1
|
Zhang J, Pang H, Tang H, Tu Q, Xia F, Zhang H, Meng Y, Han G, Wang J, Qiu C. The pharmacodynamic and pharmacological mechanisms underlying nanovesicles of natural products: Developments and challenges. Pharmacol Ther 2025; 265:108754. [PMID: 39566562 DOI: 10.1016/j.pharmthera.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Natural products such as Traditional Chinese Medicines (TCMs) show great advantages in the treatment and prevention of diseases, but the unclear effective ingredients and mechanisms are key obstacles to restrict their rapid development. Under the guidance of the theoretical guidance of reductionism and the theoretical of allopathic medicine, some researches have indeed achieved some breakthrough results. However, these incomplete methods mainly limited to direct actions or indirect actions (such as the intermediated substances mediated cross-organ or cross-system regulation) mechanism of single active ingredient derived from natural products, which are often inconsistent with Systemism and Harmonizing Medicine and make it difficult to reasonably explain the pharmacodynamics and pharmacological mechanism of most natural products. Actually, effective pharmaceutical ingredients often do not exist in the form of free monomers, but prefer to assembly nanovesicles (NVs) for a combinational pharmacological effect, mainly including self-assembled nanoparticles (SANs) and exosome-like nanoparticles (ELNs). These developments of NVs-based application are a good supplement to existing pharmacological mechanism research. Hence, this review focuses on the developments and strategies of the pharmacodynamics and pharmacological mechanism of NVs-based TCMs under the combining theory of traditional Chinese and western medicine. On this basis, a novel "multidimensional combination" research approach is proposed firstly, which will provide new strategies and directions for breaking through the bottleneck of pharmacological mechanism research, and promote the clinical application of innovative natural products including TCMs.
Collapse
Affiliation(s)
- Junzhe Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingchao Tu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Jigang Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore.
| | - Chong Qiu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
He C, Zhou J, Zhang W, Zhang T, Pu Y. Study on the bioactive components of Banxia Xiexin Decoction with different decocting methods and its effects on ulcerative colitis rats from the perspective of phase states. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118626. [PMID: 39053716 DOI: 10.1016/j.jep.2024.118626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) is one of the seven classic prescriptions of the special decoction method (SDM) of "removing dregs and decocting again", which has been widely used in inflammatory bowel diseases such as ulcerative colitis (UC). However, the impacts of SDM have not been fully investigated, either on the components or on the biological effects. AIM OF THE STUDY This study aimed to investigate the rational of SDM traditionally recorded about BXD, re-decoction after dreg-removal, by comparing with the contemporary general decoction method (GDM) from the perspective of phase states, in the bioactive components from the perspective of phase states, and their corresponding pharmacodynamic effects on a particular UC rat model. METHODS The BXD decoctions were respectively obtained by SDM and GDM, together with the different samples with different decocting time. The phase state samples (true solution, colloidal phase, and precipitated phase), were also obtained after a series of separation process and characterized. The multi-components in the in-process decoctions, original decoctions and phase state samples were quantitatively determined. HPLC fingerprint spectrum of the samples were also detected and compared with chemometrics analysis. A rat model of ulcerative colitis with cold-heat complex syndrome was established, on which the pharmacodynamic effects of different phases of SDM-made BXD were investigated. RESULTS The results showed that the contents of eight marker components in SDM-made decoction were significantly higher than those in GDM-made decoction. Compared with the precipitated phases and true solutions, the colloidal phase was confirmed to obtain absolutely higher contents of the components (except berberine). The analysis on HPLC fingerprints also revealed that the profiles of colloidal phase showed the majority of the characteristics of original decoctions, when compared with the other phases. The results showed the BXD group, precipitated phase group and colloidal phase group had certain therapeutic effects on the ulcerative colitis rats with cold-heat complex syndrome, among which the original decoction group showed optimal effects, followed by the colloidal phase. CONCLUSION The study has provided the experimental evidence of the bioactive components and pharmacodynamic effects on the rational of SDM, as originally recorded about the classic prescription, which might provide useful idea for the interpretation on medicinal properties of TCM compound prescriptions, and contemporary TCM innovative drug developments.
