cosmetic formulations. Since this is an evolving area of research, an adequate emphasis has been placed upon advantages and disadvantages of various nanoformulations.
Collapse
Affiliation(s)
- Barkat Ali Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I.Khan, Pakistan
| | - Tariq Mahmood
- Faculty of Pharmacy, University of Central Punjab Lahore, Pakistan
| | - Farid Menaa
- Department of Medical Technology and Translational Medicine, California Innovations Corporation, San Diego, California, United States
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sidhartha D Ray
- College of Pharmacy, Manchester University, Fort Wayne, IN 46845, United States
| |
Collapse
|
18
|
Mori Y, Katayama Y, Shikata T, Kasuya N. Synthesis of 5-ethoxymethylfurfural from saccharides using combined metal–surfactant catalyst in ethanol/dimethyl sulfoxide. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03980-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Li W, Yang CJ, Wang LQ, Wu J, Dai C, Yuan YM, Li GQ, Yao MC. A tannin compound from Sanguisorba officinalis blocks Wnt/β-catenin signaling pathway and induces apoptosis of colorectal cancer cells. Chin Med 2019; 14:22. [PMID: 31164916 PMCID: PMC6544925 DOI: 10.1186/s13020-019-0244-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sanguisorba officinalis, a popular Chinese herb, called DiYu, has been shown to inhibit the growth of many human cancer cell lines, including colorectal cancer cells. The aims of this study were to discover the active compound and molecular mechanism of S. officinalis against Wnt/β-catenin signaling pathway and develop Wnt inhibitors from natural products as anti-colorectal cancer agents. METHODS 1,4,6-Tri-O-galloyl-β-d-glucopyranose (TGG) was obtained by the preparative HPLC. The effect of DiYu on proliferation of NIH3T3 and HT29 was detected by MTT assay. Luciferase reporter assay was applied to investigate the activity of Wnt/β-catenin signaling in NIH3T3. The expression levels of mRNA and protein were detected by RT-PCR and western blot. Immunofluorescence assay was used to measure the level of β-catenin in cytoplasm and nucleus. Transcriptomic profiling study was performed to investigate the molecular mechanism of DiYu on the Wnt/β-catenin signaling pathway. RESULTS TGG significantly inhibited the Wnt/β-catenin signaling pathway, down-regulated the expression of β-catenin and Wnt target genes (Dkk1, c-Myc, FGF20, NKD1, Survivin), up-regulated the levels of cleaved caspase3, cleaved PARP and ratio of Bax/Bcl-2, which may explain the apoptosis of HT29. CONCLUSIONS Our study enhanced the discovery of the materials and elucidation of mechanisms that account for the anti-Wnt activity of natural inhibitor (DiYu) and identified the potential of TGG to be developed as anti-colorectal cancer drugs.
Collapse
Affiliation(s)
- Wa Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| | - Chun-juan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081 Heilongjiang China
| | - Li-qian Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081 Heilongjiang China
| | - Juan Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cong Dai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| | - Yue-mei Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| | - George Q. Li
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| | - Mei-cun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| |
Collapse
|
20
|
Biazotto KR, de Souza Mesquita LM, Neves BV, Braga ARC, Tangerina MMP, Vilegas W, Mercadante AZ, De Rosso VV. Brazilian Biodiversity Fruits: Discovering Bioactive Compounds from Underexplored Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1860-1876. [PMID: 30707576 DOI: 10.1021/acs.jafc.8b05815] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Large segments of the Brazilian population still suffer from malnutrition and diet-related illnesses. In contrast, many native fruits have biodiversity and are underexploited sources of bioactive compounds and unknown to consumers. The phytochemical composition of nine underexplored Brazilian fruits was determined. Carotenoids and anthocyanins were identified and quantified by high performance liquid chromatography-photodiode array-tandem mass spectrometry (HPLC-PDA-MS/MS), and phenolic compounds and iridoids were identified by flow injection analysis-electrospray-ion trap-tandem mass spectrometry (FIA-ESI-IT-MS/MS); in total, 84 compounds were identified. In addition, the chemical structure and pathway mass fragmentation of new iridoids from jenipapo ( Genipa americana) and jatoba ( Hymenae coubaril) are proposed. The highest level of carotenoids was registered in pequi ( Caryocar brasiliense; 10156.21 μg/100 g edible fraction), while the major total phenolic content was found in cambuci ( Campomanesia coubaril; 221.70 mg GAE/100 g). Anthocyanins were quantified in jabuticaba ( Plinia cauliflora; 45.5 mg/100 g) and pitanga ( Eugenia uniflora; 81.0 mg/100 g). Our study illustrates the chemical biodiversity of underexplored fruits from Brazil, supporting the identification of new compounds and encouraging the study of more food matrixes not yet investigated.
