1
|
Yagi H, Yamada R, Saito T, Honda R, Nakano R, Inutsuka K, Tateo S, Kusano H, Nishimura K, Yanaka S, Tojima T, Nakano A, Furukawa JI, Yagi-Utsumi M, Adachi S, Kato K. Molecular tag for promoting N-glycan maturation in the cargo receptor-mediated secretion pathway. iScience 2024; 27:111457. [PMID: 39717080 PMCID: PMC11664129 DOI: 10.1016/j.isci.2024.111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
MCFD2 and ERGIC-53 form a cargo receptor complex that plays a crucial role in transporting specific glycoproteins, including blood coagulation factor VIII, from the endoplasmic reticulum to the Golgi apparatus. We have demonstrated that MCFD2 recognizes a 10-amino-acid sequence in factor VIII, thereby facilitating its efficient transport. Moreover, the secretion of biopharmaceutical recombinant glycoproteins, such as erythropoietin, can be enhanced by tagging them with this sequence, which we have termed the "passport sequence" (PS). Here, we found that the PS promotes the galactosylation and sialylation of N-glycans on glycoproteins. Furthermore, we discovered that glycoproteins tagged with the PS follow a unique route in the Golgi, where they encounter NUCB1. NUCB1 also recognizes the PS and mediates its interaction with the galactosylation enzyme B4GALT1. These findings offer a promising strategy for controlling the glycosylation of recombinant glycoproteins of biopharmaceutical interest.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki 444-8787, Japan
| | - Rino Yamada
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Taiki Saito
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Rena Honda
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| | - Rio Nakano
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Kengo Inutsuka
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Seigo Tateo
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hideo Kusano
- Department of Proteomics, National Cancer Center Research Institute, Tokyo 104-0045 Japan
| | - Kumiko Nishimura
- Department of Proteomics, National Cancer Center Research Institute, Tokyo 104-0045 Japan
| | - Saeko Yanaka
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| | - Takuro Tojima
- RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Jun-ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
| | - Maho Yagi-Utsumi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| | - Shungo Adachi
- Department of Proteomics, National Cancer Center Research Institute, Tokyo 104-0045 Japan
| | - Koichi Kato
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| |
Collapse
|
2
|
Zhang L, Feng Y, Zhang Y, Sun X, Ma Q, Ma F. The Sweet Relationship between the Endometrium and Protein Glycosylation. Biomolecules 2024; 14:770. [PMID: 39062484 PMCID: PMC11274983 DOI: 10.3390/biom14070770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The endometrium is an important part of women's bodies for menstruation and pregnancy. Various proteins are widely expressed on the surface of endometrial cells, and glycosylation is an important post-translational modification of proteins. Glycosylation modification is closely related not only to endometrial receptivity but also to common diseases related to endometrial receptivity. Glycosylation can improve endometrial receptivity, promote embryo localization and trophoblast cell adhesion and invasion, and contribute to successful implantation. Two diseases related to endometrial receptivity include endometriosis and endometrial cancer. As a common benign disease in women, endometriosis is often accompanied by an increased menstrual volume, prolonged menstrual periods, progressive and aggravated dysmenorrhea, and may be accompanied by infertility. Protein glycosylation modification of the endometrial surface indicates the severity of the disease and may be an important pathogenesis of endometriosis. In cancer, glycosylation modifications on the surface of tumor cells can be a marker to distinguish the type and severity of endometrial cancer. This review highlights the role of protein glycosylation in embryo-maternal endometrial dialogue and explores its potential mechanisms in diseases related to endometrial receptivity, which could provide a new clinical approach for their diagnosis and treatment.
Collapse
Affiliation(s)
- Linyu Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yue Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Xinrui Sun
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Qianhong Ma
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Schnider B, M’Rad Y, el Ahmadie J, de Brevern AG, Imberty A, Lisacek F. HumanLectome, an update of UniLectin for the annotation and prediction of human lectins. Nucleic Acids Res 2024; 52:D1683-D1693. [PMID: 37889052 PMCID: PMC10767822 DOI: 10.1093/nar/gkad905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
The UniLectin portal (https://unilectin.unige.ch/) was designed in 2019 with the goal of centralising curated and predicted data on carbohydrate-binding proteins known as lectins. UniLectin is also intended as a support for the study of lectomes (full lectin set) of organisms or tissues. The present update describes the inclusion of several new modules and details the latest (https://unilectin.unige.ch/humanLectome/), covering our knowledge of the human lectome and comprising 215 unevenly characterised lectins, particularly in terms of structural information. Each HumanLectome entry is protein-centric and compiles evidence of carbohydrate recognition domain(s), specificity, 3D-structure, tissue-based expression and related genomic data. Other recent improvements regarding interoperability and accessibility are outlined.