Collapse
Affiliation(s)
- Chao He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingwen Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weijia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yiqiong Pu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Zou J, Li M, Liu Z, Luo W, Han S, Xiao F, Tao W, Wu Q, Xie T, Kong N. Unleashing the potential: integrating nano-delivery systems with traditional Chinese medicine. NANOSCALE 2024; 16:8791-8806. [PMID: 38606497 DOI: 10.1039/d3nr06102g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This review explores the potential of integrating nano-delivery systems with traditional Chinese herbal medicine, acupuncture, and Chinese medical theory. It highlights the intersections and potential of nano-delivery systems in enhancing the effectiveness of traditional herbal medicine and acupuncture treatments. In addition, it discusses how the integration of nano-delivery systems with Chinese medical theory can modernize herbal medicine and make it more readily accessible on a global scale. Finally, it analyzes the challenges and future directions in this field.
Collapse
Affiliation(s)
- Jianhua Zou
- State Key Laboratory of Quality Research in Chinese Medicines, and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Meng Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Ziwei Liu
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, USA
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
4
|
Yang L, Zhang X, Wang Z, Lin X, Zhang Y, Lu J, Wu L, Yao S, Jing W, Huang X, Wang P. Decoction regulating phytochemicals' micromorphology changes and anti-inflammation activity enhancements originated from herb medicine supermolecules. Chin Med 2024; 19:19. [PMID: 38279104 PMCID: PMC10811931 DOI: 10.1186/s13020-023-00864-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/21/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Mahuang Fuzi decoction (MGF) is composed of three herb medicines that has been clinically used to treat inflammatory diseases for a long history. At present, more and more active phytochemicals' aggregations have been found during the thermodynamic process of herb medicine decoction, and revealing the clinical efficacy of herb medicine through supramolecular strategies is the focus of current research. However, it is not clear whether decoction induced supermolecules' morphological changes to modify activity. METHODS Dynamic light scattering (DLS) and field emission scanning electron microscopy (FESEM) were used to analyze the micromorphology of MGF, MGF SA (MGF supermolecules), and MIX (physical mixture of MGF single decoction). The interaction and thermodynamic parameters of single herbs in a decoction were investigated by Isothermal titration calorimetry (ITC). The phytochemicals were systematically analyzed by ultra high performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry (UHPLC-Q-Orbitrap HRMS). Under the safe dose on RAW264.7 cells, NO, IL-6 and TNF-α were determined by Enzyme-Linked ImmunoSorbent Assay (ELISA) method. NF-κB p65 translocation from the cytoplasm into the nucleus was examined using the immunofluorescence assay and the western blot, respectively. Furthermore, Metabolomics was used to discover potential biomarkers and the associated metabolic pathways of MGF SA treatment. RESULTS There were nanoscale aggregations in MGF, and the micromorphology of the extracted MGF SA consisted of uniform particles; while the MIX micromorphology had no uniformity. ITC showed that the interaction MH-GC and FZ-GC were a spontaneous exothermic reaction, indicating that their phytochemicals had the property of self-assembly. Though the micromorphology between MGF, MGF SA, and MIX was obviously different, UHPLC-Q-Orbitrap HRMS results displayed that the main phytochemicals of MGF and MIX had nearly the same components. Interestingly, MGF and MGF SA could significantly inhibit the production of NO, and had better inhibition effect on the expression of nuclear protein NF-κB p65 than MIX, among which MGF SA had the best effect. Further investigation indicated that the perturbance of metabolic profiling in RAW264.7 inflammatory cells was obviously reversed by MGF SA. CONCLUSIONS The decoction enriched the key active phytochemicals and regulated the formation of homogeneous nanoparticles in MGF SA. The supermolecules in MGF SA significantly enhanced its anti-inflammatory activity, primarily affecting the NF-κB signaling pathway and the biosynthesis and metabolism of arginine in RAW264.7 inflammatory cells. Current study displayed that co-decocting herbal medicine were beneficial to the treatment of diseases than the mixture of the single herbs' extraction.
Collapse
Affiliation(s)
- Luping Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiang Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoyu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Linying Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuchang Yao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wenguang Jing
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
5
|
Zhang YL, Wang YL, Yan K, Deng QQ, Li FZ, Liang XJ, Hua Q. Nanostructures in Chinese herbal medicines (CHMs) for potential therapy. NANOSCALE HORIZONS 2023; 8:976-990. [PMID: 37278697 DOI: 10.1039/d3nh00120b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With its long clinical history, traditional Chinese medicine (TCM) has gained acceptance for its specific efficacy and safety in the treatment of multiple diseases. Nano-sized materials study of Chinese herbal medicines (CHMs) leads to an increased understanding of assessing TCM therapies, which may be a promising way to illustrate the material basis of CHMs through their processing and extraction. In this review, we provide an overview of the nanostructures of natural and engineered CHMs, including extracted CHMs, polymer nanoparticles, liposomes, micelles, and nanofibers. Subsequently, the applications of these CHM-derived nanostructures to particular diseases are summarized and discussed. Additionally, we discuss the advantages of these nanostructures for studying the therapeutic efficacy of CHMs. Finally, the key challenges and opportunities for the development of these nanostructures are outlined.