Collapse
Affiliation(s)
- Katia Regina Biazotto
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| | - Leonardo Mendes de Souza Mesquita
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| | - Bruna Vitória Neves
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| | | | - Wagner Vilegas
- Laboratory of Bioprospection of Natural Products (LBPN) , UNESP - São Paulo State University/Coastal Campus of São Vicente , São Vicente , São Paulo 11015-020 , Brazil
| | - Adriana Zerlotti Mercadante
- Department of Food Science, Faculty of Food Engineering , University of Campinas (UNICAMP) , Campinas , São Paulo CEP 13083-862 , Brazil
| | - Veridiana Vera De Rosso
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| |
Collapse
|
21
|
Mukherjee K, Huddleston JP, Narindoshvili T, Nemmara VV, Raushel FM. Functional Characterization of the ycjQRS Gene Cluster from Escherichia coli: A Novel Pathway for the Transformation of d-Gulosides to d-Glucosides. Biochemistry 2019; 58:1388-1399. [PMID: 30742415 DOI: 10.1021/acs.biochem.8b01278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A combination of bioinformatics, steady-state kinetics, and NMR spectroscopy has revealed the catalytic functions of YcjQ, YcjS, and YcjR from the ycj gene cluster in Escherichia coli K-12. YcjS was determined to be a 3-keto-d-glucoside dehydrogenase with a kcat = 22 s-1 and kcat/ Km = 2.3 × 104 M-1 s-1 for the reduction of methyl α-3-keto-d-glucopyranoside at pH 7.0 with NADH. YcjS also exhibited catalytic activity for the NAD+-dependent oxidation of d-glucose, methyl β-d-glucopyranoside, and 1,5-anhydro-d-glucitol. YcjQ was determined to be a 3-keto-d-guloside dehydrogenase with kcat = 18 s-1 and kcat/ Km = 2.0 × 103 M-1 s-1 for the reduction of methyl α-3-keto-gulopyranoside. This is the first reported dehydrogenase for the oxidation of d-gulose. YcjQ also exhibited catalytic activity with d-gulose and methyl β-d-gulopyranoside. The 3-keto products from both dehydrogenases were found to be extremely labile under alkaline conditions. The function of YcjR was demonstrated to be a C4 epimerase that interconverts 3-keto-d-gulopyranosides to 3-keto-d-glucopyranosides. These three enzymes, YcjQ, YcjR, and YcjS, thus constitute a previously unrecognized metabolic pathway for the transformation of d-gulosides to d-glucosides via the intermediate formation of 3-keto-d-guloside and 3-keto-d-glucoside.
Collapse
Affiliation(s)
- Keya Mukherjee
- Department of Biochemistry & Biophysics , Texas A&M University , College Station , Texas 77844 , United States
| | - Jamison P Huddleston
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Tamari Narindoshvili
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Venkatesh V Nemmara
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Frank M Raushel
- Department of Biochemistry & Biophysics , Texas A&M University , College Station , Texas 77844 , United States.,Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| |
Collapse
|
22
|
Bi W, He CN, Li XX, Zhou LY, Liu RJ, Zhang S, Li GQ, Chen ZC, Zhang PF. Ginnalin A from Kujin tea (Acer tataricum subsp. ginnala) exhibits a colorectal cancer chemoprevention effect via activation of the Nrf2/HO-1 signaling pathway. Food Funct 2018; 9:2809-2819. [PMID: 29693091 DOI: 10.1039/c8fo00054a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ginnalin A (also known as acertannin) is one of the most important phenolic compounds of several beverage Acer plants. In this study, it is reported for the first time that ginnalin A is an activator of the Nrf2 signaling pathway in human colon cancer cells. Ginnalin A, isolated from the leaves of Acer tataricum subsp. ginnala, exhibited promising preventive activity against colon cancer cells (HCT116, SW480 and SW620) with IC50 values of 24.8 μM, 22.0 μM and 39.7 μM, respectively. In addition, it significantly reduced the colony formation of these cells. Flow cytometry analysis indicated that ginnalin A suppressed cancer proliferation via the induction of cell cycle arrest at the S-phase. Real time PCR analysis demonstrated that ginnalin A can upregulate the mRNA expression levels of Nrf2-related antioxidant genes Nrf2, HO-1 and NQO1. Western blotting analysis revealed that ginnalin A promoted the Nrf2 nuclear translocation and upregulated the proteins Nrf2, HO-1 and NQO1. Moreover, the upregulation of p62 and the inhibition of Keap1 were also found by Western blotting analysis. Therefore, the activation of the Nrf2 signaling pathway was probably induced through the upregulation of p62 and the inhibition of Keap1.
Collapse
Affiliation(s)
- Wu Bi
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bauhinia variegata candida Fraction Induces Tumor Cell Death by Activation of Caspase-3, RIP, and TNF-R1 and Inhibits Cell Migration and Invasion In Vitro. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4702481. [PMID: 29770331 PMCID: PMC5889885 DOI: 10.1155/2018/4702481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/28/2017] [Accepted: 02/13/2018] [Indexed: 11/17/2022]
Abstract
Metastasis remains the most common cause of death in cancer patients. Inhibition of metalloproteinases (MMPs) is an interesting approach to cancer therapy because of their role in the degradation of extracellular matrix (ECM), cell-cell, and cell-ECM interactions, modulating key events in cell migration and invasion. Herein, we show the cytotoxic and antimetastatic effects of the third fraction (FR3) from Bauhinia variegata candida (Bvc) stem on human cervical tumor cells (HeLa) and human peripheral blood mononuclear cells (PBMCs). FR3 inhibited MMP-2 and MMP-9 activity, indicated by zymogram. This fraction was cytotoxic to HeLa cells and noncytotoxic to PBMCs and decreased HeLa cell migration and invasion. FR3 is believed to stimulate extrinsic apoptosis together with necroptosis, assessed by western blotting. FR3 inhibited MMP-2 activity in the HeLa supernatant, differently from the control. The atomic mass spectrometry (ESI-MS) characterization suggested the presence of glucopyranosides, D-pinitol, fatty acids, and phenolic acid. These findings provide insight suggesting that FR3 contains components with potential tumor-selective cytotoxic action in addition to the action on the migration of tumor cells, which may be due to inhibition of MMPs.
