1
|
Li X, Wang T, Xu L, Dong J. N-Fluorosulfurylamidines Enable Modular Synthesis of 1,5-Disubstituted Tetrazoles. Org Lett 2024; 26:9395-9400. [PMID: 39446038 DOI: 10.1021/acs.orglett.4c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Here we report the modular synthesis of 1,5-disubstituted tetrazoles using two highly chemoselective reactions, ligations of N-fluorosulfurylamidines with amines and diazotransfer reactions between FSO2N3 and N-monosubstituted amidines, respectively. Enabled by sulfur(VI) fluoride exchange (SuFEx) click chemistry, we have successfully synthesized a series of N-fluorosulfurylamidines and identified them as stable and scalable organic synthons. We then discover that N-fluorosulfurylamidines react selectively toward a series of aliphatic amines, resulting in the formation of N-monosubstituted amidines that can react further with FSO2N3 to deliver 1,5-disubstituted tetrazoles. Our work provides a new platform for generating a library of 1,5-disubstituted tetrazoles with diverse structures, which is unprecedented.
Collapse
Affiliation(s)
- Xixi Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tianyu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Long Xu
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajia Dong
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Cheng Y, Yang Y, Wang S, Zhou Z, Li J, Zhang Y, Chen S, Zeng Z, Xie S, Tang BZ. Fluorogenic in-situ Labelling of Gelatin Polymer in Aqueous Solution and Hydrogel. Chemistry 2024; 30:e202401561. [PMID: 38847762 DOI: 10.1002/chem.202401561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 08/31/2024]
Abstract
Gelatin polymers made from partially degraded collagen are important biomaterials, but their in-situ analysis suffers from uncontrollable covalent labelling and poor spatial-temporal imaging resolution. Herein, three tetrazolate-tagged tetraphenylethylene fluorophores (TPE-TAs) are introduced for practical fluorogenic labelling of gelatin in aqueous phase and hydrogels. These probes with aggregation-induced emission characteristics offer negligible background and elicit turn-on fluorescence by simply mixing with the gelatin in aqueous phase, giving a detection limit of 0.15 mg/L over a linear dynamic range up to 100 mg/L. This method does not work for collagens and causes minimal interference with gelatin properties. Mechanistic studies reveal a key role for multivalent electrostatic interactions between the abundant basic residues in gelatin (e. g., lysine, hydroxylysine, arginine) and anionic tetrazolate moieties of the lipophilic fluorophore synergistically in spatially rigid macromolecular encapsulation to achieve fluorogenic labelling. The AIE strategy by forming non-covalent fluorophore-gelatin complexes was developed for novel hydrogels that exhibited reversible fluorescence in response to dynamic microstructural changes in the hydrogel scaffold upon salting-in/out treatments, and enabled high spatial-temporal imaging of the fiber network in lyophilized samples. This work may open up avenues for in-situ imaging analysis and evaluation of gelatin-based biomaterials during processes such as in vivo degradation and mineralization.
Collapse
Affiliation(s)
- Yao Cheng
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yujiao Yang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shuodong Wang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhibiao Zhou
- School of Life Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiangcan Li
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yang Zhang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Sijie Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Sheng Xie
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
3
|
Nanda A, Kaur N, Kaur M, Husain FM, Han H, Bhowmik PK, Sohal HS. Synthesis and Antimicrobial Activity of ( E)-1-Aryl-2-(1H-tetrazol-5-yl)acrylonitrile Derivatives via [3+2] Cycloaddition Reaction Using Reusable Heterogeneous Nanocatalyst under Microwave Irradiation. Molecules 2024; 29:4339. [PMID: 39339334 PMCID: PMC11434072 DOI: 10.3390/molecules29184339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The magnetically recoverable heterogeneous Fe2O3@cellulose@Mn nanocomposite was synthesized by a stepwise fabrication of Mn nanoparticles on cellulose-modified magnetic Fe2O3 nanocomposites, and the morphology of the nanocomposite was characterized through advanced spectroscopic techniques. This nanocomposite was investigated as a heterogeneous catalyst for the synthesis of medicinally important tetrazole derivatives through Knoevenagel condensation between aromatic/heteroaromatic aldehyde and malononitrile followed by [3+2] cycloaddition reaction with sodium azide. Thirteen potent (E)-1-aryl-2-(1H-tetrazol-5-yl)acrylonitrile derivatives are reported in this paper with very high yields (up to 98%) and with excellent purity (as crystals) in a very short period (3 min @ 120 W) using microwave irradiation. The present procedure offers several advantages over recent protocols, including minimal catalyst loading, quick reaction time, and the utilization of an eco-friendly solvent. Furthermore, the synthesized (E)-1-aryl-2-(1H-tetrazol-5-yl)acrylonitrile derivatives (4b, 4c, and 4m) are shown to have excellent resistance against various fungal strains over bacterial strains as compared to the standard drugs Cefixime (4 μg/mL) and Fluconazole (2 μg/mL).
Collapse
Affiliation(s)
- Ayashkanta Nanda
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Navneet Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haesook Han
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA
| | - Pradip K. Bhowmik
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| |
Collapse
|
4
|
Echenique-Errandonea E, Rojas S, Ortuño AM, Cepeda J, Ramos-Cabrer P, Vitórica-Yrezábal ÍJ, Cuerva JM, Seco JM, Rodríguez-Diéguez A. Multifunctional Amino Acid Derivative Coordination Compounds: Novel Contrast Agent and Luminescence Materials. Chemistry 2024; 30:e202304146. [PMID: 38687127 DOI: 10.1002/chem.202304146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 05/02/2024]
Abstract
In this work a family of multidimensional (2-(1H-tetrazol-5-yl)ethyl) amino acid coordination compounds have been synthesized and thoroughly characterized. For this purpose, glycine, valine, phenylalanine and tyrosine have been selected as starting amino acids and Mn2+, Zn2+ and Cd2+ as metallic nodes. From one side, for Mn2+ based dimer magnetic resonance imaging studies have been conducted, prompted by the number and disposition of the coordinated water molecules and taking into consideration the promising future of manganese-based coordination compounds as bio-compatible substitutes to conventional Gd based contrast agents. From another side, d10 block metal-based complexes allowed exploring photoluminescence properties derived by in situ synthesized ligands. Finally, amino acid preserved structural chirality allowed us to examine chiroptical properties, particularly focusing on circularly polarized luminescence.