Collapse
Affiliation(s)
- Ya-Li Zhang
- Beijing University of Chinese Medicine, Beijing, China.
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
| | - Ya-Lei Wang
- Beijing University of Chinese Medicine, Beijing, China.
| | - Ke Yan
- Beijing University of Chinese Medicine, Beijing, China.
| | - Qi-Qi Deng
- Beijing University of Chinese Medicine, Beijing, China.
| | - Fang-Zhou Li
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
| | - Qian Hua
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Lin X, Huang X, Tian X, Yuan Z, Lu J, Nie X, Wang P, Lei H, Wang P. Natural Small-Molecule-Based Carrier-Free Self-Assembly Library Originated from Traditional Chinese Herbal Medicine. ACS OMEGA 2022; 7:43510-43521. [PMID: 36506183 PMCID: PMC9730315 DOI: 10.1021/acsomega.2c04098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The carrier-free self-assembly of small molecules opens a new window for the development of nanomaterials. This study is dedicated to developing binary small-molecular self-assemblies derived from phytochemicals in traditional Chinese herbal medicine. Among them, Rhei Radix et Rhizoma and Coptidis Rhizoma are a common pair used in clinics for thousands of years. Here, we found that there were numerous spherical supramolecular nanoparticles (NPs) originated from Rhei Radix et Rhizoma and Coptidis Rhizoma decoction. Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was used to analyze the composition of the supramolecules, and a total of 119 phytochemicals were identified (23 anthraquinones, 31 alkaloids, 24 organic acids, 8 tannins, and other components). Isothermal titration calorimetry (ITC) showed that the interaction between Rhei Radix et Rhizoma and Coptidis Rhizoma was a spontaneous exothermic reaction, indicating that their phytochemicals had the property of self-assembly and interacted to form supramolecules in the decocting process. Furthermore, scanning electron microscopy (SEM), UV, IR, NMR, and ITC were used to verify that rhein and coptisine could self-assemble into nanofibers (Rhe-Cop NFs), while emodin and coptisine could self-assemble into nanoparticles (Emo-Cop NPs). The formation mechanism analysis of the self-assemblies revealed that they were induced by electrostatic attraction, hydrogen bonding, and π-π stacking, forming nanospheres of about 50 nm and nanofibers. The current study not only provides an idea of discovering carrier-free self-assemblies from traditional herbal medicine decoction but also supplies a reference for the design of binary self-assembly of small molecules in the future.
Collapse
|
7
|
Gao Y, Dong Y, Guo Q, Wang H, Feng M, Yan Z, Bai D. Study on Supramolecules in Traditional Chinese Medicine Decoction. Molecules 2022; 27:3268. [PMID: 35630743 PMCID: PMC9144598 DOI: 10.3390/molecules27103268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
With the application of the concept of supramolecular chemistry to various fields, a large number of supramolecules have been discovered. The chemical components of traditional Chinese medicine have various sources and unique structures. During the high-temperature boiling process, various active components form supramolecules due to complex interactions. The supramolecular structure in a traditional Chinese medicine decoction can not only be used as a drug carrier to promote the absorption and distribution of medicinal components but may also have biological activities superior to those of single active ingredients or their physical mixtures. By summarizing the relevant research results over recent years, this paper introduces the research progress regarding supramolecules in various decoctions, laying a foundation for further research into supramolecules in traditional Chinese medicine decoctions, and provides a new perspective for revealing the compatibility mechanisms of traditional Chinese medicine, guiding clinical medications, and developing new nanometers materials.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Yingying Dong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Qin Guo
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Huanhuan Wang
- Basic Medical School, Shanxi University of Chinese Medicine, Xianyang 712046, China; (H.W.); (M.F.)
| | - Mei Feng
- Basic Medical School, Shanxi University of Chinese Medicine, Xianyang 712046, China; (H.W.); (M.F.)
