1
|
Zeng ZX, Shi JH, Qiu CL, Fan T, Lu J, Abdelnabby H, Wang MQ. Nitrogen input reduces the physical defense of rice plant against planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae240. [PMID: 39436764 DOI: 10.1093/jee/toae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Nitrogen has important effects on plant growth and defense. Although studies on the alternation in plant chemical defense by nitrogen fertilization have been extensively reported, how it affects physical defense is poorly understood. Two rice (Oryza sativa L.) (Poales: Poaceae) varieties (LDQ7 and YLY1) were applied with varying nitrogen regimes (0.90 and 180 kg ha-1) to study their physical defense against the brown planthopper (BPH) Nilaparvata lugens (Hemiptera: Delphacidae) in this study. Results of the electrical penetration graph showed that BPH searching and penetrating duration time was shortened with increasing nitrogen application. Also, the tubercle papicle of rice leaves decreased with increasing nitrogen application, while rice leaves' surface structure and waxy composition changed with increasing nitrogen application. In field experiments, BPH populations increased with the application of nitrogen fertilizer. These findings suggest that nitrogen input can affect plant-insect interactions by reducing the physical defense of plants, which provides new ideas for the organic combinations of yield increase and pest control in rice fields.
Collapse
Affiliation(s)
- Zi-Xuan Zeng
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin-Hua Shi
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang-Lai Qiu
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Fan
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Lu
- Department of Plant Protection, State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hazem Abdelnabby
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia, Egypt
| | - Man-Qun Wang
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Chen B, Liu S, Li X, Li C, Cai R, Zeng J, Hu Y, Su J, Chen S. Reconstruction of quality marker system for Ginkgo Folium tablet using UHPLC-Q-Orbitrap MS, quantum chemical calculation, network pharmacology, and molecular simulation. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1659-1673. [PMID: 39353880 DOI: 10.1002/pca.3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION Ginkgo Folium tablet (GFT) is a patented traditional Chinese medicine prepared from Ginkgo biloba leaves extract (GBE). However, the current quality indicators for GFT or GBE as designated by the Chinese Pharmacopoeia are insufficient in preventing counterfeit events. OBJECTIVE This study aimed to putatively identify compounds in GFT and to further develop a quality marker (Q-marker) system for GFT. METHODS A novel strategy utilizing database-aided ultrahigh-performance liquid chromatography-quadrupole-orbitrap mass spectrometry was employed to analyze the lyophilized aqueous powder of GFT. Subsequently, the identified compounds underwent quantum chemical calculations, network pharmacology, and molecular simulations through in silico approaches to evaluate the Q-marker principles of traceability, specificity, and efficiency-relevance. RESULTS The results revealed the putative identification of a total of 66 compounds, including 36 flavonoids, 7 phenolic acids and derivatives, 5 terpene lactones, 4 fatty acids and derivatives, 3 alkaloids, 1 amino acid, and 10 other compounds. Particularly, 16 compounds were unexpectedly observed, and seven compounds met the Q-marker principles. CONCLUSION This study recommends the seven compounds, namely, (-)-gallocatechin, matrine, (-)-epicatechin, ginkgolide C, ginkgolide A, ginkgolide B, and curdione, as the anti-counterfeiting pharmacopoeia Q-markers for GFT. The reconstruction of the Q-marker system for GFT not only enhances the understanding of the compounds in GFT and other GBE-based preparations but also provides valuable recommendations for the Pharmacopoeia Commission.