Collapse
Affiliation(s)
- Estitxu Echenique-Errandonea
- Department of Applied Chemistry, Faculty of Chemistry, University of Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Sara Rojas
- Department of Inorganic Chemistry, University of Granada, C/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Ana M Ortuño
- Department of Inorganic Chemistry, University of Granada, C/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Javier Cepeda
- Department of Applied Chemistry, Faculty of Chemistry, University of Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Pedro Ramos-Cabrer
- Magnetic Resonance Imaging Laboratory, CIC biomaGUNE, 20014, Donostia-San Sebastián, Spain
| | - Íñigo J Vitórica-Yrezábal
- Department of Inorganic Chemistry, University of Granada, C/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Juan M Cuerva
- Department of Inorganic Chemistry, University of Granada, C/ Severo Ochoa s/n, 18071, Granada, Spain
| | - José M Seco
- Department of Applied Chemistry, Faculty of Chemistry, University of Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, University of Granada, C/ Severo Ochoa s/n, 18071, Granada, Spain
| |
Collapse
|
5
|
Babu A, Sinha A. Catalytic Tetrazole Synthesis via [3+2] Cycloaddition of NaN 3 to Organonitriles Promoted by Co(II)-complex: Isolation and Characterization of a Co(II)-diazido Intermediate. ACS OMEGA 2024; 9:21626-21636. [PMID: 38764698 PMCID: PMC11097157 DOI: 10.1021/acsomega.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
The [3+2] cycloaddition of sodium azide to nitriles to give 5-substituted 1H-tetrazoles is efficiently catalyzed by a Cobalt(II) complex (1) with a tetradentate ligand N,N-bis(pyridin-2-ylmethyl)quinolin-8-amine. Detailed mechanistic investigation shows the intermediacy of the cobalt(II) diazido complex (2), which has been isolated and structurally characterized. Complex 2 also shows good catalytic activity for the synthesis of 5-substituted 1H-tetrazoles. These are the first examples of cobalt complexes used for the [3+2] cycloaddition reaction for the synthesis of 1H-tetrazoles under homogeneous conditions.
Collapse
Affiliation(s)
- Archana Babu
- Advanced Catalysis Facility,
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632 006, India
| | - Arup Sinha
- Advanced Catalysis Facility,
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632 006, India
| |
Collapse
|
6
|
Jaiswal S, Verma K, Dwivedi J, Sharma S. Tetrazole derivatives in the management of neurological disorders: Recent advances on synthesis and pharmacological aspects. Eur J Med Chem 2024; 271:116388. [PMID: 38614062 DOI: 10.1016/j.ejmech.2024.116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/16/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Neurological disorders are the leading cause of a large number of mortalities and morbidities. Nitrogen heterocyclic compounds have been pivotal in exhibiting wide array of therapeutic applications. Among them, tetrazole is a ubiquitous class of organic heterocyclic compounds that have attracted much attention because of its unique structural and chemical properties, and a wide range of pharmacological activities comprising anti-convulsant effect, antibiotic, anti-allergic, anti-hypertensive to name a few. Owing to significant chemical and biological properties, the present review aimed at highlighting the recent advances in tetrazole derivatives with special emphasis on their role in the management of neurological diseases. Besides, in-depth structure-activity relationships, molecular docking studies, and associated modes of action of tetrazole derivatives evident in in vitro, in vivo preclinical, and clinical studies have been discussed.
Collapse
Affiliation(s)
- Shivangi Jaiswal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India.
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India.
| |
Collapse
|
7
|
Heidarnezhad Z, Ghorbani-Choghamarani A, Taherinia Z. Fe 3O 4@SiO 2@SBA-3@CPTMS@Arg-Cu: preparation, characterization, and catalytic performance in the conversion of nitriles to amides and the synthesis of 5-substituted 1 H-tetrazoles. NANOSCALE ADVANCES 2024; 6:2431-2446. [PMID: 38694458 PMCID: PMC11059512 DOI: 10.1039/d3na00318c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/15/2023] [Indexed: 05/04/2024]
Abstract
A novel, efficient, and recyclable mesoporous Fe3O4@SiO2@SBA-3@CPTMS@Arg-Cu nanocatalyst was synthesized by grafting l-arginine (with the ability to coordinate with Cu) onto a mixed phase of a magnetic mesoporous SBA-3 support. The catalyst was characterized using several techniques, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), X-ray diffraction (XRD) analysis, N2 adsorption-desorption analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray (EDX) analysis, and atomic absorption spectroscopy (AAS). The resulting solid material possessed a surface area of 145 m2 g-1 and a total pore volume of 34 cm3 g-1. The prepared mesoporous material was studied as a practical, recyclable, and chemoselective catalyst in some organic functional group transformations such as the conversion of nitriles to amides and synthesis of 5-substituted 1H-tetrazoles. This novel magnetic nanocatalyst proved to be effective and provided the products in high to excellent yields under green solvent conditions. Meanwhile, the as-prepared Fe3O4@SiO2@SBA-3@CPTMS@Arg-Cu demonstrated excellent reusability and stability under reaction conditions, and its catalytic activity shown only a slight decrease after seven consecutive runs. Therefore, the as-synthesized magnetic Fe3O4@SiO2@SBA-3@CPTMS@Arg-Cu has broad prospects for practical applications, and offers various benefits such as simplicity, nontoxicity, low cost, simple work-up, and an environmentally benign nature.
