1
|
Maldonado J, Oliva A, Guzmán L, Molinari A, Acevedo W. Synthesis, Anticancer Activity, and Docking Studies of Novel Hydroquinone-Chalcone-Pyrazoline Hybrid Derivatives. Int J Mol Sci 2024; 25:7281. [PMID: 39000394 PMCID: PMC11242894 DOI: 10.3390/ijms25137281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
A novel series of antitumor hybrids was synthesized using 1,4-benzohydroquinone and chalcone, furane, or pyrazoline scaffolds. This were achieved through isosteric substitution of the aryl group of the chalcone β-carbon with the furanyl moiety and structural modification of the α,β-unsaturated carbonyl system. The potential antitumor activity of these hybrids was evaluated in vivo on MCF-7 breast adenocarcinoma and HT-29 colorectal carcinoma cells, demonstrating cytotoxic activity with IC50 values ranging from 28.8 to 124.6 µM. The incorporation of furan and pyrazoline groups significantly enhanced antiproliferative properties compared to their analogues and precursors (VII-X), which were inactive against both neoplastic cell lines. Compounds 4, 5, and 6 exhibited enhanced cytotoxicity against both cell lines, whereas compound 8 showed higher cytotoxic activity against HT-29 cells. Molecular docking studies revealed superior free-energy values (ΔGbin) for carcinogenic pathway-involved kinase proteins, with our in silico data suggesting that these derivatives could be promising chemotherapeutic agents targeting kinase pathways. Among all the synthesized PIBHQ compounds, derivatives 7 and 8 exhibited the best drug-likeness properties, with values of 0.53 and 0.83, respectively. ADME results collectively suggest that most of these compounds hold promise as potential candidates for preclinical assays.
Collapse
Affiliation(s)
- Javier Maldonado
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile
| | - Alfonso Oliva
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile
| | - Leda Guzmán
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile
| | - Aurora Molinari
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile
| |
Collapse
|
2
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
3
|
Maldonado J, Oliva A, Molinari A, Acevedo W. 2-Acetyl-5,8-dihydro-6-(4-methyl-3-pentenyl)-1,4-naphthohydroquinone-Derived Chalcones as Potential Anticancer Agents. Molecules 2023; 28:7172. [PMID: 37894650 PMCID: PMC10609043 DOI: 10.3390/molecules28207172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Based on previous results with benzoindazolequinone (BIZQ) and 3-methylnaphtho [2,3-d]isoxazole-4,9-quinone (NIQ) derivatives, a novel series of chalcone-1,4-naphthoquinone/benzohydroquinone (CNQ and CBHQ) compounds were synthesized from 2-acetyl-5,8-dihydro-6-(4-methyl-3-pentenyl)-1,4-naphthohydroquinone. Their structures were elucidated via spectroscopy. These hybrids were assessed in vivo for their antiproliferative activity on MCF-7 breast adenocarcinoma and HT-29 colorectal carcinoma cells, revealing cytotoxicity with IC50 values between 6.0 and 110.5 µM. CBHQ hybrids 5e and 5f displayed enhanced cytotoxicity against both cell lines, whereas CNQ hybrids 6a-c and 6e exhibited higher cytotoxic activity against MCF-7 cells. Docking studies showed strong binding energies (ΔGbin) of CNQs to kinase proteins involved in carcinogenic pathways. Furthermore, our in silico analysis of drug absorption, distribution, metabolism, and excretion (ADME) properties suggests their potential as candidates for cancer pre-clinical assays.
Collapse
Affiliation(s)
| | | | - Aurora Molinari
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile; (J.M.); (A.O.)
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile; (J.M.); (A.O.)
| |
Collapse
|
4
|
Maldonado J, Acevedo W, Molinari A, Oliva A, Knox M, San Feliciano A. Synthesis, in vitro evaluation and molecular docking studies of novel naphthoisoxazolequinone carboxamide hybrids as potential antitumor agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2095410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Javier Maldonado
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Aurora Molinari
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alfonso Oliva
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcela Knox
- Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Arturo San Feliciano
- Departamento de Ciencias Farmacéuticas-Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL, Universidad de Salamanca, Salamanca, Spain
- Programa de Pós-Graduaçao em Ciências Farmacêuticas, Universidade Do Vale Do Itajaí, UNIVALI, Itajaí, SC, Brazil
| |
Collapse
|
5
|
Singh Y, Sanjay KS, Pradeep Kumar, Singh S, Thareja S. Molecular dynamics and 3D-QSAR studies on indazole derivatives as HIF-1α inhibitors. J Biomol Struct Dyn 2022; 41:3524-3541. [PMID: 35318905 DOI: 10.1080/07391102.2022.2051745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hypoxia-inducible factor (HIF) is a transcriptional factor which plays a crucial role in tumour metastasis thereby responsible for development of various forms of cancers. Indazole derivatives have been reported in the literature as potent HIF-1α inhibitor via interaction with key residues of the HIF-1α active site. Taking into consideration the role HIF-1α in cancer and potency of indazole derivative against HIF-1α; it was considered of interest to correlate structural features of known indazole derivatives with specified HIF-1α inhibitory activity to map pharmacophoric features through Three-dimensional quantitative structural activity relationship (3D-QSAR) and pharmacophore mapping. Field and Gaussian based 3D-QSAR studies were performed to realize the variables influencing the inhibitory potency of HIF-1α inhibitors. Field and Gaussian- based 3D-QSAR models were validated through various statistical measures generated by partial least square (PLS). The steric and electrostatic maps generated for both 3D-QSAR provide a structural framework for designing new inhibitors. Further; 3D-maps were also helpful in understanding variability in the activity of the compounds. Pharmacophore mapping also generates a common five-point pharmacophore hypothesis (A1D2R3R4R5_4) which can be employed in combination with 3D-contour maps to design potent HIF-1α inhibitors. Molecular docking and molecular dynamics (MD) simulation of the most potent compound 39 showed good binding efficiency and was found to be quite stable in the active site of the HIF-1α protein. The developed 3D-QSAR models; pharmacophore modelling; molecular docking studies along with the MD simulation analysis may be employed to design lead molecule as selective HIF-1α inhibitors for the treatment of Cancer.