Collapse
Affiliation(s)
- Boris Schnider
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Yacine M’Rad
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Jalaa el Ahmadie
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
- University Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Alexandre G de Brevern
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB Bioinformatics Team, F-75014 Paris, France
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Frederique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
- Section of Biology, University of Geneva, CH-1205 Geneva, Switzerland
| |
Collapse
|
4
|
Xue Y, Meng JG, Jia PF, Zhang ZR, Li HJ, Yang WC. POD1-SUN-CRT3 chaperone complex guards the ER sorting of LRR receptor kinases in Arabidopsis. Nat Commun 2022; 13:2703. [PMID: 35577772 PMCID: PMC9110389 DOI: 10.1038/s41467-022-30179-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
Protein sorting in the secretory pathway is essential for cellular compartmentalization and homeostasis in eukaryotic cells. The endoplasmic reticulum (ER) is the biosynthetic and folding factory of secretory cargo proteins. The cargo transport from the ER to the Golgi is highly selective, but the molecular mechanism for the sorting specificity is unclear. Here, we report that three ER membrane localized proteins, SUN3, SUN4 and SUN5, regulate ER sorting of leucine-rich repeat receptor kinases (LRR-RKs) to the plasma membrane. The triple mutant sun3/4/5 displays mis-sorting of these cargo proteins to acidic compartments and therefore impairs the growth of pollen tubes and the whole plant. Furthermore, the extracellular LRR domain of LRR-RKs is responsible for the correct sorting. Together, this study reports a mechanism that is important for the sorting of cell surface receptors. Cargo transport from the ER to the Golgi is highly selective. Here the authors identify three secretory pathway localized proteins that regulate ER sorting of receptor kinases in Arabidopsis and are required to support pollen tube growth.
Collapse
|
5
|
Pandey VK, Sharma R, Prajapati GK, Mohanta TK, Mishra AK. N-glycosylation, a leading role in viral infection and immunity development. Mol Biol Rep 2022; 49:8109-8120. [PMID: 35364718 PMCID: PMC8974804 DOI: 10.1007/s11033-022-07359-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
N-linked protein glycosylation is an essential co-and posttranslational protein modification that occurs in all three domains of life; the assembly of N-glycans follows a complex sequence of events spanning the (Endoplasmic Reticulum) ER and the Golgi apparatus. It has a significant impact on both physicochemical properties and biological functions. It plays a significant role in protein folding and quality control, glycoprotein interaction, signal transduction, viral attachment, and immune response to infection. Glycoengineering of protein employed for improving protein properties and plays a vital role in the production of recombinant glycoproteins and struggles to humanize recombinant therapeutic proteins. It considers an alternative platform for biopharmaceuticals production. Many immune proteins and antibodies are glycosylated. Pathogen’s glycoproteins play vital roles during the infection cycle and their expression of specific oligosaccharides via the N-glycosylation pathway to evade detection by the host immune system. This review focuses on the aspects of N-glycosylation processing, glycoengineering approaches, their role in viral attachment, and immune responses to infection.
Collapse
Affiliation(s)
- Vijay Kant Pandey
- Department of Agriculture, Netaji Subhas University, Jamshedpur, Jharkhand, India
| | - Rajani Sharma
- Department of Biotechnology, Amity University Jharkhand, Niwaranpur, Ranchi, 834002, India.
| | | | | | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
6
|
Oh T, Uemura T, Nagao M, Hoshino Y, Miura Y. A QCM study of strong carbohydrate-carbohydrate interactions of glycopolymers carrying mannosides on substrates. J Mater Chem B 2022; 10:2597-2601. [PMID: 34989755 DOI: 10.1039/d1tb02344f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbohydrates on cell surfaces are known to interact not only with lectins but also with other carbohydrates; the latter process is known as a carbohydrate-carbohydrate interaction. Such interactions are observed in complex oligosaccharides. It would be surprising if these interactions were observed in simple monosaccharides of mannose. In this study, the interaction between glycopolymers carrying monosaccharides of mannose was quantitatively investigated by quartz crystal microbalance measurements. We measured the interactions with glycopolymers carrying mannose, galactose and glucose. Surprisingly, the interaction between the glycopolymers and mannose was much stronger than that between other saccharides.
Collapse
Affiliation(s)
- Takahiro Oh
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
| | - Takeshi Uemura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
| | - Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
| |
Collapse
|
7
|
The N-mannosyltransferase gene BbAlg9 contributes to cell wall integrity, fungal development and the pathogenicity of Beauveria bassiana. Fungal Biol 2021; 125:776-784. [PMID: 34537173 DOI: 10.1016/j.funbio.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022]
Abstract
The mannosyltransferase Alg9 plays a vital role in N-linked protein glycosylation in Saccharomyces cerevisiae, but its function in most filamentous fungi is not clear. The present study characterized BbAlg9 (an ortholog of S. cerevisiae Alg9) in Beauveria bassiana to determine the roles of N-mannosyltransferase in biological control potential of the filamentous entomopathogenic fungus. The disruption of BbAlg9 led to slower fungal growth in media with various nutrition compositions. The conidiation of ΔBbAlg9 was less than that of the wild type from the third to the fifth day but showed no significant difference on the sixth day, suggesting that BbAlg9 affects the development of conidia rather than conidial yield of late stage. ΔBbAlg9 showed defects in conidial germination, multiple stress tolerances and the yield of blastospores, with altered size and density, and virulence in hosts infected via the immersion and injection methods. The deletion of BbAlg9 resulted in defects in cell wall integrity, including increased mannoprotein and glucan content and decreased chitin content, which were accompanied by transcriptional activation or suppression of genes related to cell wall component biosynthesis. Notably, deletion of the N-mannosyltransferase BbAlg9 altered the transcription levels of O-mannosyltransferase genes (Pmt and Ktr family). These data show that BbAlg9 is involved in the fungal development, conidial stress tolerance, cell wall integrity and virulence of B. bassiana.
