1
|
Khizar N, Abbas N, Ahmed M, Ahmad M, Mustafa Z, Jehangir M, Mohammed Al-Ahmary K, Hussain A, Bukhari NI, Ali I. Amelioration of tableting properties and dissolution rate of naproxen co-grinded with nicotinamide: preparation and characterization of co-grinded mixture. Drug Dev Ind Pharm 2024; 50:537-549. [PMID: 38771120 DOI: 10.1080/03639045.2024.2358356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE AND SIGNIFICANCE Reducing the dimensions, when other additives are present, shows potential as a method to improve the dissolution and solubility of biopharmaceutical classification system class II drugs that have poor solubility. In this investigation, the process involved grinding naproxen with nicotinamide with the aim of improving solubility and the rate of dissolution. METHODS Naproxen was subjected to co-milling with urea, dimethylurea, and nicotinamide using a planetary ball mill for a duration of 90 min, maintaining a 1:1 molar ratio for the excipients (screening studies). The co-milled combinations, naproxen in its pure milled form, and a physical mixture were subjected to analysis using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), and solubility assessment. The mixture displaying the highest solubility (naproxen-nicotinamide) was chosen for further investigation, involving testing for intrinsic dissolution rate (IDR) and Fourier-transform infrared spectroscopy (FTIR) after co-milling for both 90 and 480 min. RESULTS AND CONCLUSION The co-milled combination, denoted as S-3b and consisting of the most substantial ratio of nicotinamide to naproxen at 1:3, subjected to 480 min of milling, exhibited a remarkable 45-fold increase in solubility and a 9-fold increase in IDR. XRPD analysis of the co-milled samples demonstrated no amorphization, while SEM images portrayed the aggregates of naproxen with nicotinamide. FTIR outcomes negate the presence of any chemical interactions between the components. The co-milled sample exhibiting the highest solubility and IDR was used to create a tablet, which was then subjected to comprehensive evaluation for standard attributes. The results revealed improved compressibility and dissolution properties.
Collapse
Affiliation(s)
- Nosheen Khizar
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Nasir Abbas
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zeeshan Mustafa
- Department of Physics, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Jehangir
- Department of Chemistry, FC College (A Chartered University), Lahore, Pakistan
| | | | - Amjad Hussain
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | | | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| |
Collapse
|
2
|
Banat H, Csóka I, Paróczai D, Burian K, Farkas Á, Ambrus R. A Novel Combined Dry Powder Inhaler Comprising Nanosized Ketoprofen-Embedded Mannitol-Coated Microparticles for Pulmonary Inflammations: Development, In Vitro-In Silico Characterization, and Cell Line Evaluation. Pharmaceuticals (Basel) 2024; 17:75. [PMID: 38256908 PMCID: PMC10818896 DOI: 10.3390/ph17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their considerable side effects. By utilizing particle engineering techniques, a combined dry powder inhaler (DPI) comprising nanosized ketoprofen-embedded mannitol-coated microparticles was developed. A nanoembedded microparticle system means a novel advance in pulmonary delivery by enhancing local pulmonary deposition while avoiding clearance mechanisms. Ketoprofen, a poorly water-soluble anti-inflammatory drug, was dispersed in the stabilizer solution and then homogenized by ultraturrax. Following this, a ketoprofen-containing nanosuspension was produced by wet-media milling. Furthermore, co-spray drying was conducted with L-leucine (dispersity enhancer) and mannitol (coating and mucuactive agent). Particle size, morphology, dissolution, permeation, viscosity, in vitro and in silico deposition, cytotoxicity, and anti-inflammatory effect were investigated. The particle size of the ketoprofen-containing nanosuspension was ~230 nm. SEM images of the spray-dried powder displayed wrinkled, coated, and nearly spherical particles with a final size of ~2 µm (nano-in-micro), which is optimal for pulmonary delivery. The mannitol-containing samples decreased the viscosity of 10% mucin solution. The results of the mass median aerodynamic diameter (2.4-4.5 µm), fine particle fraction (56-71%), permeation (five-fold enhancement), and dissolution (80% release in 5 min) confirmed that the system is ideal for local inhalation. All samples showed a significant anti-inflammatory effect and decreased IL-6 on the LPS-treated U937 cell line with low cytotoxicity. Hence, developing an innovative combined DPI comprising ketoprofen and mannitol by employing a nano-in-micro approach is a potential treatment for lung inflammations.
