1
|
Sethi S, Rathod VK. Recent advancements in ultrasound-assisted biomolecule extraction from prokaryotic and eukaryotic cells: a review. Prep Biochem Biotechnol 2024:1-27. [PMID: 39718248 DOI: 10.1080/10826068.2024.2436952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
With numerous advantages over conventional techniques, ultrasound-assisted extraction (UAE) has become a viable method for the effective extraction of biomolecules from prokaryotic and eukaryotic cells. The fundamentals and workings of UAE are examined in this review, focusing on current developments, including how these impact the extraction of proteins, lipids, enzymes, and other bioactive compounds. UAE not only enhances cell disruption and mass transfer, leading to improved extraction yields, but also preserves the integrity of the extracted bioactive molecules under optimized conditions, making it a preferred choice in Biochemistry and Biotechnology. Additionally, this review explores recent innovative approaches that combine ultrasound with other techniques like enzymatic digestion, supercritical CO2, deep eutectic solvents, and Three-Phase Partitioning (UA-TPP) etc, to further enhance extraction efficiency. The differences in extraction effectiveness between prokaryotic and eukaryotic cells are attributed to cellular structure and ultrasonic conditions. Overall, this review highlights UAE's promise as a viable and efficient substitute for biomolecule extraction concerning prokaryotic and eukaryotic cells while bringing up areas that need additional research and development.
Collapse
Affiliation(s)
- Santosh Sethi
- Department of Chemical Engineering, Institute of Chemical Technology (ICT), Mumbai, India
| | - V K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology (ICT), Mumbai, India
| |
Collapse
|
2
|
Quantitative Analysis of Camellia oleifera Seed Saponins and Aqueous Two-Phase Extraction and Separation. Molecules 2023; 28:molecules28052132. [PMID: 36903377 PMCID: PMC10004602 DOI: 10.3390/molecules28052132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
At present, the technology used for the extraction and purification of Camellia oleifera saponins generally has the problems of high cost and low purity, and the quantitative detection of Camellia oleifera saponins also has the problems of low sensitivity and easy interference from impurities. To solve these problems, this paper aimed to use liquid chromatography for the quantitative detection of Camellia oleifera saponins, and to adjust and optimize the related conditions. In our study, the average recovery of Camellia oleifera saponins obtained was 100.42%. The RSD of precision test was 0.41%. The RSD of the repeatability test was 0.22%. The detection limit of the liquid chromatography was 0.06 mg/L, and the quantification limit was 0.2 mg/L. In order to improve the yield and purity, the Camellia oleifera saponins were extracted from Camellia oleifera Abel. seed meal by methanol extraction. Then, the extracted Camellia oleifera saponins were extracted with an ammonium sulfate/propanol aqueous two-phase system. We optimized the purification process of formaldehyde extraction and aqueous two-phase extraction. Under the optimal purification process, the purity of Camellia oleifera saponins extracted by methanol was 36.15%, and the yield was 25.24%. The purity of Camellia oleifera saponins obtained by aqueous two-phase extraction was 83.72%. Thus, this study can provide a reference standard for rapid and efficient detection and analysis of Camellia oleifera saponins for industrial extraction and purification.
Collapse
|
3
|
Aqueous Two-Phase Systems Based on Ionic Liquids and Deep Eutectic Solvents as a Tool for the Recovery of Non-Protein Bioactive Compounds—A Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aqueous two-phase systems (ATPS) based on ionic liquids (IL) and deep eutectic solvents (DES) are ecofriendly choices and can be used to selectively separate compounds of interest, such as bioactive compounds. Bioactive compounds are nutrients and nonnutrients of animal, plant, and microbial origin that benefit the human body in addition to their classic nutritional properties. They can also be used for technical purposes in food and as active components in the chemical and pharmaceutical industries. Because they are usually present in complex matrices and low concentrations, it is necessary to separate them in order to increase their availability and stability, and ATPS is a highlighted technique for this purpose. This review demonstrates the application of ATPS based on IL and DES as a tool for recovering nonprotein bioactive compounds, considering critical factors, results and the most recent advances in this field. In addition, the review emphasizes the perspectives for expanding the use of nonconventional ATPS in purification systems, which consider the use of molecular modelling to predict experimental conditions, the investigation of diverse compounds in phase-forming systems, the establishment of optimal operational parameters, and the verification of bioactivities after the purification process.