Collapse
|
8
|
Han J, Pan Y, Qin W, Gu Y, Xu X, Zhao R, Sha J, Zhang R, Gu J, Ren S. Quantitation of sex-specific serum N-glycome changes in expression level during mouse aging based on Bionic Glycome method. Exp Gerontol 2020; 141:111098. [PMID: 33010330 DOI: 10.1016/j.exger.2020.111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
Studying the changes of serum N-glycome during mouse aging is beneficial to explore the molecular basis behind the alterations reported in human. However, such studies remainscarce and lack some information such as sialylation due to the method limitation. Here, we introduced Bionic Glycome method to quantify the serum N-glycome changes during C57BL/6 mouse aging (from the pubertal period to the old age stage). This technique enabled reliable and comprehensive quantitation of the expression level changes of more than 20 N-glycans in mouse serum at 12 time points in both genders for the first time, involving the analysis of sialic acid and its different linkages. The results demonstrated that the expression level of total glycans increased from middle age to old age. Interestingly, sex-specific N-glycome profiles and alterations were observed. Female mice showed higher level of serum fucosylation and lower level of serum afucosylation than male mice (fucosylation: p < 1.0E-6; afucosylation: p < 1.0E-6). Obviously, higher increase of serum fucosylation level was found in female mice than in male mice from middle age to old age. In addition, the opposite alterations of the afucosylated glycans with α2,3-linked sialic acid and those only with α2,6-linked sialic acid were observed at old age in male mice. These findings suggested that N-glycome could be a valuable target for investigating aging and possible contributors to aging.
Collapse
Affiliation(s)
- Jing Han
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yiqing Pan
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenjun Qin
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yong Gu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoyan Xu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ran Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, China
| | - Jichen Sha
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Rongrong Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianxin Gu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shifang Ren
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Houser J, Kozmon S, Mishra D, Hammerová Z, Wimmerová M, Koča J. The CH-π Interaction in Protein-Carbohydrate Binding: Bioinformatics and In Vitro Quantification. Chemistry 2020; 26:10769-10780. [PMID: 32208534 DOI: 10.1002/chem.202000593] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/18/2020] [Indexed: 12/16/2022]
Abstract
The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell, and cell-cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction, and non-polar dispersion interactions. The role of dispersion-driven CH-π interactions (stacking) in protein-carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. In this study, we analyzed the CH-π interactions employing bioinformatics (data mining, structural analysis), several experimental (isothermal titration calorimetry (ITC), X-ray crystallography), and computational techniques. The Protein Data Bank (PDB) has been used as a source of structural data. The PDB contains over 12 000 protein complexes with carbohydrates. Stacking interactions are very frequently present in such complexes (about 39 % of identified structures). The calculations and the ITC measurement results suggest that the CH-π stacking contribution to the overall binding energy ranges from 4 up to 8 kcal mol-1 . All the results show that the stacking CH-π interactions in protein-carbohydrate complexes can be considered to be a driving force of the binding in such complexes.
Collapse
Affiliation(s)
- Josef Houser
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Stanislav Kozmon
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.,Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovak Republic
| | - Deepti Mishra
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Zuzana Hammerová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Michaela Wimmerová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.,Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| |
Collapse
|
10
|
Yamaguchi T. Delineating the Dynamic Conformations of Oligosaccharides by Combining Molecular Simulation and NMR Spectroscopy. TRENDS GLYCOSCI GLYC 2020. [DOI: 10.4052/tigg.2013.2e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takumi Yamaguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
11
|
Yamaguchi T. Delineating the Dynamic Conformations of Oligosaccharides by Combining Molecular Simulation and NMR Spectroscopy. TRENDS GLYCOSCI GLYC 2020. [DOI: 10.4052/tigg.2013.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takumi Yamaguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
12
|
Satoh T, Kato K. Recombinant Expression and Purification of Animal Intracellular L-Type Lectins. Methods Mol Biol 2020; 2132:21-28. [PMID: 32306311 DOI: 10.1007/978-1-0716-0430-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Animal leguminous-type (L-type) lectins, including ERGIC-53 and VIP36 are responsible for intracellular transport and quality control of N-linked glycoproteins in the early secretory pathway. These lectins possess the carbohydrate recognition domain (CRD), which recognizes high-mannose-type glycans in a Ca2+-dependent manner. Here we describe the procedures involved in bacterial overproduction and purification of the CRDs of the animal L-type lectins.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan. .,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan.
| |
Collapse
|
13
|
Suzuki T, Yanaka S, Watanabe T, Yan G, Satoh T, Yagi H, Yamaguchi T, Kato K. Remodeling of the Oligosaccharide Conformational Space in the Prebound State To Improve Lectin-Binding Affinity. Biochemistry 2019; 59:3180-3185. [PMID: 31553574 DOI: 10.1021/acs.biochem.9b00594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We developed an approach to improve the lectin-binding affinity of an oligosaccharide by remodeling its conformational space in the precomplexed state. To develop this approach, we used a Lewis X-containing oligosaccharide interacting with RSL as a model system. Using an experimentally validated molecular dynamics simulation, we designed a Lewis X analogue with an increased population of conformational species that were originally very minor but exclusively accessible to the target lectin without steric hindrance by modifying the nonreducing terminal galactose, which does not directly contact the lectin in the complex. This Lewis X mimetic showed 17 times higher affinity for the lectin than the native counterpart. Our approach, complementing the lectin-bound-state optimizations, offers an alternative strategy to create high-affinity oligosaccharides by increasing populations of on-pathway metastable conformers.