Collapse
Affiliation(s)
| | - Arash Ghorbani-Choghamarani
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Zahra Taherinia
- Department of Chemistry, Faculty of Science, Ilam University Ilam Iran
| |
Collapse
|
8
|
Niu J, Wang Y, Yan S, Zhang Y, Ma X, Zhang Q, Zhang W. One-pot Ugi-azide and Heck reactions for the synthesis of heterocyclic systems containing tetrazole and 1,2,3,4-tetrahydroisoquinoline. Beilstein J Org Chem 2024; 20:912-920. [PMID: 38711586 PMCID: PMC11070971 DOI: 10.3762/bjoc.20.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
A new method for the synthesis of heterocyclic systems containing tetrazole and tetrahydroisoquinoline is developed via the performance of one-pot Ugi-azide and Heck cyclization reactions. The integration of the multicomponent and post-condensation reactions in one-pot maximizes the pot-, atom-, and step-economy (PASE).
Collapse
Affiliation(s)
- Jiawei Niu
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Yuhui Wang
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Shenghu Yan
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Yue Zhang
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Xiaoming Ma
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215009, China
| | - Wei Zhang
- Department of Chemistry and Center for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
| |
Collapse
|
9
|
Vasanthan RJ, Pradhan S, Thangamuthu MD. Emerging Aspects of Triazole in Organic Synthesis: Exploring its Potential as a Gelator. Curr Org Synth 2024; 21:456-512. [PMID: 36221871 DOI: 10.2174/1570179420666221010094531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) - commonly known as the "click reaction" - serves as the most effective and highly reliable tool for facile construction of simple to complex designs at the molecular level. It relates to the formation of carbon heteroatomic systems by joining or clicking small molecular pieces together with the help of various organic reactions such as cycloaddition, conjugate addition, ring-opening, etc. Such dynamic strategy results in the generation of triazole and its derivatives from azides and alkynes with three nitrogen atoms in the five-membered aromatic azole ring that often forms gel-assembled structures having gelating properties. These scaffolds have led to prominent applications in designing advanced soft materials, 3D printing, ion sensing, drug delivery, photonics, separation, and purification. In this review, we mainly emphasize the different mechanistic aspects of triazole formation, which includes the synthesis of sugar-based and non-sugar-based triazoles, and their gel applications reported in the literature for the past ten years, as well as the upcoming scope in different branches of applied sciences.
Collapse
Affiliation(s)
- Rabecca Jenifer Vasanthan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Sheersha Pradhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Mohan Das Thangamuthu
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| |
Collapse
|
10
|
Gujja V, Sadineni K, Epuru MR, Rao Allaka T, Banothu V, Gunda SK, Koppula SK. Synthesis and in Silico Studies of Some New 1,2,3-Triazolyltetrazole Bearing Indazole Derivatives as Potent Antimicrobial Agents. Chem Biodivers 2023; 20:e202301232. [PMID: 37988365 DOI: 10.1002/cbdv.202301232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
1,2,3-Triazole and tetrazole derivatives bearing pyrrolidines are found to exhibit notable biological activity and have become useful scaffolds in medicinal chemistry for application in lead discovery and optimization. Novel indazole bearing 1,2,3-triazolyltetrazoles were designed as potential antimicrobial candidates. The structure of duel heterocyclics was validated by a spectroscopic technique of infrared (IR), nuclear magnetic resonance (1 H and 13 C NMR), and mass spectral data. Compounds 4b, 4c, 4d, and 4h were found to have a stronger antibacterial effect against Gram-positive (S. aureus, B. subtilis, M. Luteus) and Gram-negative (E. coli, P. aeruginosa) microorganisms with MICs ranging from 5±0.03-18±0.02 μM, respectively. Moreover, scaffolds 4a, 4h showed potent antifungal activity against A. flavus, M. gypsuem strains with MIC values of 10±0.02, 11±0.01 μM, which are similar activity that of the standard Itraconazole (MIC=8±0.02, 10±0.01 μM). The binding mode for compound 4 inside the catalytic pocket of S. aureus complexed with nicotinamide adenine dinucleotide phosphate and trimethoprim and produced a network of hydrophobic and hydrophilic interactions (3FRE). From in silico results, 4b demonstrated highly stable hydrogen binding amino acids Leu62(X) [N18…O, 2.47 Å], Arg44(X) [N17…N, 3.11 Å], Thr96(X) [N10…OG1, 3.05 Å], Gly94(X) [F7…N, 2.82 Å], and Gly43(X) [F7…N, 2.90 Å], which are plays a crucial role in ensuring efficient binding of the ligand in a crystal structure of antibacterial receptor. Furthermore, the physicochemical and ADME filtration molecular properties, estimation of toxicity, and bioactivity scores of these novel scaffolds were evaluated by using SwissADME and ADMETlab2.0 online protocols. Thus, the significant antimicrobial activity of indazole linked to duel heterocyclic compounds can be used for development of new antimicrobial agents with further modifications.
Collapse
Affiliation(s)
- Venkanna Gujja
- Department of chemistry, Gitam deemed to be University, Hyderabad campus, Rudraram, Sangareddy, Hyderabad, 502329, Telangana, India
| | - Kumaraswamy Sadineni
- Department of chemistry, Gitam deemed to be University, Hyderabad campus, Rudraram, Sangareddy, Hyderabad, 502329, Telangana, India
| | - Manohar Reddy Epuru
- Department of Chemistry, School of Applied Sciences and humanities, VFSTR, Vadlamudi, Guntur, Andhra Pradesh, 522213, India
- Analytical Research and Development, I, nnovare Labs Private Limited, Hyderabad, Telangana, 500090, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, Department of Chemistry, Institute of Science & Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500085, Telangana, India
| | - Venkanna Banothu
- Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500085, Telangana, India
| | - Shravan Kumar Gunda
- Bioinformatics Division, PGRRCDE, Osmania University, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Shiva Kumar Koppula
- Department of chemistry, Gitam deemed to be University, Hyderabad campus, Rudraram, Sangareddy, Hyderabad, 502329, Telangana, India
| |
Collapse
|
11
|
Guo H, Zhou B, Chang J, Chang W, Feng J, Zhang Z. Multicomponent cyclization with azides to synthesize N-heterocycles. Org Biomol Chem 2023; 21:8054-8074. [PMID: 37801029 DOI: 10.1039/d3ob01115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Heterocyclic compounds, both naturally derived and synthetically produced, constitute a wide variety of biologically active and industrially important compounds. The synthesis and application of heterocyclic compounds have garnered significant attention and experienced rapid growth in recent decades. Organic azides, due to their unique properties and distinctive reactivity, have become a convenient chemical tool for achieving a wide range of heterocycles such as triazoles and tetrazoles. Importantly, the field of multicomponent reaction (MCR) chemistry provides a convergent approach to access various N-heterocyclic scaffolds, offering novelty, diversity, and complexity. However, the exploration of MCR pathways to N-heterocyclic compounds remains incomplete. Here, we review the use of multicomponent reactions for the preparation of N-heterocycles. A wide range of reactions based on azides for the synthesis of various types of N-heterocyclic systems have been developed.