Collapse
|
4
|
Hu Y, Tse TJ, Shim YY, Purdy SK, Kim YJ, Meda V, Reaney MJT. A review of flaxseed lignan and the extraction and refinement of secoisolariciresinol diglucoside. Crit Rev Food Sci Nutr 2022; 64:5057-5072. [PMID: 36448088 DOI: 10.1080/10408398.2022.2148627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Lignan is a class of diphenolic compounds that arise from the condensation of two phenylpropanoid moieties. Oilseed and cereal crops (e.g., flaxseed, sesame seed, wheat, barley, oats, rye, etc.) are major sources of plant lignan. Methods for commercial isolation of the lignan secoisolariciresinol diglucoside (SDG) are not well reported, as most publications describing the detection, extraction, and enrichment of SDG use methods that have not been optimized for commercial scale lignan recovery. Simply scaling up laboratory methods would require expensive infrastructure to achieve a marketable yield and reproducible product quality. Therefore, establishing standard protocols to produce SDG and its derivatives on an industrial scale is critical to decrease lignan cost and increase market opportunities. This review summarizes the human health benefits of flaxseed lignan consumption, lignan physicochemical properties, and mammalian lignan metabolism, and describes methods for detecting, extracting, and enriching flaxseed lignan. Refining and optimization of these methods could lead to the development of inexpensive lignan sources for application as an ingredient in medicines, dietary supplements, and other healthy ingredients.
Collapse
Affiliation(s)
- Yingxue Hu
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Timothy J Tse
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Youn Young Shim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Sarah K Purdy
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Venkatesh Meda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Martin J T Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Phase Behavior of Ionic Liquid-Based Aqueous Two-Phase Systems. Int J Mol Sci 2022; 23:ijms232012706. [PMID: 36293560 PMCID: PMC9604005 DOI: 10.3390/ijms232012706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
As an environmentally friendly separation medium, the ionic liquid (IL)-based aqueous two-phase system (ATPS) is attracting long-term attention from a growing number of scientists and engineers. Phase equilibrium data of IL-based ATPSs are an important basis for the design and optimization of chemical reactions and separation processes involving ILs. This article provides the recent significant progress that has been made in the field and highlights the possible directions of future developments. The effects of each component (such as salting-out agents and ILs) on the phase behavior of IL-based ATPSs are summarized and discussed in detail. We mainly focus on the phase behavior of ATPSs by using ILs, expecting to provide meaningful and valuable information that may promote further research and application.
Collapse
|
6
|
Suleman S, Schrubaji K, Filippou C, Ignatova S, Hewitson P, Huddleston J, Karda R, Waddington SN, Themis M. Rapid and inexpensive purification of adenovirus vectors using an optimised aqueous two-phase technology. J Virol Methods 2022; 299:114305. [PMID: 34626684 PMCID: PMC9757833 DOI: 10.1016/j.jviromet.2021.114305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/24/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
Adenoviruses (AdVs) are used as gene therapy vectors to treat human diseases and as vaccines against COVID-19. AdVs are produced by transfecting human embryonic kidney 239 (HEK293) or PER.C6 virus producer cells with AdV plasmid vectors or infecting these cells withcell lysates containing replication-defective AdV. Cell lysates can be purified further by caesium chloride or chromatographic protocols to research virus seed stocks (RVSS) for characterisation to high quality master virus seed stocks (MVSS) and working virus seed stocks (WVSS) before downstream production of pure, high titre AdV. Lysates are poorly infectious, block filtration columns and have limited storage capability. Aqueous two-phase systems (ATPS) are an alternative method for AdV purification that rapidly generates cleaner RVSS for characterisation to MVSS. After testing multiple ATPS formulations, an aqueous mixture of 20 % PEG 600 and 20 % (NH4)2SO4 (w/w) was found most effective for AdV partitioning, producing up to 97+3% yield of high-titre virus that was devoid of aggregates both effective in vitro and in vivo with no observable cytotoxicity. Importantly, AdV preparations stored at -20 °C or 4 °C show negligible loss of titre and are suitable for downstream processing to clinical grade to support the need for AdV vaccines.