Collapse
Affiliation(s)
- Tatsuya Suzuki
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Tokio Watanabe
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Gengwei Yan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan
| | - Tadashi Satoh
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hirokazu Yagi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takumi Yamaguchi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| |
Collapse
|
14
|
Li ST, Lu TT, Xu XX, Ding Y, Li Z, Kitajima T, Dean N, Wang N, Gao XD. Reconstitution of the lipid-linked oligosaccharide pathway for assembly of high-mannose N-glycans. Nat Commun 2019; 10:1813. [PMID: 31000718 PMCID: PMC6472349 DOI: 10.1038/s41467-019-09752-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/29/2019] [Indexed: 11/11/2022] Open
Abstract
The asparagine (N)-linked Man9GlcNAc2 is required for glycoprotein folding and secretion. Understanding how its structure contributes to these functions has been stymied by our inability to produce this glycan as a homogenous structure of sufficient quantities for study. Here, we report the high yield chemoenzymatic synthesis of Man9GlcNAc2 and its biosynthetic intermediates by reconstituting the eukaryotic lipid-linked oligosaccharide (LLO) pathway. Endoplasmic reticulum mannosyltransferases (MTases) are expressed in E. coli and used for mannosylation of the dolichol mimic, phytanyl pyrophosphate GlcNAc2. These recombinant MTases recognize unique substrates and when combined, synthesize end products that precisely mimic those in vivo, demonstrating that ordered assembly of LLO is due to the strict enzyme substrate specificity. Indeed, non-physiological glycans are produced only when the luminal MTases are challenged with cytosolic substrates. Reconstitution of the LLO pathway to synthesize Man9GlcNAc2 in vitro provides an important tool for functional studies of the N-linked glycoprotein biosynthesis pathway. Attachment of the oligosaccharide Man9GlcNAc2 is required for glycoprotein folding and secretion but synthesizing this compound for structural and functional studies has remained challenging. Here, the authors achieve efficient Man9GlcNAc2 synthesis by reconstituting its biosynthetic pathway in vitro.
Collapse
Affiliation(s)
- Sheng-Tao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Tian-Tian Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Xin-Xin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Yi Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Toshihiko Kitajima
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Neta Dean
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
15
|
Zhang W, Meredith R, Pan Q, Wang X, Woods RJ, Carmichael I, Serianni AS. Use of Circular Statistics To Model αMan-(1→2)-αMan and αMan-(1→3)-α/βMan O-Glycosidic Linkage Conformation in 13C-Labeled Disaccharides and High-Mannose Oligosaccharides. Biochemistry 2019; 58:546-560. [PMID: 30605318 DOI: 10.1021/acs.biochem.8b01050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new experimental method, MA' AT analysis, has been applied to investigate the conformational properties of O-glycosidic linkages in several biologically important mannose-containing di- and oligosaccharides. Methyl α-d-mannopyranosyl-(1→2)-α-d-mannopyranoside (2), methyl α-d-mannopyranosyl-(1→3)-α-d-mannopyranoside (3), and methyl α-d-mannopyranosyl-(1→3)-β-d-mannopyranoside (4) were prepared with selective 13C-enrichment to enable the measurement of NMR scalar couplings across their internal O-glycosidic linkages. Density functional theory (DFT) was used to parameterize equations for JCH and JCC values in 2-4 that are sensitive to phi (ϕ) and psi (ψ). The experimental J-couplings and parameterized equations were treated using a circular statistics algorithm encoded in the MA' AT program. Conformations about ϕ and ψ treated using single-state von Mises models gave excellent fits to the ensembles of redundant J-couplings. Mean values and circular standard deviations (CSDs) for each linkage torsion angle ϕ (CSD) and ψ (CSD) in 2, -29° (25°) and 20° (22°); in 3, -36° (36°) and 8° (27°); in 4, -37° (34°) and 10° (26°); ϕ = H1'-C1'-O1'-CX and ψ = C1'-O1'-CX-HX (CX = aglycone carbon) were compared to histograms obtained from 1 μs aqueous molecular dynamics (MD) simulations and X-ray database statistical analysis. MA' AT-derived models of ψ were in very good agreement with the MD and X-ray data, but not those of ϕ, suggesting a need for force field revision. The effect of structural context on linkage conformation was also investigated in four selectively 13C-labeled homomannose tri- and tetrasaccharides using the MA' AT method. In the cases examined, context effects were found to be small.
Collapse
Affiliation(s)
| | | | | | - Xiaocong Wang
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 United States
| | - Robert J Woods
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 United States
| | | | | |
Collapse
|
16
|
Shenkman M, Ron E, Yehuda R, Benyair R, Khalaila I, Lederkremer GZ. Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates. Commun Biol 2018; 1:172. [PMID: 30374462 PMCID: PMC6194124 DOI: 10.1038/s42003-018-0174-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022] Open
Abstract
Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.