Collapse
Affiliation(s)
- Hong Guo
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Bei Zhou
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jingjing Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Wenxu Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jiyao Feng
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Zhenhua Zhang
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Cui WH, Liu Q, Ye Z, He Y. Design and Synthesis of Bistetrazole-Based Energetic Salts Bearing the Nitrogen-Rich Fused Ring. Org Lett 2023. [PMID: 37471513 DOI: 10.1021/acs.orglett.3c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A series of bistetrazole-based energetic salts bearing a nitrogen-rich fused ring were designed and synthesized. Among them, compounds 4-10 showed good detonation properties and excellent thermostability. By treating nitrogen-rich fused ring 3 with concentrated hydrochloric acid, a new type of Dimroth rearrangement was observed that afforded compound 12 efficiently. This new transformation herein constitutes a valuable addition to the Dimroth rearrangement.
Collapse
Affiliation(s)
- Wen-Hao Cui
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Qi Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| |
Collapse
|
13
|
Vlocskó RB, Xie G, Török B. Green Synthesis of Aromatic Nitrogen-Containing Heterocycles by Catalytic and Non-Traditional Activation Methods. Molecules 2023; 28:molecules28104153. [PMID: 37241894 DOI: 10.3390/molecules28104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent advances in the environmentally benign synthesis of aromatic N-heterocycles are reviewed, focusing primarily on the application of catalytic methods and non-traditional activation. This account features two main parts: the preparation of single ring N-heterocycles, and their condensed analogs. Both groups include compounds with one, two and more N-atoms. Due to the large number of protocols, this account focuses on providing representative examples to feature the available methods.
Collapse
Affiliation(s)
- R Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Guoshu Xie
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
14
|
Esmaeilzadeh Khabazi M, Najafi Chermahini A. DFT Study on Corrosion Inhibition by Tetrazole Derivatives: Investigation of the Substitution Effect. ACS OMEGA 2023; 8:9978-9994. [PMID: 36969462 PMCID: PMC10035016 DOI: 10.1021/acsomega.2c07185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Corrosion is one of the problems that most industries face. Our aim in the current study is to perform density functional theory calculations and Monte Carlo simulation to theoretically investigate the corrosion inhibition of the copper (1 1 1) surface by tetrazole molecules and a group of their derivatives. These compounds have electron-donating groups (CH3, CH3O, and OH) and electron-withdrawing groups (F, CN, and NO2). Two different isomeric forms of tetrazole molecules and their derivatives, including 1H and 2H tautomers, were studied in two configurations, parallel and perpendicular to the Cu (1 1 1) surface. With the help of DMol3 calculations, the most important parameters related to the molecular ability of tetrazole derivatives as corrosion inhibitors include the adsorption energy (ΔE), E HOMO, E LUMO, E gap, and issues related to chemical reactions, including total hardness (η), electronegativity (χ), and electron fraction transitions from the anti-corrosion molecule to the copper atom (ΔN), were calculated and compared in the tetrazole molecules and their derivatives. Also, with the help of adsorption locator calculations, the inhibitory effects of these compounds were theoretically investigated in an acidic environment. Through these calculations, it was determined that tetrazole molecules with electron-donating groups adsorbed perpendicularly to the copper (1 1 1) surface, by forming a stronger bond, are considered suitable corrosion inhibitors. Also, among the examined molecules, the 2H-tetrazole isomer form plays a more influential role than the 1H-tetrazole form.
Collapse
|
15
|
Jivani A, Kapadiya K, Jainik A, Khunt R. Efficacy of Binary Media and Gold Catalyst for the Synthesis of a Conjugates with Cyclohexyl-Tetrazole-Alkyloxyphenyl-Benzenamine through Ugi 4-CC Reactions: Cytotoxic and Single-Crystal Studies. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2174992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Amita Jivani
- Chemical Research Laboratory, Department of Chemistry, Saurashtra University, Rajkot, India
- Department of Chemistry, T N Rao Science College, Saurashtra University, Rajkot, India
| | - Khushal Kapadiya
- Department of Chemistry, School of Science, RK University, Rajkot, India
| | - Agnieszka Jainik
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Ranjan Khunt
- Chemical Research Laboratory, Department of Chemistry, Saurashtra University, Rajkot, India
| |
Collapse
|
16
|
Harit T, Cherfi M, Elhouda Daoudi N, Isaad J, Bnouham M, Malek F. Hybrid Pyrazole‐Tetrazole Derivatives with High α‐Amylase Inhibition Activity: Synthesis, Biological Evaluation and Docking Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202203757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tarik Harit
- Laboratory of Applied Chemistry and Environment -ECOMP Faculty of Sciences Mohamed 1st University Bd Mohamed VI, BP: 717 Oujda 60000 Morocco
| | - Mounir Cherfi
- Laboratory of Applied Chemistry and Environment -ECOMP Faculty of Sciences Mohamed 1st University Bd Mohamed VI, BP: 717 Oujda 60000 Morocco
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources Biotechnology Ethnopharmacology and Health Faculty of Sciences Mohamed 1st University 60000 Oujda Morocco
| | - Jalal Isaad
- ERCI2 A FSTH Abdelmalek Essaadi University Tetouan Morocco 93000
| | - Mohamed Bnouham
- Laboratory of Bioresources Biotechnology Ethnopharmacology and Health Faculty of Sciences Mohamed 1st University 60000 Oujda Morocco
| | - Fouad Malek
- Laboratory of Applied Chemistry and Environment -ECOMP Faculty of Sciences Mohamed 1st University Bd Mohamed VI, BP: 717 Oujda 60000 Morocco