Collapse
Affiliation(s)
- Heba Banat
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Dóra Paróczai
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Katalin Burian
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Árpád Farkas
- Centre for Energy Research, Hungarian Academy of Sciences, 1121 Budapest, Hungary;
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| |
Collapse
|
3
|
Nagy E, Kopniczky J, Smausz T, Náfrádi M, Alapi T, Bohus J, Pajer V, Szabó-Révész P, Ambrus R, Hopp B. A comparative study of femtosecond pulsed laser ablation of meloxicam in distilled water and in air. Sci Rep 2023; 13:10242. [PMID: 37353524 DOI: 10.1038/s41598-023-36922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
The increasing prevalence of water insoluble or poorly soluble drugs calls for the development of new formulation methods. Common approaches include the reduction of particle size and degree of crystallinity. Pulsed laser ablation is a clean technique for producing sub-micrometre sized drug particles and has the potential to induce amorphization. We studied the effect of femtosecond pulsed laser ablation (ELI ALPS THz pump laser system: λc = 781 nm, τ = 135 fs) on meloxicam in distilled water and in air. The ablated particles were characterized chemically, morphologically and in terms of crystallinity. We demonstrated that femtosecond laser ablation can induce partial amorphization of the particles in addition to a reduction in particle size. In the case of femtosecond pulsed laser ablation in air, the formation of pure meloxicam spheres showed that this technique can produce amorphous meloxicam without the use of excipients, which is a unique result. We also aimed to describe the ablation processes in both investigated media.
Collapse
Affiliation(s)
- Eszter Nagy
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Judit Kopniczky
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Tamás Smausz
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Máté Náfrádi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720, Hungary
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720, Hungary
| | - János Bohus
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged, 6728, Hungary
| | - Viktor Pajer
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged, 6728, Hungary
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös utca 6, Szeged, 6720, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös utca 6, Szeged, 6720, Hungary
| | - Béla Hopp
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| |
Collapse
|
4
|
A comprehensive analysis of meloxicam particles produced by nanosecond laser ablation as a wet milling technique. Sci Rep 2022; 12:12551. [PMID: 35869132 PMCID: PMC9307616 DOI: 10.1038/s41598-022-16728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Recently, the number of water insoluble and poorly soluble drug compounds has increased significantly. Therefore, growing interest has been witnessed in different particle size reduction techniques to improve the dissolution rates, transport characteristics and bioavailability of drugs. Laser ablation has proven to be an alternative method to the production of nano- and micrometre-sized drug particles without considerable chemical damage. We present the nanosecond laser ablation of drug pastilles in distilled water, targeting meloxicam, a poorly water soluble nonsteroidal anti-inflammatory drug, at different laser wavelengths (248 nm, 532 nm and 1064 nm). Besides chemical characterization, crystallinity, morphology and particle size studies, the mechanism of the particle generation process was examined. The applicability of ablated particles in drug formulation was investigated by solubility, cytotoxicity and anti-inflammatory effect measurements. We showed that laser ablation is a clean, efficient and chemically non-damaging method to reduce the size of meloxicam particles to the sub-micrometre–few micrometre size range, which is optimal for pulmonary drug delivery. Complemented by the excellent solubility (four to nine times higher) and anti-inflammatory (four to five times better) properties of the particles compared to the initial drug, laser ablation is predicted to have wider applications in the development of drug formulations.