Collapse
Affiliation(s)
- Saqlain Suleman
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Kuteiba Schrubaji
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Chrysovalanto Filippou
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Svetlana Ignatova
- Department of Chemical Engineering, College of Engineering, Design & Physical Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Peter Hewitson
- Department of Chemical Engineering, College of Engineering, Design & Physical Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Jonathan Huddleston
- Department of Chemical Engineering, College of Engineering, Design & Physical Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Rajvinder Karda
- Gene Transfer Technology, EGA Institute for Women’s Health, University College London, London, WC1E 6HX, UK
| | - Simon N. Waddington
- Gene Transfer Technology, EGA Institute for Women’s Health, University College London, London, WC1E 6HX, UK,MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Michael Themis
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK; Division of Ecology and Evolution, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Optimization the extraction of anthocyanins from blueberry residue by dual-aqueous phase method and cell damage protection study. Food Sci Biotechnol 2021; 30:1709-1719. [PMID: 34925945 DOI: 10.1007/s10068-021-00994-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
Blueberry residue is usually discarded as waste, but has a high anthocyanins content. The extraction method of anthocyanins from blueberry residue with ultrasonic assisted dual-aqueous phase system was optimized. In terms of the principle of central group and design (CCD) experimental design, three-factor and five-level response surface analysis was adopted to optimize the extraction conditions with the extraction rate of anthocyanins. The optimum extraction rate of anthocyanin was 12.372 ± 0.078 mg/g. Anthocyanin extract could protect the pBR322 DNA oxidative damage induced by Fenton reagent, increase the superoxide dismutase(SOD) and glutathione peroxidase (GSH-Px) enzyme activities, and decrease the H2O2-induced cell apoptosis of human normal liver cell (LO2 cell). The study indicates that the extraction rate of anthocyanin was increased by optimized ultrasonic assisted dual-aqueous phase system. The anthocyanin extract could protect DNA and LO2 cell from oxidative damage.
Collapse
|
8
|
Wang Y, Wang S, Liu L. Extraction of geniposidic acid and aucubin employing aqueous two-phase systems comprising ionic liquids and salts. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Ji S, Wang Y, Shao X, Zhu C, Lin Y, Gao S, Tang D. Extraction and purification of triterpenoid saponins from licorice by ionic liquid based extraction combined with in situ alkaline aqueous biphasic systems. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Otu PNY, Osae R, Abdullateef MT, Cunshan Z, Xiaojie Y, Azumah BK. Characterization of
Moringa oleifera
leaf polysaccharides extracted by coupling ionic liquid separation system with ultrasound irradiation. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Phyllis Naa Yarley Otu
- School of Food and Biological EngineeringJiangsu University Zhenjiang People's Republic of China
- School of Applied SciencesAccra Technical University Accra Ghana
| | - Richard Osae
- School of Food and Biological EngineeringJiangsu University Zhenjiang People's Republic of China
| | | | - Zhou Cunshan
- School of Food and Biological EngineeringJiangsu University Zhenjiang People's Republic of China
| | - Yu Xiaojie
- School of Food and Biological EngineeringJiangsu University Zhenjiang People's Republic of China
| | | |
Collapse
|
11
|
Recent advances of modern sample preparation techniques for traditional Chinese medicines. J Chromatogr A 2019; 1606:460377. [DOI: 10.1016/j.chroma.2019.460377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