| |
Collapse
|
17
|
Synthesis of 2,4‐dihydrochromeno[3,4‐
d
][1,2,3]triazoles and 5‐(2
H
‐chromen‐3‐yl)‐1
H
‐tetrazoles via regioselective 1,3‐dipolar cycloaddition of 2
H
‐chromene‐3‐carbonitriles with NaN
3. ChemistrySelect 2022. [DOI: 10.1002/slct.202204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Govindhan C, Nagarajan PS. Metal‐free organic transformation: 2,6‐Pyridine dicarboxylic acid catalyzed synthesis of 5‐substituted‐1H‐tetrazoles and β‐aminoketones. ChemistrySelect 2022. [DOI: 10.1002/slct.202202943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chinnasamy Govindhan
- Sona – Centre for Advanced Research in Organic Materials (Sona AROMA), Department of Chemistry Sona College of Technology, Salem Tamilnadu India- 636005
| | - Panneer Selvam Nagarajan
- Sona – Centre for Advanced Research in Organic Materials (Sona AROMA), Department of Chemistry Sona College of Technology, Salem Tamilnadu India- 636005
| |
Collapse
|
19
|
Uppadhayay RK, Kumar A, Teotia J, Singh A. Multifaceted Chemistry of Tetrazole. Synthesis, Uses, and Pharmaceutical Applications. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
20
|
Cea-Olivares R, Ruiz-Hernández A, Said Razo-Hernández R, Tlahuext H, López-Cardoso M, Román-Bravo P, Vargas-Pineda G, Jancik V, Barroso-Flores J, Pineda-Urbina K, Pablo Mojica-Sánchez J. The importance of intramolecular hydrogen bonds for structural stabilization. [Triphenyl-tetrazolium] [tetraphenyldichalcogenoimidodiphosphinates], [Ph3CN4][Ph2P(X)NP(Y)Ph2]. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Acar Çevik U, Celik I, Işık A, Gül ÜD, Bayazıt G, Bostancı HE, Özkay Y, Kaplancıklı ZA. Synthesis, and docking studies of novel tetrazole-S-alkyl derivatives as antimicrobial agents. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2117812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ayşen Işık
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, Turkey
| | - Ülküye Dudu Gül
- Department of Bioengineering, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Gizem Bayazıt
- Department of Biotechnology, Institute of Graduate Studies, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Hayrani Eren Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
22
|
Nitrogen-Containing Heterocyclic Compounds Obtained from Monoterpenes or Their Derivatives: Synthesis and Properties. Top Curr Chem (Cham) 2022; 380:42. [PMID: 35951263 DOI: 10.1007/s41061-022-00399-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 10/15/2022]
Abstract
Directed transformation of available natural compounds with native biological activity is a promising area of research in organic and medicinal chemistry aimed at finding effective drug substances. The number of scientific publications devoted to the transformation of natural compounds and investigations of their pharmacological properties, in particular, monoterpenes and their nearest derivatives, increases every year. At the same time, the chemistry of nitrogen-containing heterocyclic compounds has been actively developed since the 1950s after the news that the benzimidazole core is an integral part of the structure of vitamin B12. At the time of writing this review, the data on chemical modifications of monoterpenes and their nearest derivatives leading to formation of compounds with a nitrogen-containing heterocycle core have not been summarized and systematized in terms of chemical transformations. In this review, we tried to summarize the literature data on the preparation and properties of nitrogen-containing heterocyclic compounds synthesized from monoterpenes/monoterpenoids and their nearest derivatives for the period from 2000 to 2021.
Collapse
|
23
|
Cherfi M, Harit T, Yahyaoui MI, Asehraou A, Malek F. New Tetrapodal Pyrazole-Tetrazole Ligands: Synthesis, Characterization, and Evaluation of the Antibacterial Activity. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Mounir Cherfi
- Laboratory of Applied Chemistry and Environment–ECOMP, Faculty of Sciences, Mohamed 1st University, Oujda, Morocco
| | - Tarik Harit
- Laboratory of Applied Chemistry and Environment–ECOMP, Faculty of Sciences, Mohamed 1st University, Oujda, Morocco
| | - Meryem Idrissi Yahyaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohamed 1st University, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohamed 1st University, Oujda, Morocco
| | - Fouad Malek
- Laboratory of Applied Chemistry and Environment–ECOMP, Faculty of Sciences, Mohamed 1st University, Oujda, Morocco
| |
Collapse
|
24
|
Cherfi M, Harit T, Idrissi Yahyaoui M, Riahi A, Asehraou A, Malek F. Synthesis, antimicrobial activity and in-silico docking of two macrocycles based on pyrazole-tetrazole subunit. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
An Overview of the Biological Evaluation of Selected Nitrogen-Containing Heterocycle Medicinal Chemistry Compounds. Int J Mol Sci 2022; 23:ijms23158117. [PMID: 35897691 PMCID: PMC9368212 DOI: 10.3390/ijms23158117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Heterocyclic compounds are a class of compounds of natural origin with favorable properties and hence have major pharmaceutical significance. They have an exceptional adroitness favoring their use as diverse smart biomimetics, in addition to possessing an active pharmacophore in a complex structure. This has made them an indispensable motif in the drug discovery field. Heterocyclic compounds are usually classified according to the ring size, type, and the number of heteroatoms present in the ring. Among different heterocyclic ring systems, nitrogen heterocyclic compounds are more abundant in nature. They also have considerable pharmacological significance. This review highlights recent pioneering studies in the biological assessment of nitrogen-containing compounds, namely: triazoles, tetrazoles, imidazole/benzimidazoles, pyrimidines, and quinolines. It explores publications between April 2020 and February 2022 and will benefit researchers in medicinal chemistry and pharmacology. The present work is organized based on the size of the heterocyclic ring.