Collapse
|
5
|
Effects of Wet and Dry Micronization on the GC-MS Identification of the Phenolic Compounds and Antioxidant Properties of Freeze-Dried Spinach Leaves and Stems. Molecules 2022; 27:molecules27238174. [PMID: 36500267 PMCID: PMC9740432 DOI: 10.3390/molecules27238174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Micronization is an emerging technology used in food production, in which the size of particles is reduced to microns in the processing of plant raw materials and by-products, thus making it an interesting research topic. Spinach stems are by-products of spinach leaf processing, but there is little information regarding their processing and possible reuse. In this study, wet and dry ball mill micronization, in combination with freeze drying, was used to process spinach stems and leaves to obtain functional powders. The color and particle size of the micronized spinach leaf and stem powders were evaluated. The antioxidant activity (AA) of the powders and phenolic compounds present in them were determined using GC-MS analysis. The results obtained showed that the dry micronization of leaves and stems resulted in smoother and brighter powders than wet micronization. Significantly smaller particle sizes were achieved using the dry micronization of the leaves and stems (Dv50 = 19.5 and 10.1 µm, respectively) rather than wet micronization (Dv50 = 84.6 and 112.5 µm, respectively). More phenolic compounds, such as o-coumaric acid and gallic acid, were extracted from the dry-micronized powders. The dry micronization of the stems significantly increased the total phenolic content, and the AA of these powders was also increased. These findings demonstrate that spinach leaves and stems subjected to dry micronization can be valuable functional components of food.
Collapse
|
6
|
Navarro-Ruíz E, Álvarez-Álvarez C, Peña MÁ, Torrado-Salmerón C, Dahma Z, de la Torre-Iglesias PM. Multiparticulate Systems of Meloxicam for Colonic Administration in Cancer or Autoimmune Diseases. Pharmaceutics 2022; 14:pharmaceutics14071504. [PMID: 35890399 PMCID: PMC9322124 DOI: 10.3390/pharmaceutics14071504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this research is the development of new colonic release systems of meloxicam (MLX) a non-steroidal anti-inflammatory drug (NSAIDs) with pH and time-dependent vehicles for cancer or autoimmune diseases. The colon has a higher pH than the rest of the gastrointestinal tract (GIT) and this can be used as a modified release strategy. Eudragit® polymers are the most widely used synthetic products in the design of colonic release formulations because they might offer mucoadhesiveness and pH-dependent release. Colonic delivery systems produced with pH-dependent and permeable polymers (FS-30D) or with pH-independent and low permeability polymers (NM-30D), must dissolve at a pH range of 6.0–7.0 to delay the release of the drug and prevent degradation in the GIT, before reaching the colon. The conditions prepared to simulate a gastrointestinal transit showed the CNM multiparticulate system, composed of Eudragit® NM and cellulose, as the best release option for MLX with a more sustained release with respect to the other formulations. CNM formulation followed Higuchi and First-order release kinetics, thus MLX release was controlled by a combination of diffusion and polymers swelling/eroding processes.
Collapse
Affiliation(s)
- Eva Navarro-Ruíz
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
| | - Covadonga Álvarez-Álvarez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (C.Á.-Á.); (P.M.d.l.T.-I.); Tel.: +34-091-394-1741 (C.Á.-Á.); +34-091-394-1620 (P.M.d.l.T.-I.)
| | - M Ángeles Peña
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain;
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Zaid Dahma
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
| | - Paloma Marina de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (C.Á.-Á.); (P.M.d.l.T.-I.); Tel.: +34-091-394-1741 (C.Á.-Á.); +34-091-394-1620 (P.M.d.l.T.-I.)
| |
Collapse
|
7
|
Party P, Kókai D, Burián K, Nagy A, Hopp B, Ambrus R. Development of extra-fine particles containing nanosized meloxicam for deep pulmonary delivery: in vitro aerodynamic and cell line measurements. Eur J Pharm Sci 2022; 176:106247. [PMID: 35760279 DOI: 10.1016/j.ejps.2022.106247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 06/23/2022] [Indexed: 11/03/2022]
Abstract
Pulmonary drug administration provides a platform for the effective local treatment of various respiratory diseases. Application of nano-sized active ingredients results in higher bioavailability because of their large specific surface area. Extra-fine dry powder inhalers reach the smaller airways, further improving therapeutic efficiency. Poorly water-soluble meloxicam was the selected active ingredient. We aimed to decrease the particle size into the nano range by wet milling and producing extra-fine inhalable particles via nano spray-drying. The diameter of the drug was reduced to 138 nm. The particle size of the dry products was between 1.1-1.5 µm, and the dispersed diameter was between 500-800 nm. Owing to the excipients (poly-vinyl-alcohol, leucine), the spray-dried particles presented nearly spherical morphology. The drug became partially amorphous. Thanks to the improved surface area, the solubility and the released and the diffused amount of the meloxicam increased in artificial lung media. The in vitro aerodynamic measurements showed that the leucine-containing formulations had outstanding fine particle fraction (FPF) deposition with 1.3 µm mass median aerodynamic diameter (MMAD). The aerodynamic particle counter test also proved the extra-fine aerodynamic particle size. The in vitro cell line experiments revealed the non-cytotoxicity of the products and the suppression of the interleukin concentration. Overall, the powders are suitable for deep pulmonary delivery and the local treatment of lung inflammations.