Collapse
|
24
|
Gan RY, Kong KW, Li HB, Wu K, Ge YY, Chan CL, Shi XM, Corke H. Separation, Identification, and Bioactivities of the Main Gallotannins of Red Sword Bean ( Canavalia gladiata) Coats. Front Chem 2018. [PMID: 29541634 PMCID: PMC5835520 DOI: 10.3389/fchem.2018.00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The red sword bean (Canavalia gladiata) is an underutilized edible bean cultivated in China. It was previously found to have the highest content of antioxidant polyphenols among 42 edible beans, mainly gallic acid, and gallotannins in its red bean coat, an apparently unique characteristic among edible beans. In this study, the main phenolic compounds in red sword bean coats were further separated by Sephadex LH-20 column chromatography, and identified by LC-MS/MS. Furthermore, the FRAP and ABTS antioxidant activities and antibacterial activity (diameter of inhibition zone, DIZ) of main gallotannin-rich fractions were tested. Our results showed that gallotannins of red sword bean coats were mainly comprised of monogalloyl to hexagalloyl hexosides. Interestingly, tetragalloyl, pentagalloyl, and hexagalloyl hexosides were identified as the possible candidates responsible for the red color of the coats. On the other hand, gallotannin-rich fractions exhibited diverse antioxidant and antibacterial activities, and tetragalloyl hexoside overall had the highest free radical scavenging and antibacterial activities. The degree of galloylation did not completely explain the structure-function relationship of gallotannins isolated from red sword bean coats, as there should exist other factors affecting their bioactivities. In conclusion, red sword bean coats are excellent natural sources of gallotannins, and their gallotannin-rich extracts can be utilized as natural antioxidant and antibacterial agents with potential health benefits as well as application in food industry.
Collapse
Affiliation(s)
- Ren-You Gan
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kin-Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Kao Wu
- Glyn O. Philips Hydrocolloid Research Centre, Hubei University of Technology, Wuhan, China
| | - Ying-Ying Ge
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chak-Lun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xian-Ming Shi
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Khatun M, Habib MR, Rabbi MA, Amin R, Islam MF, Nurujjaman M, Karim MR, Rahman MH. Antioxidant, cytotoxic and antineoplastic effects of Carissa carandas Linn. leaves. ACTA ACUST UNITED AC 2017; 69:469-476. [DOI: 10.1016/j.etp.2017.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/31/2017] [Indexed: 01/11/2023]
|
26
|
Lee DY, Kim HW, Yang H, Sung SH. Hydrolyzable tannins from the fruits of Terminalia chebula Retz and their α-glucosidase inhibitory activities. PHYTOCHEMISTRY 2017; 137:109-116. [PMID: 28213992 DOI: 10.1016/j.phytochem.2017.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 05/18/2023]
Abstract
Nine hydrolyzable tannins, including three previously unknown and six artifacts, were isolated, together with thirty-nine known ones, from the fruits of Terminalia chebula Retz. (Combretaceae). They were identified as 1,2,3-tri-O-galloyl-6-O-cinnamoyl-β-d-glucose, 1,2,3,6-tetra-O-galloyl-4-O-cinnamoyl-β-d-glucose, 4-O-(2″,4″-di-O-galloyl-α-l-rhamnosyl)ellagic acid, 1'-O-methyl neochebulanin, dimethyl neochebulinate, 6'-O-methyl neochebulagate, dimethyl neochebulagate, dimethyl 4'-epi-neochebulagate, and methyl chebulagate by the spectroscopic interpretation. After evaluation for α-glucosidase inhibition of all isolated compounds, 1,2,3,6-tetra-O-galloyl-4-O-cinnamoyl-β-d-glucose and 4-O-(2″,4″-di-O-galloyl-α-l-rhamnosyl)ellagic acid showed significant inhibitory activities with IC50 values of 2.9 and 6.4 μM, respectively. In addition, inhibition kinetic studies showed that both compounds have mixed-type inhibitory activities with the inhibition constants (Ki) of 1.9 and 4.0 μM, respectively.
Collapse
Affiliation(s)
- Dong Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Hyun Woo Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Heejung Yang
- College of Pharmacy, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742, Republic of Korea.
| |
Collapse
|
27
|
Chyba A, Mastihubová M, Mastihuba V. Regioselective galloylation of methyl β-d-glucopyranoside by a lipase. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1696-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|