Collapse
|
26
|
Li C, Swenson DC, MacGillivray LR. Programming Rapid Functional Group Diversification into a Solid‐State Reaction: Aryl Nitriles for Self‐Assembly, Click Reactivity, and Discovery of Coexisting Supramolecular Synthons. Chemistry 2022; 28:e202200978. [DOI: 10.1002/chem.202200978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Changan Li
- Department of Chemistry University of Iowa Iowa City IA 52242–1294 USA
| | - Dale C. Swenson
- Department of Chemistry University of Iowa Iowa City IA 52242–1294 USA
| | | |
Collapse
|
27
|
Safapoor S, Dekamin MG, Akbari A, Naimi-Jamal MR. Synthesis of (E)-2-(1H-tetrazole-5-yl)-3-phenylacrylenenitrile derivatives catalyzed by new ZnO nanoparticles embedded in a thermally stable magnetic periodic mesoporous organosilica under green conditions. Sci Rep 2022; 12:10723. [PMID: 35750767 PMCID: PMC9232489 DOI: 10.1038/s41598-022-13011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
ZnO nanoparticles embedded in a magnetic isocyanurate-based periodic mesoporous organosilica (Fe3O4@PMO-ICS-ZnO) were prepared through a modified environmentally-benign procedure for the first time and properly characterized by appropriate spectroscopic and analytical methods or techniques used for mesoporous materials. The new thermally stable Fe3O4@PMO-ICS-ZnO nanomaterial with proper active sites and surface area as well as uniform particle size was investigated for the synthesis of medicinally important tetrazole derivatives through cascade condensation and concerted 1,3-cycloaddition reactions as a representative of the Click Chemistry concept. The desired 5-substituted-1H-tetrazole derivatives were smoothly prepared in high to quantitative yields and good purity in EtOH under reflux conditions. Low catalyst loading, short reaction time and the use of green solvents such as EtOH and water instead of carcinogenic DMF as well as easy separation and recyclability of the catalyst for at least five consecutive runs without significant loss of its activity are notable advantages of this new protocol compared to other recent introduced procedures.
Collapse
Affiliation(s)
- Sajedeh Safapoor
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Arezoo Akbari
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - M Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
28
|
Origin of enantioselectivity and product-distribution control in isocyanide-based multicomponent reaction catalysed by chiral N, N'-dioxide-Mg(II) complex. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Alkylation of tetrazoles with 3-(2-bromoethyl)-1-methoxy-3-methyltriaz-1-ene 2-oxide. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Dallerba E, Hartnell D, Hackett MJ, Massi M, Lowe AB. Well‐defined Tetrazole‐functional Copolymers as Macromolecular Ligands for Luminescent Ir(III) and Re(I) Metal Species: Synthesis, Photophysical Properties and Application in Bioimaging. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elena Dallerba
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
| | - David Hartnell
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
- Curtin Health Innovation Research Institute (CHIRI) Curtin University Bentley Perth WA 6102 Australia
| | - Mark J. Hackett
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
- Curtin Health Innovation Research Institute (CHIRI) Curtin University Bentley Perth WA 6102 Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
| | - Andrew B. Lowe
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
| |
Collapse
|
31
|
Lohmann N, Milovanović V, Piekarski DG, García Mancheño O. Metal-free oxoammonium salt-mediated C(sp 3)-H oxidative Ugi-azide multicomponent reaction. Org Biomol Chem 2022; 20:2896-2908. [PMID: 35319061 DOI: 10.1039/d2ob00101b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, an efficient oxidative C(sp3)-H Ugi-azide multicomponent reaction of cyclic benzylic amines to the corresponding α-tetrazolo compounds using a TEMPO salt as mild hydride abstractor-type oxidant is reported. This simple one-pot approach allows the direct functionalization of N-heterocycles such as tetrahydroisoquinolines with a variety of isocyanides and NaN3 as a practical azide source. The reaction proceeds at room temperature and without the need of acid additives, allowing for the use of sensitive substrates, while minimizing isocyanide polymerization to provide the desired heterocycle-tetrazole products in synthetically useful yields (up to 99%).
Collapse
Affiliation(s)
- Niklas Lohmann
- University of Münster, Organic Chemistry Institute, Corrensstraße 40, 48149 Münster, Germany.
| | - Vesna Milovanović
- University of Münster, Organic Chemistry Institute, Corrensstraße 40, 48149 Münster, Germany. .,University of Kragujevac, Faculty of Agronomy, Department of Chemistry and Chemical Engineering, Cara Dušana 34, 32000 Čačak, Serbia
| | - Dariusz G Piekarski
- Polish Academy of Sciences, Institute of Physical Chemistry, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Olga García Mancheño
- University of Münster, Organic Chemistry Institute, Corrensstraße 40, 48149 Münster, Germany.
| |
Collapse
|
32
|
Tan A, Kizilkaya S, Noma SAA, Ates B, Kara Y. Novel hybrid isoindole-1,3(2H)-dione compounds containing a 1H-tetrazole moiety: Synthesis, biological evaluation, and molecular docking studies. J Biochem Mol Toxicol 2022; 36:e23015. [PMID: 35257437 DOI: 10.1002/jbt.23015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022]
Abstract
In this study, novel hybrid isoindole-1,3(2H)-dione compounds (10 and 11) carrying a 1H-tetrazole moiety were synthesized, characterized and their inhibitory properties against xanthine oxidase (XO) and carbonic anhydrase isoenzymes (hCA I and hCA II) were investigated. Allopurinol for XO and acetazolamide for carbonic anhydrase isoenzymes were used as positive standards in inhibition studies. In addition, compounds 8 and 9, which were obtained in the intermediate step, were also investigated for their inhibition effects against the three enzymes. According to the enzyme inhibition results, hybrid isoindole-1,3(2H)-dione derivatives 10 and 11 showed significant inhibitory effects against all three enzymes. Surprisingly, compound 8, containing a SCN functional group, exhibited a greater inhibitory effect than the other compounds against hCA I and hCA II. The IC50 values of compound 8 against hCA I and hCA II were found to be 3.698 ± 0.079 and 3.147 ± 0.083 µM, respectively. Compound 8 (IC50 = 4.261 ± 0.034 μM) showed higher activity than allopurinol (IC50 = 4.678 ± 0.029 μM) and the other compounds against XO, as well. These results clearly show the effect of the SCN group on the inhibition. In addition, in silico molecular docking studies were performed to understand the molecular interactions between each compound and enzymes, and the results were evaluated.