Collapse
Affiliation(s)
- Petra Party
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös street 6., Szeged 6720, Hungary
| | - Dávid Kókai
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm square 10., 6720 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm square 10., 6720 Szeged, Hungary
| | - Attila Nagy
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós street 29-33., 1121, Budapest, Hungary
| | - Béla Hopp
- Department of Optics and Quantum Electronics, University of Szeged, Dóm square 9., Szeged 6720 Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös street 6., Szeged 6720, Hungary.
| |
Collapse
|
8
|
Development of Lomustine and n-Propyl Gallate Co-Encapsulated Liposomes for Targeting Glioblastoma Multiforme via Intranasal Administration. Pharmaceutics 2022; 14:pharmaceutics14030631. [PMID: 35336006 PMCID: PMC8950329 DOI: 10.3390/pharmaceutics14030631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
This work aimed to develop lomustine (LOM) and n-propyl gallate (PG)-loaded liposomes suitable for targeting glioblastoma multiforme (GBM) via the auspicious nose-to-brain drug delivery pathway. The therapeutical effect of LOM, as a nitrosourea compound, can be potentiated by PG suitable for enhanced anti-cancer therapy. Nose-to-brain delivery of PG and LOM combined in liposomes can overcome the poor water solubility, absorption properties, and toxicity issues in the systemic circulation. Optimization and characterization of the liposomal carrier with binary drug contents were carried out in order to achieve adequate encapsulation efficiency, loading capacity, drug release, and ex vivo permeation. The optimized liposome co-encapsulated with both drugs showed suitable Z-average (127 ± 6.9 nm), size distribution (polydispersity index of 0.142 ± 0.009), zeta potential (−34 ± 1.7 mV), and high encapsulation efficacy (63.57 ± 1.3% of PG and 73.45 ± 2.2% of LOM, respectively) meeting the acceptance criteria of nose-to-brain transport for both drugs. MTT assays of PG-LOM formulations were also conducted on NIH/3T3 (murine embryonic fibroblast), U87 (glioblastoma), and A2780 (ovarian cancer) cell lines indicating reduced an antiproliferative effect on all types of cells. Our results supported the use of this novel combination of LOM and PG in a liposomal formulation as a promising carrier for glioblastoma targeting via the intranasal route.
Collapse
|
9
|
Crystallization of meloxicam in the presence of hydrophilic additives to tailor its physicochemical and pharmaceutical properties. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Li J, Wang Z, Zhang H, Gao J, Zheng A. Progress in the development of stabilization strategies for nanocrystal preparations. Drug Deliv 2021; 28:19-36. [PMID: 33336609 PMCID: PMC8725885 DOI: 10.1080/10717544.2020.1856224] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In recent years, nanocrystal technology has been extensively investigated. Due to the submicron particle size and unique physicochemical properties of nanocrystals, they overcome the problems of low drug solubility and poor bioavailability. Although the structures of nanocrystals are simple, the further development of these materials is hindered by their stability. Drug nanocrystals with particle sizes of 1∼1000 nm usually require the addition of stabilizers such as polymers or surfactants to enhance their stability. The stability of nanocrystal suspensions and the redispersibility of solid nanocrystal drugs are the key factors for the large-scale production of nanocrystal preparations. In this paper, the factors that affect the stability of drug nanocrystal preparations are discussed, and related methods for solving the stability problem are put forward.