Collapse
Affiliation(s)
- Ban Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Shuangshuang Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhou Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongxin Cai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyuan Zeng
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchen Hu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Jiangtao Su
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Shaoman Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
El Maaiden E, Qarah N, Ezzariai A, Mazar A, Nasser B, Moustaid K, Boukcim H, Hirich A, Kouisni L, El Kharrassi Y. Ultrasound-Assisted Extraction of Isoquercetin from Ephedra alata (Decne): Optimization Using Response Surface Methodology and In Vitro Bioactivities. Antioxidants (Basel) 2023; 12:antiox12030725. [PMID: 36978973 PMCID: PMC10045738 DOI: 10.3390/antiox12030725] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Isoquercetin (ISQ) is reported to be a powerful antioxidant with extremely high bioavailability and structural stability compared to aglycone quercetin. Despite this, it is not well studied due to the limited methods for its extraction. With the growing interest in the research and analysis of ISQ-rich herbs, there is a need to optimize an efficient and rapid method for their extraction. In the present study, the ultrasound-assisted extraction of ISQ from Ephedra alata Decne was optimized by a response surface methodology (RSM) using high-performance liquid chromatography as a separation method. The best possible ranges for extraction time (10–30 min), temperature (50–70 °C), ultrasonic power (60–90 W), solvent-to-solid ratio (50–70 mL/g), and ethanol concentration (50–70%) were determined using a single factor analysis. Subsequently, an optimization of the extraction conditions was performed with RSM using the Box–Behnken design. An ultrasonication time of 10 min, a temperature of 60 °C, a power of 75 W, a solvent-to-solid ratio of 60 mL/g, and an ethanol concentration of 70% were determined to be the optimal conditions for the highest recovery of isoquercetin (1033.96 ± 3.28 µg/g). Furthermore, E. alata powder morphology (using a scanning electron microscope), antioxidant activities, and the inhibition potential of key enzymes involved in skin aging (elastase and collagenase), hyperpigmentation (tyrosinase), diabetes (α-amylase), inflammation (hyaluronidase), and neurodegenerative disorders (cholinesterase) were determined and compared with those using the Soxhlet method. This study established a highly efficient method for ISQ extraction and suggested several potential applications of ISQ in the pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Ezzouhra El Maaiden
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco; (A.E.); (A.M.); (H.B.); (A.H.); (L.K.)
- Correspondence: (E.E.M.); (Y.E.K.)
| | - Nagib Qarah
- Department of Chemistry, Faculty of Education-Zabid, Hodeidah University, Hodeidah P.O. Box 3114, Yemen;
| | - Amine Ezzariai
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco; (A.E.); (A.M.); (H.B.); (A.H.); (L.K.)
| | - Adil Mazar
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco; (A.E.); (A.M.); (H.B.); (A.H.); (L.K.)
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Hassan I University of Settat, BP 577, Settat 26000, Morocco;
| | - Khadija Moustaid
- Laboratory of Applied Chemistry and Environment, Hassan I University of Settat, BP 577, Settat 26000, Morocco;
| | - Hassan Boukcim
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco; (A.E.); (A.M.); (H.B.); (A.H.); (L.K.)
| | - Abdelaziz Hirich
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco; (A.E.); (A.M.); (H.B.); (A.H.); (L.K.)
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco; (A.E.); (A.M.); (H.B.); (A.H.); (L.K.)
| | - Youssef El Kharrassi
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco; (A.E.); (A.M.); (H.B.); (A.H.); (L.K.)
- Correspondence: (E.E.M.); (Y.E.K.)
| |
Collapse
|
4
|
Wang Y, Yan M, Qin R, Gong Y. Enzymolysis-Microwave-Assisted Hydrodistillation for Extraction of Volatile Oil from Atractylodes Chinensis and Its Hypoglycemic Activity in vitro. J AOAC Int 2021; 104:1196-1205. [PMID: 33471094 DOI: 10.1093/jaoacint/qsab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/23/2020] [Accepted: 01/06/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Atractylodes chinensis (family Asteraceae) is a perennial herb with many pharmacological effects. OBJECTIVE Extraction of volatile oil from Atractylodes chinensis was optimized and its hypoglycemic activities were studied. METHODS Enzymolysis-microwave-assisted hydrodistillation (EMAHD) was adopted to extract the volatile oil, and the technology was optimized using a single-factor experiment that incorporated response surface methodology (RSM). The extraction rates of volatile oil by EMAHD, microwave-assisted hydrodistillation (MAHD), and hydrodistillation (HD) methods were compared at different times. The ingredients of Atractylodes chinensis volatile oil were analyzed by gas chromatography-mass spectrometry. Scanning electron microscopy (SEM) were used to analyze the microstructural changes in Atractylodes chinensis residue before and after extraction. The inhibition of α-amylase activity was determined. RESULTS The obtained optimal extraction conditions for EMAHD were as follows: enzyme concentration 1.6%, pH 7, enzymolysis time 20 min, enzymolysis temperature 50°C, liquid-solid ratio 30:1, microwave power 455 W, and microwave time 40 min. The levels of the main ingredients and the in vitro inhibition of α-amylase activities were higher for Atractylodes chinensis volatile oil extracted by EMAHD than by HD or MAHD. The powder residue of Atractylodes chinensis remaining after EMAHD showed a ruptured and collapsed cell structure, indicating accelerated dissolution of the volatile oil. CONCLUSIONS AND HIGHLIGHTS EMAHD is deemed a method with many advantages for extraction of volatile oil from Atractylodes chinensis. The volatile oil of Atractylodes chinensis is a promising component for treating hyperglycemia.