Collapse
Affiliation(s)
- Marina Shenkman
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Efrat Ron
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rivka Yehuda
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ron Benyair
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Isam Khalaila
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Gerardo Z Lederkremer
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
17
|
Li ST, Wang N, Xu XX, Fujita M, Nakanishi H, Kitajima T, Dean N, Gao XD. Alternative routes for synthesis of N-linked glycans by Alg2 mannosyltransferase. FASEB J 2018; 32:2492-2506. [PMID: 29273674 DOI: 10.1096/fj.201701267r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Asparagine ( N)-linked glycosylation requires the ordered, stepwise synthesis of lipid-linked oligosaccharide (LLO) precursor Glc3Man9GlcNAc2-pyrophosphate-dolichol (Glc3Man9Gn2-PDol) on the endoplasmic reticulum. The fourth and fifth steps of LLO synthesis are catalyzed by Alg2, an unusual mannosyltransferase (MTase) with two different MTase activities; Alg2 adds both an α1,3- and α1,6-mannose onto ManGlcNAc2-PDol to form the trimannosyl core Man3GlcNAc2-PDol. The biochemical properties of Alg2 are controversial and remain undefined. In this study, a liquid chromatography/mass spectrometry-based quantitative assay was established and used to analyze the MTase activities of purified yeast Alg2. Alg2-dependent Man3GlcNAc2-PDol production relied on net-neutral lipids with a propensity to form bilayers. We further showed addition of the α1,3- and α1,6-mannose can occur independently in either order but at differing rates. The conserved C-terminal EX7E motif, N-terminal cytosolic tail, and 3 G-rich loop motifs in Alg2 play crucial roles for these activities, both in vitro and in vivo. These findings provide insight into the unique bifunctionality of Alg2 during LLO synthesis and lead to a new model in which alternative, independent routes exist for Alg2 catalysis of the trimannosyl core oligosaccharide.-Li, S.-T., Wang, N., Xu, X.-X., Fujita, M., Nakanishi, H., Kitajima, T., Dean, N., Gao, X.-D. Alternative routes for synthesis of N-linked glycans by Alg2 mannosyltransferase.
Collapse
Affiliation(s)
- Sheng-Tao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xin-Xin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Toshihiko Kitajima
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Neta Dean
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Satoh T, Kato K. Structural Aspects of ER Glycoprotein Quality-Control System Mediated by Glucose Tagging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:149-169. [PMID: 30484248 DOI: 10.1007/978-981-13-2158-0_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
N-linked oligosaccharides attached to proteins act as tags for glycoprotein quality control, ensuring their appropriate folding and trafficking in cells. Interactions with a variety of intracellular lectins determine glycoprotein fates. Monoglucosylated glycoforms are the hallmarks of incompletely folded glycoproteins in the protein quality-control system, in which glucosidase II and UDP-glucose/glycoprotein glucosyltransferase are, respectively, responsible for glucose trimming and attachment. In this review, we summarize a recently emerging view of the structural basis of the functional mechanisms of these key enzymes as well as substrate N-linked oligosaccharides exhibiting flexible structures, as revealed by applying a series of biophysical techniques including small-angle X-ray scattering, X-ray crystallography, high-speed atomic force microscopy , electron microscopy , and computational simulation in conjunction with NMR spectroscopy.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan. .,Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| |
Collapse
|
19
|
Chen W, Zhong Y, Su R, Qi H, Deng W, Sun Y, Ma T, Wang X, Yu H, Wang X, Li Z. N-glycan profiles in H9N2 avian influenza viruses from chicken eggs and human embryonic lung fibroblast cells. J Virol Methods 2017; 249:10-20. [PMID: 28797655 DOI: 10.1016/j.jviromet.2017.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/29/2017] [Accepted: 08/03/2017] [Indexed: 01/05/2023]
Abstract
N-glycosylation can affect the host specificity, virulence and infectivity of influenza A viruses (IAVs). In this study, the distribution and evolution of N-glycosylation sites in the hemagglutinin (HA) and neuraminidase (NA) of H9N2 virus were explored using phylogenetic analysis. Then, one strain of the H9N2 subtypes was proliferated in the embryonated chicken eggs (ECE) and human embryonic lung fibroblast cells (MRC-5) system. The proliferated viral N-glycan profiles were analyzed by a glycomic method that combined the lectin microarray and MALDI-TOF/TOF-MS. As a result, HA and NA of H9N2 viruses prossess six and five highly conserved N-glycosylation sites, respectively. Sixteen lectins (e.g., MAL-II, SNA and UEA-I) had increased expression levels of the glycan structures in the MRC-5 compared with the ECE system; however, 6 lectins (e.g., PHA-E, PSA and DSA) had contrasting results. Eleven glycans from the ECE system and 13 glycans from the MRC-5 system were identified. Our results showed that the Fucα-1,6GlcNAc(core fucose) structure was increased, and pentaantennary N-glycans were only observed in the ECE system. The SAα2-3/6Gal structures were highly expressed and Fucα1-2Galβ1-4GlcNAc structures were only observed in the MRC-5 system. We conclude that the existing SAα2-3/6Gal sialoglycans make the offspring of the H9N2 virus prefer entially attach to each other, which decreases the virulence. Alterations in the glycosylation sites for the evolution and role of IAVs have been widely described; however, little is known about the exact glycan structures for the same influenza strain from different hosts. Our findings may provide a novel way for further discussing the molecular mechanism of the viral transmission and virulence associated with viral glycosylation in avian and human hosts as well as vital information for designing a vaccine against influenza and other human viruses.