Collapse
Affiliation(s)
- Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Ghudda, Bathinda, India
| | - Kulkarni Swanand Sanjay
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Ghudda, Bathinda, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Ghudda, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Ghudda, Bathinda, India
| |
Collapse
|
6
|
Molinari A, Oliva A, Arismendi-Macuer M, Guzmán L, Acevedo W, Aguayo D, Vinet R, San Feliciano A. Antiproliferative Benzoindazolequinones as Potential Cyclooxygenase-2 Inhibitors. Molecules 2019; 24:molecules24122261. [PMID: 31216654 PMCID: PMC6630654 DOI: 10.3390/molecules24122261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/06/2019] [Accepted: 06/15/2019] [Indexed: 01/14/2023] Open
Abstract
Quinones and nitrogen heterocyclic moieties have been recognized as important pharmacophores in the development of antitumor agents. This study aimed to establish whether there was any correlation between the in silico predicted parameters and the in vitro antiproliferative activity of a family of benzoindazolequinones (BIZQs), and to evaluate overexpressed proteins in human cancer cells as potential biomolecular targets of these compounds. For this purpose, this study was carried out using KATO-III and MCF-7 cell lines as in vitro models. Docking results showed that these BIZQs present better binding energies (ΔGbin) values for cyclooxygenase-2 (COX-2) than for other cancer-related proteins. The predicted ∆Gbin values of these BIZQs, classified in three series, positively correlated with IC50 measured in both cell lines (KATO-III: 0.72, 0.41, and 0.90; MCF-7: 0.79, 0.55, and 0.87 for Series I, II, and III, respectively). The results also indicated that compounds 2a, 2c, 6g, and 6k are the most prominent BIZQs, because they showed better IC50 and ∆Gbin values than the other derivatives. In silico drug absorption, distribution, metabolism, and excretion (ADME) properties of the three series were also analyzed and showed that several BIZQs could be selected as potential candidates for cancer pre-clinical assays.
Collapse
Affiliation(s)
- Aurora Molinari
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile.
| | - Alfonso Oliva
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile.
| | - Marlene Arismendi-Macuer
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile.
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Nacional Andrés Bello, Santiago 8370146, Chile.
| | - Leda Guzmán
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile.
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile.
| | - Daniel Aguayo
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Nacional Andrés Bello, Santiago 8370146, Chile.
| | - Raúl Vinet
- Laboratorio de Farmacología, Centro de Micro Bioinnovación, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile.
- Centro Regional de Estudios en Alimentos Saludables (CREAS), Valparaíso 2362696, Chile.
| | - Arturo San Feliciano
- Departamento de Ciencias Farmacéuticas-Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
7
|
Janardhanan JC, Mishra RK, Das G, Sini S, Jayamurthy P, Suresh CH, Praveen VK, Manoj N, Babu BP. Functionalizable 1H
-Indazoles by Palladium Catalyzed Aza-Nenitzescu Reaction: Pharmacophores to Donor-Acceptor Type Multi-Luminescent Fluorophores. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jith C. Janardhanan
- Department of Applied Chemistry; Cochin University of Science and Technology (CUSAT); Cochin 682022 India
| | - Rakesh K. Mishra
- Chemical Science and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvanathapuram 695019 India
- Department of Sciences and Humanities; National Institute of Technology, Uttarakhand (NITUK); Srinagar (Garhwal) 246174 India
| | - Gourab Das
- Chemical Science and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvanathapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-NIIST Campus; Thiruvanathapuram 695019 India
| | - Suresh Sini
- Agroprocessing and Technology Division; CSIR-NIIST; Thiruvanathapuram 695019 India
| | - Purushothaman Jayamurthy
- Academy of Scientific and Innovative Research (AcSIR); CSIR-NIIST Campus; Thiruvanathapuram 695019 India
- Agroprocessing and Technology Division; CSIR-NIIST; Thiruvanathapuram 695019 India
| | - Cherumuttathu H. Suresh
- Chemical Science and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvanathapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-NIIST Campus; Thiruvanathapuram 695019 India
| | - Vakayil K. Praveen
- Chemical Science and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvanathapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-NIIST Campus; Thiruvanathapuram 695019 India
| | - Narayanapillai Manoj
- Department of Applied Chemistry; Cochin University of Science and Technology (CUSAT); Cochin 682022 India
| | - Beneesh P. Babu
- Department of Chemistry; National Institute of Technology, Karnataka (NITK); Surathkal 575025 India
| |
Collapse
|
8
|
Dikmen G. Experimental nuclear magnetic resonance spectral assignments, 1 H/ 13 C GIAO calculations, molecular structure and molecular resonance states of 4-Methyl-1H-Indazole-5-Boronic acid. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|