|
12
|
|
13
|
Ionic Liquids Enhanced Alkynyl Schiff Bases Derivatives of Fipronil Synthesis and Their Cytotoxicity Studies. Molecules 2019; 24:molecules24183223. [PMID: 31487951 PMCID: PMC6767227 DOI: 10.3390/molecules24183223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/01/2022] Open
Abstract
To obtain highly selective toxic derivatives of fipronil, a series of Schiff bases with an alkynyl group (3a–3k) were designed and synthesized from 4-ethynylbenzaldehyde (2) and 4-substituted 5-amino-N-arylpyrazole (1a–1k) via a nucleophilic addition elimination reaction in ionic liquids. Utilization of ionic liquids was demonstrated to endow the yield of each compound beyond 50%, which was enhanced over 1.5 times of the synthetic productive rates comparing the conventional method by which longer reactive time was consumed. The derivatives were characterized via nuclear magnetic resonance hydrogen spectroscopy (1H-NMR), carbon-13 nuclear magnetic resonance spectroscopy (13C-NMR), and electrospray ionization high resolution mass spectrometry (ESI-HRMS). The cytotoxicity of these derivatives on Trichoplusia ni (Hi-5) cell and Spodoptera litura cell (SL cell) was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) bioassays. The results indicated that several compounds had potential cytotoxicity on Hi-5 cell, especially a 4-ethyl substituted alkynyl Schiff base derivative (3f) that was demonstrated to possess high selective toxicity to the Hi-5 cell than the SL cell. In addition, 3f exhibited comparable toxic activity to commercial fipronil on a Hi-5 cell while a little toxic effect on the SL cell, which satisfied the expectation for selective toxicity screening.
Collapse
|
14
|
Barrulas RV, Paiva TG, Corvo MC. NMR methodology for a rational selection of ionic liquids: extracting polyphenols. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
McQueen L, Lai D. Ionic Liquid Aqueous Two-Phase Systems From a Pharmaceutical Perspective. Front Chem 2019; 7:135. [PMID: 30931300 PMCID: PMC6428778 DOI: 10.3389/fchem.2019.00135] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/21/2019] [Indexed: 12/30/2022] Open
Abstract
Aqueous Two-Phase Systems (ATPSs) have been extensively studied for their ability to simultaneously separate and purify active pharmaceutical ingredients (APIs) and key intermediates with high yields and high purity. Depending on the ATPS composition, it can be adapted for the separation and purification of cells, nucleic acids, proteins, antibodies, and small molecules. This method has been shown to be scalable, allowing it to be used in the milliliter scale for early drug development to thousands of liters in manufacture for commercial supply. The benefits of ATPS in pharmaceutical separations is increasingly being recognized and investigated by larger pharmaceutical companies. ATPSs use identical instrumentation and similar methodology, therefore a change from traditional methods has a theoretical low barrier of adoption. The cost of typical components used to form an ATPS at large scale, particularly that of polymer-polymer systems, is the primary challenge to widespread use across industry. However, there are a few polymer-salt examples where the increase in yield at commercial scale justifies the cost of using ATPSs for macromolecule purification. More recently, Ionic Liquids (ILs) have been used for ATPS separations that is more sustainable as a solvent, and more economical than polymers often used in ATPSs for small molecule applications. Such IL-ATPSs still retain much of the attractive characteristics such as customizable chemical and physical properties, stability, safety, and most importantly, can provide higher yield separations of organic compounds, and efficient solvent recycling to lower financial and environmental costs of large scale manufacturing.