Collapse
Affiliation(s)
- Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Rui Su
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Huicai Qi
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Weina Deng
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yu Sun
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xilong Wang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiurong Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, PR China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China,.
| |
Collapse
|
20
|
Haserick JR, Leon DR, Samuelson J, Costello CE. Asparagine-Linked Glycans of Cryptosporidium parvum Contain a Single Long Arm, Are Barely Processed in the Endoplasmic Reticulum (ER) or Golgi, and Show a Strong Bias for Sites with Threonine. Mol Cell Proteomics 2017; 16:S42-S53. [PMID: 28179475 PMCID: PMC5393390 DOI: 10.1074/mcp.m116.066035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/05/2017] [Indexed: 12/27/2022] Open
Abstract
Cryptosporidium parvum causes severe diarrhea in infants in developing countries and in immunosuppressed persons, including those with AIDS. We are interested in the Asn-linked glycans (N-glycans) of C. parvum, because (1) the N-glycan precursor is predicted to contain five mannose and two glucose residues on a single long arm versus nine mannose and three glucose residues on the three-armed structure common in host N-glycans, (2) C. parvum is a rare eukaryote that lacks the machinery for N-glycan-dependent quality control of protein folding in the lumen of the Endoplasmic Reticulum (ER), and (3) ER and Golgi mannosidases, as well as glycosyltransferases that build complex N-glycans, are absent from the predicted proteome. The C. parvum N-glycans reported here, which were determined using a combination of collision-induced dissociation and electronic excitation dissociation, contain a single, unprocessed mannose arm ± terminal glucose on the trimannosyl chitobiose core. Upon nanoUPLC-MS/MS separation and analysis of the C. parvum tryptic peptides, the total ion and extracted oxonium ion chromatograms delineated 32 peptides with occupied N-glycan sites; these were derived from 16 glycoproteins. Although the number of potential N-glycan sites with Thr (NxT) is only about twice that with Ser (NxS), almost 90% of the occupied N-glycan sites contain NxT. The two most abundant C. parvum proteins modified with N-glycans were an immunodominant antigen on the surface of sporozoites (gp900) and the possible oocyst wall protein 1 (POWP1). Seven other glycoproteins with N-glycans were unique to C. parvum; five shared common ancestry with other apicomplexans; two glycoproteins shared common ancestry with many organisms. In summary, C. parvum N-glycans are remarkable for the absence of ER and Golgi modification and for the strong bias toward occupancy of N-glycan motifs containing Thr.
Collapse
Affiliation(s)
- John R Haserick
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
- §Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Deborah R Leon
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
| | - John Samuelson
- §Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Catherine E Costello
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
| |
Collapse
|
21
|
Suzuki T, Kajino M, Yanaka S, Zhu T, Yagi H, Satoh T, Yamaguchi T, Kato K. Conformational Analysis of a High-Mannose-Type Oligosaccharide Displaying Glucosyl Determinant Recognised by Molecular Chaperones Using NMR-Validated Molecular Dynamics Simulation. Chembiochem 2017; 18:396-401. [PMID: 27995699 DOI: 10.1002/cbic.201600595] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 12/11/2022]
Abstract
Exploration of the conformational spaces of flexible oligosaccharides is essential to gain deeper insights into their functional mechanisms. Here we characterised dynamic conformation of a high-mannose-type dodecasaccharide with a terminal glucose residue, a critical determinant recognised by molecular chaperones. The dodecasaccharide was prepared by our developed chemoenzymatic technique, which uses 13 C labelling and lanthanide tagging to detect conformation-dependent paramagnetic effects by NMR spectroscopy. The NMR-validated molecular dynamics simulation produced the dynamic conformational ensemble of the dodecasaccharide. This determined its spatial distribution as well as the glycosidic linkage conformation of the terminal glucose determinant. Moreover, comparison of our results with previously reported crystallographic data indicates that the chaperone binding to its target oligosaccharides involves an induced-fit mechanism.
Collapse
Affiliation(s)
- Tatsuya Suzuki
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Megumi Kajino
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Saeko Yanaka
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Tong Zhu
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Hirokazu Yagi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tadashi Satoh
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,JST, PRESTO, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takumi Yamaguchi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Japan
| | - Koichi Kato
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| |
Collapse
|
22
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
23
|
Impact of sialic acids on the molecular dynamic of bi-antennary and tri-antennary glycans. Sci Rep 2016; 6:35666. [PMID: 27759083 PMCID: PMC5069492 DOI: 10.1038/srep35666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 10/03/2016] [Indexed: 01/12/2023] Open
Abstract
Sialic acids (SA) are monosaccharides that can be located at the terminal position of glycan chains on a wide range of proteins. The post-translational modifications, such as N-glycan chains, are fundamental to protein functions. Indeed, the hydrolysis of SA by specific enzymes such as neuraminidases can lead to drastic modifications of protein behavior. However, the relationship between desialylation of N-glycan chains and possible alterations of receptor function remains unexplored. Thus, the aim of the present study is to establish the impact of SA removal from N-glycan chains on their conformational behavior. We therefore undertook an in silico investigation using molecular dynamics to predict the structure of an isolated glycan chain. We performed, for the first time, 3 independent 500 ns simulations on bi-antennary and tri-antennary glycan chains displaying or lacking SA. We show that desialylation alters both the preferential conformation and the flexibility of the glycan chain. This study suggests that the behavior of glycan chains induced by presence or absence of SA may explain the changes in the protein function.