Collapse
Affiliation(s)
- Ayse Tan
- Department of Food Processing, Vocational School of Technical Sciences, Mus Alparslan University, Mus, Turkey
| | - Serap Kizilkaya
- Department of Chemistry, Faculty of Arts and Sciences, Mus Alparslan University, Mus, Turkey
| | - Samir A A Noma
- Department of Chemistry, Faculty of Science, Inonu University, Malatya, Turkey.,Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science, Inonu University, Malatya, Turkey
| | - Yunus Kara
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
33
|
Kang JY, Huang H. Triflic Anhydride (Tf2O)-Activated Transformations of Amides, Sulfoxides and Phosphorus Oxides via Nucleophilic Trapping. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1679-8205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractTrifluoromethanesulfonic anhydride (Tf2O) is utilized as a strong electrophilic activator in a wide range of applications in synthetic organic chemistry, leading to the transient generation of a triflate intermediate. This versatile triflate intermediate undergoes nucleophilic trapping with diverse nucleophiles to yield novel compounds. In this review, we describe the features and applications of triflic anhydride in organic synthesis reported in the past decade, especially in amide, sulfoxide, and phosphorus oxide chemistry through electrophilic activation. A plausible mechanistic pathway for each important reaction is also discussed.1 Introduction2 Amide Chemistry2.1 Carbon Nucleophiles2.2 Hydrogen Nucleophiles2.3 Nitrogen Nucleophiles2.4 Oxygen and Sulfur Nucleophiles2.5 hosphorus Nucleophiles2.6 A Vilsmeier-Type Reagent2.7 Umpolung Reactivity in Amides3 Sulfoxide Chemistry3.1 Oxygen Nucleophiles3.2 Carbon Nucleophiles3.3 Nitrogen Nucleophiles3.4 Thionium Reagents4 Phosphorus Chemistry4.1 Hendrickson’s Reagent4.2 Diaryl Phosphine Oxides4.3 Phosphonates, Phosphates and Phosphinates5 Conclusion and Outlook
Collapse
Affiliation(s)
- Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University
| |
Collapse
|
34
|
Aali E, Gholizadeh M, Noroozi-Shad N. 1-Disulfo-[2,2-bipyridine]-1,1-diium chloride ionic liquid as an efficient catalyst for the green synthesis of 5-substituted 1H-tetrazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Singh G, Priyanka, Sushma, Pawan, Diksha, Suman, Mohit, Devi A, Gupta S. Tetrazole conjoined organosilane and organosilatrane via the ‘click approach’: a potent Mycobacterium tuberculosis enoyl ACP reductase inhibitor and a dual sensor for Fe(iii) and Cu(ii) ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05126a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article includes the synthesis and characterization of tetrazole-allied organosilane and organosilatrane. The tetrazole-allied silatrane was explored for molecular docking and optical aspects.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh-160014, India
| | - Priyanka
- Department of Chemistry, Panjab University, Chandigarh-160014, India
| | - Sushma
- Department of Chemistry, Panjab University, Chandigarh-160014, India
| | - Pawan
- Department of Chemistry, Panjab University, Chandigarh-160014, India
| | - Diksha
- Department of Chemistry, Panjab University, Chandigarh-160014, India
| | - Suman
- Department of Chemistry, Panjab University, Chandigarh-160014, India
| | - Mohit
- Department of Chemistry, Panjab University, Chandigarh-160014, India
| | - Anita Devi
- Department of Chemistry, Panjab University, Chandigarh-160014, India
| | - Sofia Gupta
- Department of Chemistry, Panjab University, Chandigarh-160014, India
| |
Collapse
|
36
|
Shi HS, Li SH, Zhang FG, Ma JA. Catalytic regioselective construction of phenylthio- and phenoxyldifluoroalkyl tetrazoles from difluorodiazoketones. Chem Commun (Camb) 2021; 57:13744-13747. [PMID: 34851338 DOI: 10.1039/d1cc05890h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here we report the design and synthesis of two new difluoro-diazoketone reagents (difluorophenylthiol diazoketone and difluorophenoxyl diazoketone) and their [3+2] cycloaddition reactions with aryldiazonium salts under silver catalysis conditions. This protocol enables regioselective access to a broad scope of difluorophenylthiol- and difluorophenoxyl-substituted tetrazole-carbinols in a one-pot operation. Further synthetic derivatizations including dephenylthiolation and unexpected phenylthiol group migration/fluorination allow the efficient preparation of α-difluoromethyl tetrazole-carbinols and α-trifluoromethyl tetrazole-thioethers.
Collapse
Affiliation(s)
- Hong-Song Shi
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai, Fuzhou 350207, P. R. China.
| | - Shuo-Han Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai, Fuzhou 350207, P. R. China.
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai, Fuzhou 350207, P. R. China.