| | - Zhengshen Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Dong Bai
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| |
Collapse
|
8
|
Peng A, Lin L, Zhao M. Discovery, characterization and stability evaluation of self-assembled submicroparticles in chrysanthemum tea infusions. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021; 178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Traditional herbal medicine (THM), an ancient science, is a gift from nature. For thousands of years, it has helped humans fight diseases and protect life, health, and reproduction. Nanomedicine, a newer discipline has evolved from exploitation of the unique nanoscale morphology and is widely used in diagnosis, imaging, drug delivery, and other biomedical fields. Although THM and nanomedicine differ greatly in time span and discipline dimensions, they are closely related and are even evolving toward integration and convergence. This review begins with the history and latest research progress of THM and nanomedicine, expounding their respective developmental trajectory. It then discusses the overlapping connectivity and relevance of the two fields, including nanoaggregates generated in herbal medicine decoctions, the application of nanotechnology in the delivery and treatment of natural active ingredients, and the influence of physiological regulatory capability of THM on the in vivo fate of nanoparticles. Finally, future development trends, challenges, and research directions are discussed.
Collapse
|
10
|
Zhao J, Zhao Q, Lu JZ, Ye D, Mu S, Yang XD, Zhang WD, Ma BL. Natural Nano-Drug Delivery System in Coptidis Rhizoma Extract with Modified Berberine Hydrochloride Pharmacokinetics. Int J Nanomedicine 2021; 16:6297-6311. [PMID: 34552326 PMCID: PMC8451076 DOI: 10.2147/ijn.s323685] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose This study aimed to evaluate the pharmaceutical and pharmacokinetic effects of the natural nanoparticles (Nnps) isolated from Coptidis Rhizoma extract on berberine hydrochloride (BBR) and systematically explore the related mechanisms. Methods Firstly, Nnps were isolated from Coptidis Rhizoma extract and then an Nnps-BBR complex was prepared. After qualitative and quantitative analysis in terms of size, Zeta potential, morphology, and composition of the Nnps and the Nnps-BBR complex, the effects of the Nnps on the crystallization of BBR were characterized. The effects of the Nnps on the solubility and dissolution of BBR were then evaluated. In addition, the effects of the Nnps on BBR in terms of cellular uptake, transmembrane transport, metabolic stability, and pharmacokinetics in mice were studied. Results The Nnps had an average size of 166.6 ± 1.3 nm and Zeta potential of −12.5 ± 0.2 mV. The Nnps were formed by denaturation of co-existing plant proteins with molecular weight < 30 kDa. The Nnps adsorbed or dispersed BBR, thereby promoting BBR transformation from crystal to amorphous form and improving its solubility and dissolution. The Nnps carried and promoted BBR uptake by human colonic adenocarcinoma (Caco-2) cells via caveolae-mediated endocytosis, reducing P-gp-mediated efflux of BBR in mice gut sacs and Madin-Darby canine kidney cells stably expressing the transporter P-gp (MDCK-MDR1) cells. Moreover, the Nnps improved BBR metabolic stability in mouse intestinal S9, promoting BBR intestinal absorption in mice, as shown by increased peak BBR concentration (Cmax, 1182.3 vs 310.2 ng/mL) and exposure level (AUC0–12 h, 2842.8 vs 1447.0 ng·h/mL) in mouse portal vein. In addition, the Nnps increased BBR exposure level in mouse livers (95,443.2 vs 43,586.2 ng·h/g liver). Conclusion The proteinaceous nanoparticles isolated from Coptidis Rhizoma extract can form a natural nano-drug delivery system with BBR, thereby significantly improving the pharmacokinetics of oral BBR.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Qing Zhao
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jing-Ze Lu
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Dan Ye
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Sheng Mu
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xiao-Di Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Bing-Liang Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
11
|
Lu JZ, Ye D, Ma BL. Constituents, Pharmacokinetics, and Pharmacology of Gegen-Qinlian Decoction. Front Pharmacol 2021; 12:668418. [PMID: 34025427 PMCID: PMC8139575 DOI: 10.3389/fphar.2021.668418] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Gegen-Qinlian decoction (GQD) is a classic traditional Chinese medicine (TCM) formula. It is composed of four TCMs, including Puerariae Lobatae Radix, Scutellariae Radix, Coptidis Rhizoma, and Glycyrrhizae Radix et Rhizoma Praeparata cum Melle. GQD is traditionally and clinically used to treat both the "external and internal symptoms" of diarrhea with fever. In this review, key words related to GQD were searched in the Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), and other databases. Literature published mainly from 2000 to 2020 was screened and summarized. The main constituents of GQD could be classified into eight groups according to their structures: flavonoid C-glycosides, flavonoid O-glucuronides, benzylisoquinoline alkaloids, free flavonoids, flavonoid O-glycosides, coumarins, triterpenoid saponins, and others. The parent constituents of GQD that enter circulation mainly include puerarin and daidzein from Puerariae Lobatae Radix, baicalin and wogonoside from Scutellariae Radix, berberine and magnoflorine from Coptidis Rhizoma, as well as glycyrrhetinic acid and glycyrrhizic acid from Glycyrrhizae Radix et Rhizoma Praeparata cum Melle. GQD is effective against inflammatory intestinal diseases, including diarrhea, ulcerative colitis, and intestinal adverse reactions caused by chemotherapeutic agents. Moreover, GQD has significant effects on metabolic diseases, such as nonalcoholic fatty liver and type 2 diabetes. Furthermore, GQD can be used to treat lung injury. In brief, the main constituents, the pharmacokinetic and pharmacological profiles of GQD were summarized in this review. In addition, several issues of GQD including effective constituents, interactions between the constituents, pharmacokinetics, interaction potential with drugs and pharmacological effects were discussed, and related future researches were prospected in this review.