Collapse
|
24
|
Catabolism of N-glycoproteins in mammalian cells: Molecular mechanisms and genetic disorders related to the processes. Mol Aspects Med 2016; 51:89-103. [DOI: 10.1016/j.mam.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 11/17/2022]
|
25
|
Li ST, Wang N, Xu S, Yin J, Nakanishi H, Dean N, Gao XD. Quantitative study of yeast Alg1 beta-1, 4 mannosyltransferase activity, a key enzyme involved in protein N-glycosylation. Biochim Biophys Acta Gen Subj 2016; 1861:2934-2941. [PMID: 27670784 DOI: 10.1016/j.bbagen.2016.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Asparagine (N)-linked glycosylation begins with a stepwise synthesis of the dolichol-linked oligosaccharide (DLO) precursor, Glc3Man9GlcNAc2-PP-Dol, which is catalyzed by a series of endoplasmic reticulum membrane-associated glycosyltransferases. Yeast ALG1 (asparagine-linked glycosylation 1) encodes a β-1, 4 mannosyltransferase that adds the first mannose onto GlcNAc2-PP-Dol to produce a core trisaccharide Man1GlcNAc2-PP-Dol. ALG1 is essential for yeast viability, and in humans mutations in the ALG1 cause congenital disorders of glycosylation known as ALG1-CDG. Alg1 is difficult to purify because of its low expression level and as a consequence, has not been well studied biochemically. Here we report a new method to purify recombinant Alg1 in high yield, and a mass spectral approach for accurately measuring its β-1, 4 mannosyltransferase activity. METHODS N-terminally truncated yeast His-tagged Alg1 protein was expressed in Escherichia coli and purified by HisTrap HP affinity chromatography. In combination with LC-MS technology, we established a novel assay to accurately measure Alg1 enzyme activity. In this assay, a chemically synthesized dolichol-linked oligosaccharide analogue, phytanyl-pyrophosphoryl-α-N, N'-diacetylchitobioside (PPGn2), was used as the acceptor for the β-1, 4 mannosyl transfer reaction. RESULTS Using purified Alg1, its biochemical characteristics were investigated, including the apparent Km and Vmax values for acceptor, optimal conditions of activity, and the specificity of its nucleotide sugar donor. Furthermore, the effect of ALG1-CDG mutations on enzyme activity was also measured. GENERAL SIGNIFICANCE This work provides an efficient method for production of Alg1 and a new MS-based quantitative assay of its activity.
Collapse
Affiliation(s)
- Sheng-Tao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Sha Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Neta Dean
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, United States.
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
26
|
Reiding KR, Hipgrave Ederveen AL, Rombouts Y, Wuhrer M. Murine Plasma N-Glycosylation Traits Associated with Sex and Strain. J Proteome Res 2016; 15:3489-3499. [PMID: 27546880 DOI: 10.1021/acs.jproteome.6b00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycosylation is an abundant and important protein modification with large influence on the properties and interactions of glycoconjugates. Human plasma N-glycosylation has been the subject of frequent investigation, revealing strong associations with physiological and pathological conditions. Less well-characterized is the plasma N-glycosylation of the mouse, the most commonly used animal model for studying human diseases, particularly with regard to differences between strains and sexes. For this reason, we used MALDI-TOF(/TOF)-MS(/MS) assisted by linkage-specific derivatization of the sialic acids to comparatively analyze the plasma N-glycosylation of both male and female mice originating from BALB/c, CD57BL/6, CD-1, and Swiss Webster strains. The combined use of this analytical method and the recently developed data processing software named MassyTools allowed the relative quantification of the N-glycan species within plasma, the distinction between α2,3- and α2,6-linked N-glycolylneuraminic acids (due to respective lactonization and ethyl esterification), the detection of sialic acid O-acetylation, as well as the characterization of branching sialylation (Neu5Gcα2,3-Hex-[Neu5Gcα2,6-]HexNAc). When analyzing the glycosylation according to mouse sex, we found that female mice present a considerably higher degree of core fucosylation (2-4-fold depending on the strain), galactosylation, α2,6-linked sialylation, and larger high-mannose type glycan species compared with their male counterparts. Male mice, on the contrary, showed on average higher α2,3-linked sialylation, branching sialylation, and putative bisection. These differences together with sialic acid acetylation proved to be strain-specific as well. Interestingly, the outbred strains CD-1 and Swiss Webster displayed considerably larger interindividual variation than inbred strains BALB/c and CD57BL/6, suggesting a strong hereditable component of the observed plasma N-glycome.