Collapse
Affiliation(s)
- Jingru Li
- Department of Pharmaceutics, Institute of Pharmacology and Toxicology of Academy of Military Medical Sciences, Beijing, China
| | - Zengming Wang
- Department of Pharmaceutics, Institute of Pharmacology and Toxicology of Academy of Military Medical Sciences, Beijing, China
| | - Hui Zhang
- Department of Pharmaceutics, Institute of Pharmacology and Toxicology of Academy of Military Medical Sciences, Beijing, China
| | - Jing Gao
- Department of Pharmaceutics, Institute of Pharmacology and Toxicology of Academy of Military Medical Sciences, Beijing, China
| | - Aiping Zheng
- Department of Pharmaceutics, Institute of Pharmacology and Toxicology of Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Oktay AN, Ilbasmis-Tamer S, Uludag O, Celebi N. Enhanced Dermal Delivery of Flurbiprofen Nanosuspension Based Gel: Development and Ex Vivo Permeation, Pharmacokinetic Evaluations. Pharm Res 2021; 38:991-1009. [PMID: 34086139 DOI: 10.1007/s11095-021-03060-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The objective of this study was to optimize the Flurbiprofen (FB) nanosuspension (NS) based gel and to investigate the in vitro release, ex vivo permeation, the plasma concentration-time profile and pharmacokinetic parameters. METHODS FB-NSs were developed using the wet milling process with the Design of Experiment (DoE) approach. The optimum FB-NS was characterized on the basis of SEM, DSC, XRPD, solubility and permeation studies. The dermal gel was prepared by incorporating FB-NS into HPMC gel. Then the in-vitro release, ex vivo permeation studies were performed, and pharmacokinetic studies were evaluated on rats. RESULTS The particle size, polydispersity index and zeta potential values of optimum NS were determined as 237.7 ± 6.8 nm, 0.133 ± 0.030 and - 30.4 ± 0.7 mV, respectively. By means of the surfactant content and nanosized particles of the nanosuspension, the solubility of FB was increased about 7-fold. The percentage permeated amount of FB from FB-NS gel (8.40%) was also found to be higher than the physical mixture (5.25%) and coarse suspension (reference) (2.08%) gels. The pharmacokinetic studies showed that the Cmax of FB-NS gel was 2.5 times higher than the reference gel, while AUC0-24 was 2.96 times higher. CONCLUSION FB-NSs were successfully prepared with a wet milling method and optimized with the DoE approach. The optimized FB nanosuspension gel provided better permeation and pharmacokinetic performance compared to FB coarse suspension gel.
Collapse
Affiliation(s)
- Ayse Nur Oktay
- Department of Pharmaceutical Technology, Gazi University-Faculty of Pharmacy, Ankara, Turkey.,Department of Pharmaceutical Technology, University of Health Sciences- Gulhane Faculty of Pharmacy, Ankara, Turkey
| | - Sibel Ilbasmis-Tamer
- Department of Pharmaceutical Technology, Gazi University-Faculty of Pharmacy, Ankara, Turkey
| | - Orhan Uludag
- Department of Pharmacology, Gazi University-Faculty of Pharmacy, Ankara, Turkey
| | - Nevin Celebi
- Department of Pharmaceutical Technology, Gazi University-Faculty of Pharmacy, Ankara, Turkey. .,Department of Pharmaceutical Technology, Başkent University-Faculty of Pharmacy, Ankara, Turkey.
| |
Collapse
|
12
|
Nagy E, Andrásik A, Smausz T, Ajtai T, Kun-Szabó F, Kopniczky J, Bozóki Z, Szabó-Révész P, Ambrus R, Hopp B. Fabrication of Submicrometer-Sized Meloxicam Particles Using Femtosecond Laser Ablation in Gas and Liquid Environments. NANOMATERIALS 2021; 11:nano11040996. [PMID: 33924560 PMCID: PMC8069574 DOI: 10.3390/nano11040996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
In pharmaceutical development, more and more drugs are classified as poorly water-soluble or insoluble. Particle size reduction is a common way to fight this trend by improving dissolution rate, transport characteristics and bioavailability. Pulsed laser ablation is a ground-breaking technique of drug particle generation in the nano- and micrometer size range. Meloxicam, a commonly used nonsteroidal anti-inflammatory drug with poor water solubility, was chosen as the model drug. The pastille pressed meloxicam targets were irradiated by a Ti:sapphire laser (τ = 135 fs, λc = 800 nm) in air and in distilled water. Fourier transform infrared and Raman spectroscopies were used for chemical characterization and scanning electron microscopy to determine morphology and size. Additional particle size studies were performed using a scanning mobility particle sizer. Our experiments demonstrated that significant particle size reduction can be achieved with laser ablation both in air and in distilled water without any chemical change of meloxicam. The size of the ablated particles (~50 nm to a few microns) is approximately at least one-tenth of the size (~10–50 micron) of commercially available meloxicam crystals. Furthermore, nanoaggregate formation was described during pulsed laser ablation in air, which was scarcely studied for drug/organic molecules before.