Collapse
Affiliation(s)
- Jing-Ze Lu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Ye
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12020128. [PMID: 32028739 PMCID: PMC7076514 DOI: 10.3390/pharmaceutics12020128] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
The systematic separation strategy has long and widely been applied in the research and development of herbal medicines. However, the pharmacological effects of many bioactive constituents are much weaker than those of the corresponding herbal extracts. Thus, there is a consensus that purer herbal extracts are sometimes less effective. Pharmacological loss of purified constituents is closely associated with their significantly reduced intestinal absorption after oral administration. In this review, pharmacokinetic synergies among constituents in herbal extracts during intestinal absorption were systematically summarized to broaden the general understanding of the pharmaceutical nature of herbal medicines. Briefly, some coexisting constituents including plant-produced primary and secondary metabolites, promote the intestinal absorption of active constituents by improving solubility, inhibiting first-pass elimination mediated by drug-metabolizing enzymes or drug transporters, increasing the membrane permeability of enterocytes, and reversibly opening the paracellular tight junction between enterocytes. Moreover, some coexisting constituents change the forms of bioactive constituents via mechanisms including the formation of natural nanoparticles. This review will focus on explaining this new synergistic mechanism. Thus, herbal extracts can be considered mixtures of bioactive compounds and pharmacokinetic synergists. This review may provide ideas and strategies for further research and development of herbal medicines.
Collapse
|
13
|
Hao DC, Xiao PG. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Traditional Medicine-based Cardiovascular Drug Research. Curr Drug Metab 2020; 20:556-574. [PMID: 31237211 DOI: 10.2174/1389200220666190618101526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/09/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND The representative cardiovascular herbs, i.e. Panax, Ligusticum, Carthamus, and Pueraria plants, are traditionally and globally used in the prevention and treatment of various cardiovascular diseases. Modern phytochemical studies have found many medicinal compounds from these plants, and their unique pharmacological activities are being revealed. However, there are few reviews that systematically summarize the current trends of Drug Metabolism/Pharmacokinetic (DMPK) investigations of cardiovascular herbs. METHODS Here, the latest understanding, as well as the knowledge gaps of the DMPK issues in drug development and clinical usage of cardiovascular herbal compounds, was highlighted. RESULTS The complicated herb-herb interactions of cardiovascular Traditional Chinese Medicine (TCM) herb pair/formula significantly impact the PK/pharmacodynamic performance of compounds thereof, which may inspire researchers to develop a novel herbal formula for the optimized outcome of different cardiovascular diseases. While the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME/T) of some compounds has been deciphered, DMPK studies should be extended to more cardiovascular compounds of different medicinal parts, species (including animals), and formulations, and could be streamlined by versatile omics platforms and computational analyses. CONCLUSION In the context of systems pharmacology, the DMPK knowledge base is expected to translate bench findings to clinical applications, as well as foster cardiovascular drug discovery and development.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Zhou J, Liu J, Lin D, Gao G, Wang H, Guo J, Rao P, Ke L. Boiling-induced nanoparticles and their constitutive proteins from Isatis indigotica Fort. root decoction: Purification and identification. J Tradit Complement Med 2016; 7:178-187. [PMID: 28417088 PMCID: PMC5388084 DOI: 10.1016/j.jtcme.2016.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/27/2016] [Accepted: 08/15/2016] [Indexed: 02/04/2023] Open
Abstract