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai, Fuzhou 350207, P. R. China.
| |
Collapse
|
37
|
Eremina JA, Smirnova KS, Klyushova LS, Berezin AS, Lider EV. Synthesis and cytotoxicity evaluation of copper(II) complexes with polypyridines and 5-benzyltetrazole. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Chitosan supported 1-phenyl-1H-tetrazole-5-thiol ionic liquid copper(II) complex as an efficient catalyst for the synthesis of arylaminotetrazoles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Platinum and palladium complexes with tetrazole ligands: Synthesis, structure and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Disli A, Yucesoy EE, Erdogdu Y, Gulluoglu MT, Ozturk A, Dilek G. Synthesis, characterization, theoretical studies and antimicrobial activity of novel 1-(2‑hydroxy-4-propoxy-3-propylphenyl)ethanones bearing thiotetrazole. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Cu(II)-N-benzyl-amino-1H-tetrazole complex immobilized on magnetic chitosan as a highly effective nanocatalyst for C-N coupling reactions. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Singh A, Kumar R. Sustainable Passerini-tetrazole three component reaction (PT-3CR): selective synthesis of oxaborol-tetrazoles. Chem Commun (Camb) 2021; 57:9708-9711. [PMID: 34555131 DOI: 10.1039/d1cc03256a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A sustainable catalyst- and solvent-free Passerini-tetrazole three component reaction (PT-3CR) has been developed for the selective synthesis of benzoxaborol-tetrazoles for the first time. The synthetic potential of oxaboroles was demonstrated towards various functionalized tetrazoles, which are otherwise difficult to achieve through conventional PT-3CR from aromatic aldehydes/ketones. The reaction features high practicality, broad substrate scope and excellent yields (80-98%). Preliminary results of the asymmetric PT-3CR are also shown for the synthesis of chiral benzoxaboroles.
Collapse
Affiliation(s)
- Akansha Singh
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| |
Collapse
|
43
|
Efimenko NI, Tomashenko OA, Spiridonova DV, Novikov MS, Khlebnikov AF. Nucleophile-Induced Rearrangement of 2 H-Azirine-2-carbonyl Azides to 2-(1 H-Tetrazol-1-yl)acetic Acid Derivatives. Org Lett 2021; 23:6362-6366. [PMID: 34382398 DOI: 10.1021/acs.orglett.1c02157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
2H-Azirine-2-carbonyl azides undergo a rearrangement into derivatives of 2-(1H-tetrazol-1-yl)acetic acid when interacting with O- and S-nucleophiles at room temperature. The reaction is catalyzed by tertiary amines or hydrazoic acid. The reaction with primary alcohols and phenols gives alkyl/aryl 2-(1H-tetrazol-1-yl)acetates. Thiophenols react with 2H-azirine-2-carbonyl azides to afford S-aryl 2-(1H-tetrazol-1-yl)ethanethioates. The mechanism of the nucleophile-induced rearrangement of 2H-azirine-2-carbonyl azides is discussed on the basis of DFT calculations as well as kinetic and 15N labeling experiments.
Collapse
Affiliation(s)
- Nikita I Efimenko
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Olesya A Tomashenko
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Dar'ya V Spiridonova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
44
|
Pathan S, Singh GP. Synthesis of novel tetrazole tetrahydrobenzo[b]thiophene via Ugi-MCR: As new antileishmanial prototype. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Nasrollahzadeh M, Nezafat Z, Bidgoli NSS, Shafiei N. Use of tetrazoles in catalysis and energetic applications: Recent developments. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Chaban TI, Foliush VT, Ogurtsov VV, Matiychuk VS. Synthesis, Anti-Inflammatory Properties and Molecular Docking of 2-(5-Aryltetrazol-2-yl)-and 2-(1H-Tetrazol-5-ylsulphanyl)-N-Thiazol-2-ylacetamides. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Highly efficient azido-Ugi multicomponent reactions for the synthesis of bioactive tetrazoles bearing sulfonamide scaffolds. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
|
49
|
Leyva-Ramos S, Cardoso-Ortiz J. Recent Developments in the Synthesis of Tetrazoles and their Pharmacological Relevance. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210193344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The heterocycle ring tetrazole is an important moiety relevant to medicinal chemistry
since it is present in some drugs with clinical importance. Its primary biological activity is
being a bioisosteric analogue of the carboxylic acid and cis-amide groups. Its metabolic stability
and other physicochemical properties make it an attractive structure for designing and synthesizing
new pharmaceuticals. The biological activity of tetrazoles is quite extensive and
includes antiviral, antibacterial, anticancer, antifungal, and antioxidant properties; all of them
are discussed in this review. The most effective way to obtain tetrazoles is by azide derivatives,
either in the starting materials by the cycloaddition [3 + 2] of organic azides and nitriles
or by preparing a reactive imidoyl azide intermediate. The nucleophilic behavior of the azide
group is discussed when the raw materials include isocyanides. Some other methods include
alternative synthetic routes like thermolysis. This review also highlights some of the developments regarding the use
of different heterogeneous catalysts to synthesize several tetrazole derivatives.
Collapse
Affiliation(s)
- Socorro Leyva-Ramos
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
| | - Jaime Cardoso-Ortiz
- Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
50
|
Zhang J, Wang X, Kuang Y, Wu J. Generation of Sulfonylated Tetrazoles through an Iron-Catalyzed Multicomponent Reaction Involving Sulfur Dioxide. iScience 2020; 23:101872. [PMID: 33336165 PMCID: PMC7733023 DOI: 10.1016/j.isci.2020.101872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
As a privileged motif, tetrazoles can be widely found in pharmaceuticals and materials science. Herein, a five-component reaction of cycloketone oxime esters, alkynes, DABCO·(SO2)2, and two molecules of trimethylsilyl azide under iron catalysis is developed, giving rise to a range of cyano-containing sulfonylated tetrazoles in moderate to good yields. This multicomponent reaction exhibits excellent selectivity and enables the formation of multiple new chemical bonds in one pot. A possible mechanism involving azidosulfonylation of alkynes, C-C bond cleavage of both cycloketone oxime esters and alkynes, and [3 + 2] cycloaddition of trimethylsilyl azide and the nitrilium cation intermediate is proposed. Additionally, the potential of terminal alkynes acting as powerful synthons for the synthesis of tetrazoles in a radical initiated process is demonstrated for the first time. High-value tetrazole motifs were synthesized via a five-component reaction Fixing sulfur dioxide into tetrazole molecules under mild conditions Low-cost iron catalyst initiated the transformation Excellent selectivity with the formation of multiple new chemical bonds
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xuefeng Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yunyan Kuang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering, Taizhou University, 1139 Shifu Avenue, Zhejiang 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|