Collapse
Affiliation(s)
- Eszter Nagy
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (A.A.); (T.S.); (T.A.); (F.K.-S.); (J.K.); (Z.B.); (B.H.)
- Correspondence:
| | - Attila Andrásik
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (A.A.); (T.S.); (T.A.); (F.K.-S.); (J.K.); (Z.B.); (B.H.)
| | - Tamás Smausz
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (A.A.); (T.S.); (T.A.); (F.K.-S.); (J.K.); (Z.B.); (B.H.)
| | - Tibor Ajtai
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (A.A.); (T.S.); (T.A.); (F.K.-S.); (J.K.); (Z.B.); (B.H.)
| | - Fruzsina Kun-Szabó
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (A.A.); (T.S.); (T.A.); (F.K.-S.); (J.K.); (Z.B.); (B.H.)
| | - Judit Kopniczky
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (A.A.); (T.S.); (T.A.); (F.K.-S.); (J.K.); (Z.B.); (B.H.)
| | - Zoltán Bozóki
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (A.A.); (T.S.); (T.A.); (F.K.-S.); (J.K.); (Z.B.); (B.H.)
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös utca 6, 6720 Szeged, Hungary; (P.S.-R.); (R.A.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös utca 6, 6720 Szeged, Hungary; (P.S.-R.); (R.A.)
| | - Béla Hopp
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (A.A.); (T.S.); (T.A.); (F.K.-S.); (J.K.); (Z.B.); (B.H.)
- Interdisciplinary Excellence Centre, Department of Materials Science, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| |
Collapse
|
13
|
Torrado-Salmerón C, Guarnizo-Herrero V, Henriques J, Seiça R, Sena CM, Torrado-Santiago S. Multiparticulate Systems of Ezetimibe Micellar System and Atorvastatin Solid Dispersion Efficacy of Low-Dose Ezetimibe/Atorvastatin on High-Fat Diet-Induced Hyperlipidemia and Hepatic Steatosis in Diabetic Rats. Pharmaceutics 2021; 13:421. [PMID: 33804727 PMCID: PMC8004026 DOI: 10.3390/pharmaceutics13030421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to develop multiparticulate systems with a combination of ezetimibe micellar systems and atorvastatin solid dispersions using croscarmellose as a hydrophilic vehicle and Kolliphor RH40 as a surfactant. The presence of a surfactant with low hydrophilic polymer ratios produces the rapid dissolution of ezetimibe through a drug-polymer interaction that reduces its crystallinity. The solid dispersion of atorvastatin with low proportions of croscarmellose showed drug-polymer interactions sufficient to produce the fast dissolution of atorvastatin. Efficacy studies were performed in diabetic Goto-Kakizaki rats with induced hyperlipidemia. The administration of multiparticulate systems of ezetimibe and atorvastatin at low (2 and 6.7 mg/kg) and high (3 and 10 mg/kg) doses showed similar improvements in levels of cholesterol, triglycerides, lipoproteins, alanine transaminase, and aspartate transaminase compared to the high-fat diet group. Multiparticulate systems at low doses (2 and 6.7 mg/kg of ezetimibe and atorvastatin) had a similar improvement in hepatic steatosis compared to the administration of ezetimibe and atorvastatin raw materials at high doses (3 and 10 mg/kg). These results confirm the effectiveness of solid dispersions with low doses of ezetimibe and atorvastatin to reduce high lipid levels and hepatic steatosis in diabetic rats fed a high-fat diet.
Collapse
Affiliation(s)
- Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.T.-S.); (V.G.-H.)
| | - Víctor Guarnizo-Herrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.T.-S.); (V.G.-H.)
| | - Joana Henriques
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000‐548 Coimbra, Portugal; (J.H.); (R.S.); (C.M.S.)
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000‐548 Coimbra, Portugal; (J.H.); (R.S.); (C.M.S.)