Collapse
Affiliation(s)
- Lisa McQueen
- Drug Product Design and Development, GlaxoSmithKline, Collegeville, PA, United States
| | - David Lai
- Product and Process Engineering, GlaxoSmithKline, Collegeville, PA, United States.,Advanced Manufacturing Technologies, GlaxoSmithKline, Collegeville, PA, United States
| |
Collapse
|
16
|
Ding S, Sun Y, Chen H, Xu C, Hu Y. An ultrasonic-ionic liquid process for the efficient acid catalyzed hydrolysis of feather keratin. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Jiang Y, Li D, Ma X, Jiang F, He Q, Qiu S, Li Y, Wang G. Ionic Liquid⁻Ultrasound-Based Extraction of Biflavonoids from Selaginella helvetica and Investigation of Their Antioxidant Activity. Molecules 2018; 23:E3284. [PMID: 30544984 PMCID: PMC6321469 DOI: 10.3390/molecules23123284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/03/2018] [Accepted: 12/08/2018] [Indexed: 12/23/2022] Open
Abstract
As a new and green solvent, ionic liquids (ILs) have received more attention during the green extraction and separation process for natural medicines. In this paper, IL-ultrasound-assisted extraction (IL-UAE) of total biflavonoids (TBFs) from Selaginella helvetica was firstly developed, and different ILs were employed and compared. Based on single-factor experiment, solid⁻liquid ratio (1:10⁻1:14 g/mL), IL concentration (0.6⁻1.0 mmol/mL), and extract temperature (40⁻60 °C) were further explored, according to response surface methodology (RSM), with TBF yields as the index. Moreover, antioxidant activity of TBF extract was analyzed by four methods, i.e., 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzth-iazoline-6-sulphonate (ABTS) free radical scavenging assay, ferric ion reducing power assay, and chelation of ferrous ions assay. The results indicated that [C₆mim]PF₆ had a high selectivity and efficiency. Moreover, important parameters for the extraction process were investigated and optimized. Through parameter optimization (0.8 mmol/L, 250 W, 40 min, 1:12.7 g/mL, and 47 °C), a yield of 18.69 mg/g biflavonoids was obtained from the extract of S. helvetica. Compared with ethanol-UAE, heat-reflux extraction, Soxhlet extraction, and percolation extraction, IL-UAE could not only obtain higher yield in a shorter time, but also reduce the solvent consumption. In addition, TBF extract showed potential antioxidant activity based on the above four antioxidant methods. In short, IL-UAE was first employed to develop a novel and green extraction method for TBF content, and this experiment provides valuable references for further utilization of S. helvetica.
Collapse
Affiliation(s)
- Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China.
| | - Dan Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China.
| | - Xiankui Ma
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China.
| | - Fengqin Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China.
| | - Qun He
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China.
| | - Shaoliang Qiu
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China.
| | - Yan Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China.
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
18
|
Kou X, Ke Y, Wang X, Rahman MRT, Xie Y, Chen S, Wang H. Simultaneous extraction of hydrophobic and hydrophilic bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chem 2018; 257:223-229. [PMID: 29622202 DOI: 10.1016/j.foodchem.2018.02.125] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 12/30/2022]
Abstract
Ginger is a commonly used spice around the world. Its bioactive compounds contain hydrophobic gingerols and hydrophilic polysaccharides. Huge physiochemical differences between these compounds and the thermal instability of gingerols impede fast and effective extraction of them using conventional methods. In this research, ionic liquid-based ultrasonic-assisted extraction (ILUAE) was applied to simultaneously extract gingerols and polysaccharides from ginger. Parameters influencing the recovery of gingerols were ionic liquid type, ionic liquid concentration, solid/liquid ratio, ultrasonic power, extraction temperature and extraction time. Compared with traditional methods, LUAE significantly increased the yield of total gingerols and shortened the extraction time. Meanwhile, ginger polysaccharides recovery reached up to 92.82% with ILUAE. Our results indicated that ILUAE has a remarkable capacity to extract gingerols and ginger polysaccharides in one step. Therefore, ILUAE represents a promising technology for simultaneous extraction of hydrophilic and hydrophobic bioactive compounds from plant materials.