Collapse
Affiliation(s)
- Yitong Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.,Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| | - Meixing Yan
- Department of pharmacy, Qingdao Women and Children's Hospital, Qingdao, China
| | - Ruiqing Qin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.,Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.,Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Liang X, Wang P, Lian K, Han F, Tang Y, Zhang S, Zhang W. APB-13 improves the adverse outcomes caused by TGEV infection by correcting the intestinal microbial disorders in piglets. J Anim Physiol Anim Nutr (Berl) 2021; 106:69-77. [PMID: 34075636 DOI: 10.1111/jpn.13555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Indexed: 12/22/2022]
Abstract
Porcine transmissible gastroenteritis virus (TGEV) is an enteric coronavirus that has caused high morbidity and mortality of piglets worldwide. Previous studies have shown that the TGEV can lead to severe diarrhoea, vomiting and dehydration in 2-week-old piglets and weaned piglets, resulting in a large number of piglet deaths. Antimicrobial peptides have broad-spectrum antimicrobial activity and a strong killing effect on bacteria, especially on the drug-resistant pathogenic bacteria, and it has attracted broad concern. However, there are very few reports on the effect of APB-13 (an antimicrobial peptide) on the intestinal microbes of piglets infected with TGEV. In this study, 16S rRNA gene sequencing was used to compare the microbial phylum and the genus of piglet's enteric microorganism in different experimental groups, and to predict the metabolic function of the microbial flora. At the same time, the apparent digestibility of nutrients, digestive enzyme activity, daily weight gain and survival rate were also measured. TGEV infection could cause the imbalance of intestinal microbes in piglets, and increase of the relative abundance of Proteobacteria, and decrease of the relative abundance of Firmicutes, Bacteroidetes and Actinobacteri. With the addition of APB-13, this problem can be alleviated, which can reduce the relative abundance of Proteobacteria and improve the balance of intestinal microorganisms. At the microbial genus level, after adding APB-13, the relative abundance of Catenibacterium, Enterobacter and Streptococcus in the intestinal tract of piglets infected with TGEV showed significant decrease, while the relative abundance of Lactobacillus and Ruminococcus increased. Finally, we found that APB-13 can significantly increase the activity of digestive enzyme in the intestinal tract of piglet, thereby improving the apparent digestibility of nutrients and the growth performance of piglets. This study demonstrates that APB-13 can alleviate the adverse outcomes caused by TGEV infection by correcting the intestinal microbial disorders.
Collapse
Affiliation(s)
- Xiuli Liang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China.,College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Pengtao Wang
- College of Animal Husbandry, Henan Agricultural University, Zhengzhou, China
| | - Kaiqi Lian
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Fangfang Han
- College of Animal Husbandry, Henan Agricultural University, Zhengzhou, China
| | - Yajie Tang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Shouming Zhang
- Anyang City Animal Product Quality Safety Monitoring and Inspection Center, Anyang, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
6
|
Evaluation of Methylene Blue Sorption onto Low-Cost Biosorbents: Equilibrium, Kinetics, and Thermodynamics. J CHEM-NY 2020. [DOI: 10.1155/2020/8318049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This paper presents a study on batch sorption of methylene blue dye from aqueous solution onto Ginkgo biloba sorbent, a waste material produced during the Fall season in many parts of the world. Batch kinetics, equilibrium, and thermodynamic studies were conducted to evaluate the effect of contact time (0–150 min), sorbent dose (0.5–3.0 g/L), pH (2–11), temperature (30–50°C), initial MB concentration (10–30 mg/L), and particle size (177 μm—590 μm) on the methylene blue dye sorption. More than 99% removal of methylene blue was observed within 120 minutes. A Lagergren pseudo-first-order model, a pseudo-second-order model, and intraparticle diffusion models fitted well to the kinetics experimental data. Langmuir and Freundlich isotherm models also fitted well with the observed equilibrium data. Additionally, removal of methylene blue increased with increase in solution pH. Higher sorption capacity (∼20 mg/g) was observed with smaller particle size (170 μm) as compared to larger particle sizes (590 μm). Thermodynamic parameters such as ∆G°, ∆H°, and ∆S° indicated that the sorption process was feasible, spontaneous, and endothermic in nature. The study shows that Ginkgo biloba leaves have the potential to be an efficient sorbent for the removal of methylene blue from surface water samples.
Collapse
|
7
|
Lan H, Lai B, Zhao P, Dong X, Wei W, Ye Y, Wu Z. Cucumber mosaic virus infection modulated the phytochemical contents of Passiflora edulis. Microb Pathog 2019; 138:103828. [PMID: 31682997 DOI: 10.1016/j.micpath.2019.103828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/02/2023]
Abstract
Cucumber mosaic virus (CMV) caused huge agricultural impact on Passiflora edulis. However, the interactions between CMV and P. edulis are poorly unknown, which lead to lack of prevention and control measures. In this study, we identified the infection of CMV in P. edulis through modern small RNA sequencing (sRNA-seq) technology combined with traditional electron microscope and polymerase chain reaction (PCR) methods. We also confirmed CMV infection adversely affected or modulated the contents of phytochemicals and further injured the development of P. edulis; inversely, P. edulis modulated its resistance to CMV stress by increasing the levels of secondary metabolites and the activities of antioxidant enzymes components. This is of significant importance to understand the interaction between virus infection and plant host.
Collapse
Affiliation(s)
- Hanhong Lan
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China.
| | - Baochun Lai
- Zhangzhou Institute of Agricultural Science of Fujian, 363000, PR China
| | - Peng Zhao
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China
| | - Xu Dong
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China
| | - Wanting Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China
| | - Yanjie Ye
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China
| | - Zujian Wu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| |
Collapse
|
8
|
Hepatoprotective Effects of Morchella esculenta against Alcohol-Induced Acute Liver Injury in the C57BL/6 Mouse Related to Nrf-2 and NF- κB Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6029876. [PMID: 31396303 PMCID: PMC6664553 DOI: 10.1155/2019/6029876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/18/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
This study investigated the hepatoprotective effects of Morchella esculenta fruit body (ME) and the underlying mechanisms in mice with alcohol-induced acute liver injury. Systematic analysis revealed that ME contained 21 types of fatty acid, 17 types of amino acid, and 12 types of mineral. Subsequently, a mouse model of acute alcohol-induced liver injury was established by oral administration of alcohol for 14 days. Fourteen-day administration of ME prevented alcohol-induced increases in alanine aminotransferase and aspartate aminotransferase levels and reduced the activity of acetaldehyde dehydrogenase in blood serum and liver tissue. ME appears to regulate lipid metabolism by suppressing triglycerides, total cholesterol, and high-density lipoprotein in the liver. ME inhibited the production of inflammatory factors including chitinase-3-like protein 1 (YKL 40), interleukin-7 (IL-7), plasminogen activator inhibitor type 1 (PAI-1), and retinol-binding protein 4 (RBP4) in blood serum and/or liver tissue. ME treatment relieved the alcohol-induced imbalance in prooxidative and antioxidative signaling via nuclear factor-erythroid 2-related factor 2 (Nrf-2), as indicated by upregulation of superoxide dismutase-1, superoxide dismutase-2, catalase, heme oxygenase-1, and heme oxygenase-2 expression and downregulation of kelch-like ECH-associated protein 1 (Keap-1) in the liver. Moreover, ME reduced the levels of phosphorylated nuclear factor kappa-B kinase α/β, inhibitor of nuclear factor kappa-B α and nuclear factor kappa-B p65 (NF-κB p65) in the liver. The hepatoprotective effects of ME against alcohol-induced acute liver injury were thus confirmed. The mechanism of action may be related to modulation of antioxidative and anti-inflammatory signaling pathways, partially via regulation of Nrf-2 and NF-κB signaling.
Collapse
|
9
|
Chen S, Yu N, Yang S, Zhong B, Lan H. Identification of Telosma mosaic virus infection in Passiflora edulis and its impact on phytochemical contents. Virol J 2018; 15:168. [PMID: 30382859 PMCID: PMC6211467 DOI: 10.1186/s12985-018-1084-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/21/2018] [Indexed: 11/10/2022] Open
Abstract
Background Viral disease has become the most severe constraint for the cultivation and production of Passiflora edulis in China. The infection of Telosma mosaic virus (TeMV), a potyvirus, and its effects on the phytochemical components of P. edulis remain largely unknown in China. Methods P. edulis plants showing distorted leaves and severe mosaic skin on green fruit were identified with TeMV infection through traditional transmission electron microscopy, RT-PCR and modern small RNA sequencing (sRNA-seq) platform. The contents of phytochemical components and the activities of antioxidative enzymes were compared between virus-infected and virus-free P. edulis to confirm the effects of TeMV infection on host plant. Results Firstly, approximately 700 nm linear virus particles, representing TeMV, were detected in infected P. edulis fruits and leaves with Electron microscopy. Partial coat protein genes of TeMV were successfully amplified by RT-PCR in infected P. edulis leaves and fruits but not in healthy plants. Abundant small interference RNAs (siRNAs) sequences, showing several characterizations, were specifically generated from the TeMV genome in infected plant fruits by sRNA-seq platform. Furthermore, fruit length, fruit thickness (wideness) and fruit weight decreased significantly due to TeMV infection. The levels of total protein and total sugar increased significantly; however, the level of total fat, total acid and vitamin C decreased obviously after TeMV infection. The level of total phenols, a secondary metabolite, was obviously higher in TeMV-infected than TeMV-free P. edulis fruit. The activities of superoxide dismutases (SOD) and catalases (CAT) obviously increased in TeMV-infected in comparison with healthy P. edulis fruit. Conclusions TeMV infection adversely affected the development of P. edulis fruits, differently and selectively modulated the phytochemical components of P. edulis fruits. In turn, P. edulis plants enhanced their tolerance to the stress of TeMV infection by increasing the secondary metabolite level and the antioxidative capacity. This is of significant importance to understand the effects of TeMV infection on the biochemical changes and the antioxidant defense mechanism in P. edulis.
Collapse
Affiliation(s)
- Shuangshuang Chen
- School of Biological Sciences and Biotechnology, Minnan Normal University, Xianqianzhi street, Xiangcheng district, Zhangzhou, Fujian, 363000, People's Republic of China
| | - Nannan Yu
- School of Biological Sciences and Biotechnology, Minnan Normal University, Xianqianzhi street, Xiangcheng district, Zhangzhou, Fujian, 363000, People's Republic of China
| | - Shaohuan Yang
- School of Biological Sciences and Biotechnology, Minnan Normal University, Xianqianzhi street, Xiangcheng district, Zhangzhou, Fujian, 363000, People's Republic of China
| | - Baoping Zhong
- School of Biological Sciences and Biotechnology, Minnan Normal University, Xianqianzhi street, Xiangcheng district, Zhangzhou, Fujian, 363000, People's Republic of China
| | - Hanhong Lan
- School of Biological Sciences and Biotechnology, Minnan Normal University, Xianqianzhi street, Xiangcheng district, Zhangzhou, Fujian, 363000, People's Republic of China.
| |
Collapse
|
10
|
Cao J, Peng LQ, Xu JJ, Du LJ, Zhang QD. Simultaneous microextraction of inorganic iodine and iodinated amino acids by miniaturized matrix solid-phase dispersion with molecular sieves and ionic liquids. J Chromatogr A 2016; 1477:1-10. [DOI: 10.1016/j.chroma.2016.11.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 02/05/2023]
|