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Cristina M. Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000‐548 Coimbra, Portugal; (J.H.); (R.S.); (C.M.S.)
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.T.-S.); (V.G.-H.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
14
|
Party P, Bartos C, Farkas Á, Szabó-Révész P, Ambrus R. Formulation and In Vitro and In Silico Characterization of "Nano-in-Micro" Dry Powder Inhalers Containing Meloxicam. Pharmaceutics 2021; 13:pharmaceutics13020211. [PMID: 33546452 PMCID: PMC7913764 DOI: 10.3390/pharmaceutics13020211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 01/18/2023] Open
Abstract
Pulmonary delivery has high bioavailability, a large surface area for absorption, and limited drug degradation. Particle engineering is important to develop inhalable formulations to improve the therapeutic effect. In our work, the poorly water-soluble meloxicam (MX) was used as an active ingredient, which could be useful for the treatment of non-small cell lung cancer, cystic fibrosis, and chronic obstructive pulmonary disease. We aimed to produce inhalable “nano-in-micro” dry powder inhalers (DPIs) containing MX and additives (poly-vinyl-alcohol, leucine). We targeted the respiratory zone with the microcomposites and reached a higher drug concentration with the nanonized active ingredient. We did the following investigations: particle size analysis, morphology, density, interparticular interactions, crystallinity, in vitro dissolution, in vitro permeability, in vitro aerodynamics (Andersen cascade impactor), and in silico aerodynamics (stochastic lung model). We worked out a preparation method by combining wet milling and spray-drying. We produced spherical, 3–4 µm sized particles built up by MX nanoparticles. The increased surface area and amorphization improved the dissolution and diffusion of the MX. The formulations showed appropriate aerodynamical properties: 1.5–2.4 µm MMAD and 72–76% fine particle fraction (FPF) values. The in silico measurements proved the deposition in the deeper airways. The samples were suitable for the treatment of local lung diseases.
Collapse
Affiliation(s)
- Petra Party
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös street 6, 6720 Szeged, Hungary; (P.P.); (C.B.); (P.S.-R.)
| | - Csilla Bartos
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös street 6, 6720 Szeged, Hungary; (P.P.); (C.B.); (P.S.-R.)
| | - Árpád Farkas
- Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Miklós Street 29-33, 1121 Budapest, Hungary;
| | - Piroska Szabó-Révész
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös street 6, 6720 Szeged, Hungary; (P.P.); (C.B.); (P.S.-R.)
| | - Rita Ambrus
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös street 6, 6720 Szeged, Hungary; (P.P.); (C.B.); (P.S.-R.)
- Correspondence: ; Tel.: +36-62-545-572
| |
Collapse
|
15
|
Formulation and Nanotechnology-Based Approaches for Solubility and Bioavailability Enhancement of Zerumbone. MEDICINA-LITHUANIA 2020; 56:medicina56110557. [PMID: 33114101 PMCID: PMC7690806 DOI: 10.3390/medicina56110557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
About 40–70% of drug molecules in the clinical development pipeline suffer from one of either low aqueous solubility, poor absorption, or extremely low bioavailability. Approximately 75% of the world population relies on traditional therapies and therefore there has been a growing interest in the utilization of natural compounds. Zerumbone is one such natural compound, classified as a sesquiterpenoid that is extracted from the essential volatile oils of rhizomes from Zingiber zerumbet. It possesses strong antitumor, antioxidant, antimicrobial, and anti-inflammatory activity. However, despite promising preclinical studies demonstrating the therapeutic utility of zerumbone, its clinical development has been limited due to its low aqueous solubility, poor absorption, or associated low bioavailability. Multiple reviews demonstrating the pharmacological effects of zerumbone for various diseases have been published. However, to our knowledge, no review demonstrates the various formulation strategies developed to overcome the biopharmaceutical challenges of zerumbone. The purpose of this review is to provide a comprehensive perspective on zerumbone as a molecule for formulation development. A section related to pharmacokinetics, toxicity, and patents of zerumbone is included. This review provides the importance of developing novel formulations of zerumbone to overcome its biopharmaceutical challenges thereby advance its potential in the treatment of various diseases.
Collapse
|
16
|
Ambrus R, Szabó-Révész P, Kiss T, Nagy E, Szűcs T, Smausz T, