1
|
Mishra S, Mishra Y, Kumar A. Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03667-7. [PMID: 39797987 DOI: 10.1007/s00210-024-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management. Marine organisms, including fungi, algae, cone snails, sponges, soft corals, tunicates, and fish, produce a diverse range of secondary metabolites with significant pharmacological properties. These include peptides (e.g., conopeptides, piscidin 1), non-peptides (e.g., guanidinium toxins, astaxanthin, docosahexaenoic acid, fucoidan, apigenin, fumagillin, aaptamine, flexibilide, excavatolide B, capnellenes, austrasulfones, lemnalol), and crude extracts (e.g., Spirulina platensis, Dunaliella salina, Cliothosa aurivilli). These compounds exhibit diverse mechanisms of action, such as modulating ion channels (e.g., transient receptor potential channels, voltage-gated sodium, calcium, and potassium channels, and G protein-coupled inwardly rectifying potassium channels), interacting with cell-surface receptors (e.g., nicotinic acetylcholine, NMDA, kainate, GABAB, and neurotensin receptors), inhibiting norepinephrine transporters, reducing oxidative stress, and attenuating neuroinflammation. These effects collectively contribute to alleviating nerve degeneration and symptoms of neuropathic pain, including hyperalgesia, allodynia, and associated psychomotor disturbances. Marine-derived bioactive compounds represent promising alternatives to conventional neuropathic pain treatments, to advance their development and assess their integration into neuropathic pain management strategies.
Collapse
Affiliation(s)
- Swapnil Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
Annaz H, El Fakhouri K, Ben Bakrim W, Mahdi I, El Bouhssini M, Sobeh M. Bergamotenes: A comprehensive compile of their natural occurrence, biosynthesis, toxicity, therapeutic merits and agricultural applications. Crit Rev Food Sci Nutr 2024; 64:7343-7362. [PMID: 36876517 DOI: 10.1080/10408398.2023.2184766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Sesquiterpenoids constitute the largest subgroup of terpenoids that have numerous applications in pharmaceutical, flavor, and fragrance industries as well as biofuels. Bergamotenes, a type of bicyclic sesquiterpenes, are found in plants, insects, and fungi with α-trans-bergamotene as the most abundant compound. Bergamotenes and their related structures (Bergamotane sesquiterpenoids) have been shown to possess diverse biological activities such as antioxidant, anti-inflammatory, immunosuppressive, cytotoxic, antimicrobial, antidiabetic, and insecticidal effects. However, studies on their biotechnological potential are still limited. This review compiles the characteristics of bergamotenes and their related structures in terms of occurrence, biosynthesis pathways, and biological activities. It further discusses their functionalities and potential applications in pharmaceutical, nutraceuticals, cosmeceuticals, and pest management sectors. This review also opens novel perspectives in identifying and harnessing bergamotenes for pharmaceutical and agricultural purposes.
Collapse
Affiliation(s)
- Hassan Annaz
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Ismail Mahdi
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
3
|
Ying Z, Li XM, Yang SQ, Li HL, Li X, Wang BG, Meng LH. Antifungal Pseuboyenes A-J, Bergamotene-Derived Sesquiterpenoids from a Cold-Seep-Derived Pseudallescheria boydii. JOURNAL OF NATURAL PRODUCTS 2024; 87:1347-1357. [PMID: 38701173 DOI: 10.1021/acs.jnatprod.3c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A chemical investigation of a cold-seep-sediment-derived fungus, Pseudallescheria boydii CS-793, resulted in characterization of 10 novel bergamotene-derived sesquiterpenoids, pseuboyenes A-J (1-10). Their structures were elucidated by spectroscopic and X-ray crystallographic analyses as well as using the modified Mosher's method. Compound 1 represents the first example of a β-bergamotene containing a 6-oxobicyclo[3.2.1]octane nucleus adducted with a methyl lactate unit, while 8-10 involve a skeletal rearrangement from bergamotene. Compounds 2-5 showed significant antifungal activities against Colletotrichum gloeosporioides Penz. and Fusarium oxysporum with MICs ranging from 0.5 to 8 μg/mL. Compound 4 exhibited an in vitro anti-F. proliferatum effect with an EC50 value of 1.0 μg/mL.
Collapse
Affiliation(s)
- Zhen Ying
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Hong-Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, People's Republic of China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, People's Republic of China
| |
Collapse
|
4
|
Ding H, Wang JP, Deng SP, Gan JL, Li BX, Yao LL, Zhang SQ, Cai L, Ding ZT. A new sesquiterpenoid from the aconitum-derived fungus Aspergillus fumigatus M1. Nat Prod Res 2023; 37:3443-3451. [PMID: 35609146 DOI: 10.1080/14786419.2022.2080207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
A new bergamotane sesquiterpenoid, fumigatanol (1), along with nine known compounds (2-10) were isolated from the Aconitum-derived fungus Aspergillus fumigatus M1. Their structures were established on the basis of extensive spectroscopic analyses, ECD experiment and NMR computational method. Antibacterial and cytotoxic activities of compound 1 were evaluated and no obvious antibacterial and cytotoxic activities were observed at concentrations of 256 μg/mL and 40.00 μM, respectively.
Collapse
Affiliation(s)
- Hao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Jia-Peng Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Si-Ping Deng
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Jun-Li Gan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Bing-Xian Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Ling-Ling Yao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Sheng-Qi Zhang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
- College of Pharmacy, Dali University, Dali, P.R. China
| |
Collapse
|
5
|
Jiang Y, Chen C, Zhu H, Li Q, Mao L, Liao H, Nan Y, Wang Z, Zhou H, Zhou Q, Zhang Y. An indole diketopiperazine alkaloid and a bisabolane sesquiterpenoid with unprecedented skeletons from Aspergillus fumigatus. Org Biomol Chem 2023; 21:2236-2242. [PMID: 36815264 DOI: 10.1039/d2ob02220f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Fumitryprostatin A (1), the first example of an indole diketopiperazine alkaloid with a tricyclic 5/6/5 skeleton characterized by a dipyrrolo[1,2-a:1',2'-d]pyrazine-5,10-dione ring system decorated with a prenylated indole moiety, and fuminoid A (2), a sesquiterpenoid with a bicyclo[3.2.1]octane ring featuring a novel carbon skeleton via the transformation of the methyl, were isolated from the fungus Aspergillus fumigatus along with six known diketopiperazine alkaloids. The structure with the absolute configuration of 1 was determined based on spectroscopic analyses and X-ray crystallographic analysis, while the configuration of 2 was assigned tentatively by 13C NMR data with DP4+ probability analyses and ECD calculations. A plausible biosynthetic pathway for 1 was proposed starting from L-Trp and L-Pro via normal indole diketopiperazine. Compound 1 exhibited moderate cytotoxic activity with an IC50 value of 14.6 μM, while compound 8 exhibited moderate immunosuppressive activity in vitro.
Collapse
Affiliation(s)
- Yaqin Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lina Mao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hong Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yiyang Nan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhiping Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Hongjian Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Fungal Bergamotane Sesquiterpenoids-Potential Metabolites: Sources, Bioactivities, and Biosynthesis. Mar Drugs 2022; 20:md20120771. [PMID: 36547918 PMCID: PMC9787638 DOI: 10.3390/md20120771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The marine environment represents the largest ecosystem on the Earth's surface. Marine-derived fungi are of remarkable importance as they are a promising pool of diverse classes of bioactive metabolites. Bergamotane sesquiterpenoids are an uncommon class of terpenoids. They possess diverse biological properties, such as plant growth regulation, phototoxic, antimicrobial, anti-HIV, cytotoxic, pancreatic lipase inhibition, antidiabetic, anti-inflammatory, and immunosuppressive traits. The current work compiles the reported bergamotane sesquiterpenoids from fungal sources in the period ranging from 1958 to June 2022. A total of 97 compounds from various fungal species were included. Among these metabolites, 38 compounds were derived from fungi isolated from different marine sources. Furthermore, the biological activities, structural characterization, and biosynthesis of the compounds are also discussed. The summary in this work provides a detailed overview of the reported knowledge of fungal bergamotane sesquiterpenoids. Moreover, this in-depth and complete review could provide new insights for developing and discovering new valuable pharmaceutical agents from these natural metabolites.
Collapse
|
7
|
Brasilterpenes A-E, Bergamotane Sesquiterpenoid Derivatives with Hypoglycemic Activity from the Deep Sea-Derived Fungus Paraconiothyrium brasiliense HDN15-135. Mar Drugs 2022; 20:md20050338. [PMID: 35621989 PMCID: PMC9143538 DOI: 10.3390/md20050338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023] Open
Abstract
Five bergamotane sesquiterpenoid derivatives, brasilterpenes A-E (1-5), bearing an unreported spiral 6/4/5 tricyclic ring system, were isolated from the deep sea-derived ascomycete fungus Paraconiothyrium brasiliense HDN15-135. Their structures, including absolute configurations, were established by extensive spectroscopic methods complemented by single-crystal X-ray diffraction analyses, electronic circular dichroism (ECD), and density-functional theory (DFT) calculations of nuclear magnetic resonance (NMR) data including DP4+ analysis. The hypoglycemic activity of these compounds was assessed using a diabetic zebrafish model. Brasilterpenes A (1) and C (3) significantly reduced free blood glucose in hyperglycemic zebrafish in vivo by improving insulin sensitivity and suppressing gluconeogenesis. Moreover, the hypoglycemic activity of compound 3 was comparable to the positive control, anti-diabetes drug rosiglitazone. These results suggested brasilterpene C (3) had promising anti-diabetes potential.
Collapse
|
8
|
Zhao WY, Yi J, Chang YB, Sun CP, Ma XC. Recent studies on terpenoids in Aspergillus fungi: Chemical diversity, biosynthesis, and bioactivity. PHYTOCHEMISTRY 2022; 193:113011. [PMID: 34775270 DOI: 10.1016/j.phytochem.2021.113011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Metabolites from fungi are a major source of natural small molecule drugs in addition to plants, while fungal derived terpenoids have been confirmed to have great potentials in many diseases. Aspergillus fungi are distributed in every corner of the earth, and their terpenoid metabolites exhibit promising diversity in term of both their chemistry and bioactivity. This review attempted to provide timely and comprehensive coverage of chemical, biosynthesis, and biological studies on terpenoids discovered from the genus Aspergillus, including mono-, sesqui-, di-, sester-, tri-, and meroterpenoids, in the last decade. The structural characteristics, biosynthesis, and pharmacological activities of 288 terpenoids were introduced.
Collapse
Affiliation(s)
- Wen-Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jing Yi
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yi-Bo Chang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China; Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Dai Q, Zhang FL, Feng T. Sesquiterpenoids Specially Produced by Fungi: Structures, Biological Activities, Chemical and Biosynthesis (2015-2020). J Fungi (Basel) 2021; 7:1026. [PMID: 34947008 PMCID: PMC8705726 DOI: 10.3390/jof7121026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022] Open
Abstract
Fungi are widely distributed in the terrestrial environment, freshwater, and marine habitat. Only approximately 100,000 of these have been classified although there are about 5.1 million characteristic fungi all over the world. These eukaryotic microbes produce specialized metabolites and participate in a variety of ecological functions, such as quorum detection, chemical defense, allelopathy, and maintenance of symbiosis. Fungi therefore remain an important resource for the screening and discovery of biologically active natural products. Sesquiterpenoids are arguably the richest natural products from plants and micro-organisms. The rearrangement of the 15 high-ductility carbons gave rise to a large number of different skeletons. At the same time, abundant structural variations lead to a diversification of biological activity. This review examines the isolation, structural determination, bioactivities, and synthesis of sesquiterpenoids that were specially produced by fungi over the past five years (2015-2020).
Collapse
Affiliation(s)
| | | | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.)
| |
Collapse
|
10
|
Metabolites of Marine Sediment-Derived Fungi: Actual Trends of Biological Activity Studies. Mar Drugs 2021; 19:md19020088. [PMID: 33557071 PMCID: PMC7913796 DOI: 10.3390/md19020088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Marine sediments are characterized by intense degradation of sedimenting organic matter in the water column and near surface sediments, combined with characteristically low temperatures and elevated pressures. Fungi are less represented in the microbial communities of sediments than bacteria and archaea and their relationships are competitive. This results in wide variety of secondary metabolites produced by marine sediment-derived fungi both for environmental adaptation and for interspecies interactions. Earlier marine fungal metabolites were investigated mainly for their antibacterial and antifungal activities, but now also as anticancer and cytoprotective drug candidates. This review aims to describe low-molecular-weight secondary metabolites of marine sediment-derived fungi in the context of their biological activity and covers research articles published between January 2016 and November 2020.
Collapse
|
11
|
Secondary metabolites produced by mangrove endophytic fungus Aspergillus fumigatus HQD24 with immunosuppressive activity. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Review of Natural Compounds for the Management and Prevention of Lymphoma. Processes (Basel) 2020. [DOI: 10.3390/pr8091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lymphoma is a type of blood cancer that can be categorized into two types-Hodgkin lymphoma (HL) and Non-Hodgkin lymphoma (NHL). A total of 509,590 and 79,990 cases of NHL and HL were newly diagnosed in 2018, respectively. Although conventional therapy has stridden forward over recent decades, its adverse effects are still a hurdle to be solved. Thus, to help researchers develop better lymphoma treatment, this study aims to review the systematic anticancer data for natural products and their compounds. A variety of natural products showed anticancerous effects on lymphoma by regulation of intracellular mechanisms including apoptosis as well as cell cycle arrest. As these results shed light on the potential to substitute conventional therapy with natural products, it may become a promising strategy for lymphoma treatment in the near future.
Collapse
|
13
|
Jiang M, Wu Z, Guo H, Liu L, Chen S. A Review of Terpenes from Marine-Derived Fungi: 2015-2019. Mar Drugs 2020; 18:E321. [PMID: 32570903 PMCID: PMC7345631 DOI: 10.3390/md18060321] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Marine-derived fungi are a significant source of pharmacologically active metabolites with interesting structural properties, especially terpenoids with biological and chemical diversity. In the past five years, there has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered. In this updated review, we examine the chemical structures and bioactive properties of new terpenes from marine-derived fungi, and the biodiversity of these fungi from 2015 to 2019. A total of 140 research papers describing 471 new terpenoids of six groups (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and meroterpenes) from 133 marine fungal strains belonging to 34 genera were included. Among them, sesquiterpenes, meroterpenes, and diterpenes comprise the largest proportions of terpenes, and the fungi genera of Penicillium, Aspergillus, and Trichoderma are the dominant producers of terpenoids. The majority of the marine-derived fungi are isolated from live marine matter: marine animals and aquatic plants (including mangrove plants and algae). Moreover, many terpenoids display various bioactivities, including cytotoxicity, antibacterial activity, lethal toxicity, anti-inflammatory activity, enzyme inhibitor activity, etc. In our opinion, the chemical diversity and biological activities of these novel terpenoids will provide medical and chemical researchers with a plenty variety of promising lead compounds for the development of marine drugs.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| |
Collapse
|
14
|
Sun JH, Yang ZD, Zhang YF. Chemical Constituents and Bioactivity of a Fungal Endophyte from Lamium amplexicaule. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02809-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Two New Spiro-Heterocyclic γ-Lactams from A Marine-Derived Aspergillus fumigatus Strain CUGBMF170049. Mar Drugs 2019; 17:md17050289. [PMID: 31091673 PMCID: PMC6562449 DOI: 10.3390/md17050289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
Two new spiro-heterocyclic γ-lactam derivatives, cephalimysins M (1) and N (2), were isolated from the fermentation cultures of the marine-derived fungus Aspergillus fumigatus CUGBMF17018. Two known analogues, pseurotin A (3) and FD-838 (4), as well as four previously reported helvolic acid derivatives, 16-O-propionyl-16-O-deacetylhelvolic acid (5), 6-O-propionyl-6-O-deacetylhelvolic acid (6), helvolic acid (7), and 1,2-dihydrohelvolic acid (8) were also identified. One-dimensional (1D), two-dimensional (2D) NMR, HRMS, and circular dichroism spectral analysis characterized the structures of the isolated compounds.
Collapse
|
16
|
Novel Polyketides Produced by the Endophytic Fungus Aspergillus Fumigatus from Cordyceps Sinensis. Molecules 2018; 23:molecules23071709. [PMID: 30011828 PMCID: PMC6100219 DOI: 10.3390/molecules23071709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/17/2022] Open
Abstract
Five new polyketides, including two pairs of enantiomers and a racemate, were isolated from the fermentation broth of Aspergillus fumigatus, an endophytic fungus isolated from Cordyceps sinensis. Their structures were identified using one-dimensional (1D) and two-dimensional (2D) NMR experiments, and the absolute configurations of the enantiomers were confirmed using electronic circular dichroism (ECD) calculations. Compounds 1a and 2a exhibited inhibitory activity against the MV4-11 cell line in vitro, with IC50 values of 23.95 µM and 32.70 µM, respectively.
Collapse
|
17
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
18
|
Liu M, Hu ZX, Luo YQ, Zhou M, Wang WG, Li XN, Du X, Pu JX, Sun HD. Two New Compounds from Schisandra propinqua var. propinqua. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:257-262. [PMID: 28470483 PMCID: PMC5481274 DOI: 10.1007/s13659-017-0129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
Schisanpropinoic acid (1), a new bergamotane sesquiterpenoid, and schisanpropinin (2), a new tetrahydrofuran lignan with a rare epoxyethane unit, were identified from the stems and leaves of Schisandra propinqua var. propinqua. Their structures were determined based on comprehensive spectroscopic and mass spectrometric analysis. The absolute configuration of 1 was determined by X-ray analysis. Compounds 1 and 2 were tested for their cytotoxic activity against five human tumor cell lines.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zheng-Xi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuan-Qing Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wei-Guang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xue Du
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Jian-Xin Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| |
Collapse
|