Colloidal particles are essential components of sun-dried Isatis indigotica Fort. roots (Ban-Lan-Gen in Chinese, BLG) decoction. Nanoparticles (NPs) were isolated from BLG decoction with size exclusion chromatography and characterized. Their average diameter is ∼120 nm, reversibly responding to pH and temperature changes. They promoted the growth of normal cells but suppressed that of cancerogenic cells and macrophages. Two constitutive glycated proteins were identified from the NPs, namely BLGP1 and BLGP2. Their N-terminal amino acid sequences were V-X-R-E-V-V-K-D-I and V-V-R-E-V-V-K-D-I-A-G-A-V-Q-T-N-E-Q-Y. Their full-length cDNA sequences were cloned to obtain the highly homological amino acid sequences of non-glycated proteins, whose theoretical molecular weights are 21831.64 Da and 21841.67 Da. Using pepsin hydrolysis and mass spectrometry, four possible glycation adducts were identified in BLGP1, whereas one in BLGP2. To conclude, bioactive nanoparticles isolated from the herbal decoction are intelligent nanoassemblies composed of a new boiling-stable protein. Glycation plays a critical role in heat-induced formation of these nanoassemblies. The novel, intelligent, safe and stable nano-carriers for drug delivery may be developed using BLG NPs as prototype.
Collapse
Affiliation(s)
- Jianwu Zhou
- SIBS, CAS-ZJGSU Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jie Liu
- SIBS, CAS-ZJGSU Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dai Lin
- SIBS, CAS-ZJGSU Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Guanzhen Gao
- SIBS, CAS-ZJGSU Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Huiqin Wang
- SIBS, CAS-ZJGSU Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jingke Guo
- SIBS, CAS-ZJGSU Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Pingfan Rao
- SIBS, CAS-ZJGSU Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijing Ke
- SIBS, CAS-ZJGSU Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
15
|
Relevance of the Pharmacokinetic and Pharmacodynamic Profiles of Puerariae lobatae Radix to Aggregation of Multi-Component Molecules in Aqueous Decoctions. Molecules 2016; 21:molecules21070845. [PMID: 27367654 PMCID: PMC6274100 DOI: 10.3390/molecules21070845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022] Open
Abstract
The complexity of traditional Chinese medicines (TCMs) is related to their multi-component system. TCM aqueous decoction is a common clinical oral formulation. Between molecules in solution, there exist intermolecular strong interactions to form chemical bonds or weak non-bonding interactions such as hydrogen bonds and Van der Waals forces, which hold molecules together to form "molecular aggregates". Taking the TCM Puerariae lobatae Radix (Gegen) as an example, we explored four Gegen decoctions of different concentration of 0.019, 0.038, 0.075, and 0.30 g/mL, named G-1, G-2, G-3, and G-4. In order of molecular aggregate size (diameter) the four kinds of solution were ranked G-1 < G-2 < G-3 < G-4 by Flow Cell 200S IPAC image analysis. A rabbit vertebrobasilar artery insufficiency (VBI) model was set up and they were given Gegen decoction (GGD) at a clinical dosage of 0.82 g/kg (achieved by adjusting the gastric perfusion volume depending on the concentration). The HPLC fingerprint of rabbit plasma showed that the chemical component absorption into blood in order of peak area values was G-1 < G-2 > G-3 > G-4. Puerarin and daidzin are the major constituents of Gegen, and the pharmacokinetics of G-1 and G-2 puerarin conformed with the two compartment open model, while for G-3 and G-4, they conformed to a one compartment open model. For all four GGDs the pharmacokinetics of daidzin complied with a one compartment open model. FQ-PCR assays of rabbits' vertebrobasilar arterial tissue were performed to determine the pharmacodynamic profiles of the four GGDs. GGD markedly lowered the level of AT₁R mRNA, while the AT₂R mRNA level was increased significantly vs. the VBI model, and G-2 was the most effective. In theory the dosage was equal to the blood drug concentration and should be consistent; however, the formation of molecular aggregates affects drug absorption and metabolism, and therefore influences drugs' effects. Our data provided references for the rational use of Chinese medicines in the clinic, such as the best oral preparation and decoction concentration.
Collapse
|
16
|
Online screening of nitric oxide scavengers in natural products using high performance liquid chromatography coupled with tandem diode array and fluorescence detection. J Chromatogr A 2015; 1425:106-15. [DOI: 10.1016/j.chroma.2015.10.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
|