Collapse
Affiliation(s)
- Xingran Kou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuqian Ke
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaoqi Wang
- Department of Food Science, Rutgers University, New Brunswick 08901, United States
| | - Md Ramim Tanver Rahman
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuzhang Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Shangwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Hongxin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; National Engineering Research Center for Functional Food, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
19
|
Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res Int 2018; 108:309-330. [DOI: 10.1016/j.foodres.2018.03.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 12/21/2022]
|
20
|
Li Q, Wu S, Wang C, Yi Y, Zhou W, Wang H, Li F, Tan Z. Ultrasonic-assisted extraction of sinomenine from Sinomenium acutum using magnetic ionic liquids coupled with further purification by reversed micellar extraction. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Svinyarov I, Bogdanov MG. Ionic liquid-assisted micellar extraction for the quantitative determination of sesquiterpenic acids in Valeriana officinalis L. (Caprifoliaceae). SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1295995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ivan Svinyarov
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Milen G. Bogdanov
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| |
Collapse
|
22
|
A novel combined process for extracting, separating and recovering flavonoids from flos sophorae immaturus. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.08.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Ultrasound in Combination with Ionic Liquids: Studied Applications and Perspectives. Top Curr Chem (Cham) 2016; 374:51. [PMID: 27573403 DOI: 10.1007/s41061-016-0055-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/12/2016] [Indexed: 01/23/2023]
Abstract
Ionic liquids (ILs) as reaction media, and sonochemistry (US) as activation method, represent separately unconventional approaches to reaction chemistry that, in many cases, generate improvements in yield, rate and selectivity compared to traditional chemistry, or even induce a change in the mechanisms or expected products. Recently, these two technologies have been combined in a range of different applications, demonstrating very significant and occasionally surprising synergetic effects. In this book chapter, the advantages and limitations of the IL/US combination in different chemical applications are critically reviewed in order to understand how, and in which respects, it could become an essential tool of sustainable chemistry in the future. Fundamental aspects and practical considerations of the combination are discussed to better control and demonstrate the brought synergetic effects.
Collapse
|
24
|
Tan T, Lai CJS, OuYang H, He MZ, Feng Y. Ionic liquid-based ultrasound-assisted extraction and aqueous two-phase system for analysis of caffeoylquinic acids from Flos Lonicerae Japonicae. J Pharm Biomed Anal 2015; 120:134-41. [PMID: 26730510 DOI: 10.1016/j.jpba.2015.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 01/30/2023]
Abstract
In this work, an ionic liquid-based ultrasonic-assisted extraction (ILUAE) method was developed to extract caffeoylquinic acids (CQAs) from Flos Lonicerae Japonicae (FLJ). ILUAE parameters were optimized by response surface methodology, including IL concentration, ultrasonic time, and liquid-solid ratio. Optimized ILUAE approach gained the highest extraction yields of 28.53, 18.21, 3.84mg/g for 3-O-caffeoylquinic acid (C1), 3,5-di-O-caffeoylquinic acid (C2), 3,4-di-O-caffeoylquinic acid (C3), respectively. C1-C3 are the three most abundant CQAs compounds in FLJ. The method showed comparable extraction yield and shorter extraction time compared with conventional extraction techniques. Subsequently, an aqueous two-phase system (ATPS) was applied in extraction solutions. Two trace CQAs, 5-O-caffeoylquinic acid (C4) and 4,5-di-O-caffeoylquinic acid (C5), were significantly enriched with signal to noise values increasing from less than 10 to higher than 1475. The results indicated that ILUAE and ATPS are efficient and environmentally-friendly sample extraction and enrichment techniques for CQAs from herbal medicines.
Collapse
Affiliation(s)
- Ting Tan
- Jiangxi University of Chinese Traditional Medicine, The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine (Jiangxi University of Chinese Traditional Medicine), 56 Yangming Road, Nanchang, Jiangxi 330006, PR China
| | - Chang-Jiang-Sheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui OuYang
- Jiangxi University of Chinese Traditional Medicine, The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine (Jiangxi University of Chinese Traditional Medicine), 56 Yangming Road, Nanchang, Jiangxi 330006, PR China
| | - Ming-Zhen He
- Jiangxi University of Chinese Traditional Medicine, The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine (Jiangxi University of Chinese Traditional Medicine), 56 Yangming Road, Nanchang, Jiangxi 330006, PR China
| | - Yulin Feng
- Jiangxi University of Chinese Traditional Medicine, The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine (Jiangxi University of Chinese Traditional Medicine), 56 Yangming Road, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
25
|
Ionic Liquid-Based Aqueous Biphasic Systems—A Facile Approach for Ionic Liquid Regeneration from Crude Plant Extracts. Processes (Basel) 2015. [DOI: 10.3390/pr3040769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|