Collapse
Affiliation(s)
- Karli R Reiding
- Leiden University Medical Center , Center for Proteomics and Metabolomics, Leiden 2333ZA, The Netherlands
| | - Agnes L Hipgrave Ederveen
- Leiden University Medical Center , Center for Proteomics and Metabolomics, Leiden 2333ZA, The Netherlands
| | - Yoann Rombouts
- Leiden University Medical Center , Center for Proteomics and Metabolomics, Leiden 2333ZA, The Netherlands.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse 31077, France
| | - Manfred Wuhrer
- Leiden University Medical Center , Center for Proteomics and Metabolomics, Leiden 2333ZA, The Netherlands
| |
Collapse
|
27
|
Wu Z, Jiang K, Zhu H, Ma C, Yu Z, Li L, Guan W, Liu Y, Zhu H, Chen Y, Li S, Li J, Cheng J, Zhang L, Wang PG. Site-Directed Glycosylation of Peptide/Protein with Homogeneous O-Linked Eukaryotic N-Glycans. Bioconjug Chem 2016; 27:1972-5. [PMID: 27529638 DOI: 10.1021/acs.bioconjchem.6b00385] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here we report a facile and efficient method for site-directed glycosylation of peptide/protein. The method contains two sequential steps: generation of a GlcNAc-O-peptide/protein, and subsequent ligation of a eukaryotic N-glycan to the GlcNAc moiety. A pharmaceutical peptide, glucagon-like peptide-1 (GLP-1), and a model protein, bovine α-Crystallin, were successfully glycosylated using such an approach. It was shown that the GLP-1 with O-linked N-glycan maintained an unchanged secondary structure after glycosylation, suggesting the potential application of this approach for peptide/protein drug production. In summary, the coupled approach provides a general strategy to produce homogeneous glycopeptide/glycoprotein bearing eukaryotic N-glycans.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - Kuan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300353, China.,Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - Cheng Ma
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - Zaikuan Yu
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - Lei Li
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - Wanyi Guan
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States.,College of Life Science, Hebei Normal University , Shijiazhuang, Hebei 050024, China
| | - Yunpeng Liu
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - He Zhu
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - Yanyi Chen
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - Shanshan Li
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - Jing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300353, China.,Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - Jiansong Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300353, China
| | - Lianwen Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300353, China
| | - Peng George Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300353, China.,Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| |
Collapse
|
28
|
|
29
|
Zhu T, Yamaguchi T, Satoh T, Kato K. A Hybrid Strategy for the Preparation of 13C-labeled High-mannose-type Oligosaccharides with Terminal Glucosylation for NMR Study. CHEM LETT 2015. [DOI: 10.1246/cl.150898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tong Zhu
- School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies)
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Takumi Yamaguchi
- School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies)
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University
- JST, PRESTO
| | - Koichi Kato
- School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies)
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences
- Graduate School of Pharmaceutical Sciences, Nagoya City University
- Medical and Biological Laboratories Co., Ltd
| |
Collapse
|
30
|
Nagae M, Yamaguchi Y. Sugar recognition and protein-protein interaction of mammalian lectins conferring diverse functions. Curr Opin Struct Biol 2015; 34:108-15. [PMID: 26418728 DOI: 10.1016/j.sbi.2015.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022]
Abstract
Recent advances in structural analyses of mammalian lectins reveal atomic-level details of their fine specificities toward diverse endogenous and exogenous glycans. Local variations on a common scaffold can enable certain lectins to recognize complex carbohydrate ligands including branched glycans and O-glycosylated peptides. Simultaneous recognition of both glycan and the aglycon moieties enhances the affinity and specificity of lectins such as CLEC-2 and PILRα. Attention has been paid to the roles of galectin and RegIII family of proteins in protein-protein interactions involved in critical biological functions including signal transduction and bactericidal pore formation.
Collapse
Affiliation(s)
- Masamichi Nagae
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
31
|
Kato K, Yamaguchi T. Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides. Glycoconj J 2015; 32:505-13. [PMID: 26050258 DOI: 10.1007/s10719-015-9599-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/19/2015] [Accepted: 05/25/2015] [Indexed: 12/21/2022]
Abstract
Paramagnetism-assisted nuclear magnetic resonance (NMR) techniques have recently been applied to a wide variety of biomolecular systems, using sophisticated immobilization methods to attach paramagnetic probes, such as spin labels and lanthanide-chelating groups, at specific sites of the target biomolecules. This is also true in the field of carbohydrate NMR spectroscopy. NMR analysis of oligosaccharides is often precluded by peak overlap resulting from the lack of variability of local chemical structures, by the insufficiency of conformational restraints from nuclear Overhauser effect (NOE) data due to low proton density, and moreover, by the inherently flexible nature of carbohydrate chains. Paramagnetic probes attached to the reducing ends of oligosaccharides cause paramagnetic relaxation enhancements (PREs) and/or pseudocontact shifts (PCSs) resolve the peak overlap problem. These spectral perturbations can be sources of long-range atomic distance information, which complements the local conformational information derived from J couplings and NOEs. Furthermore, paramagnetic NMR approaches, in conjunction with computational methods, have opened up possibilities for the description of dynamic conformational ensembles of oligosaccharides in solution. Several applications of paramagnetic NMR techniques are presented to demonstrate their utility for characterizing the conformational dynamics of oligosaccharides and for probing the carbohydrate-recognition modes of proteins. These techniques can be applied to the characterization of transient, non-stoichiometric interactions and will contribute to the visualization of dynamic biomolecular processes involving sugar chains.
Collapse
Affiliation(s)
- Koichi Kato
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tababe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
- The Glycoscience Institute, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.
| | - Takumi Yamaguchi
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tababe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|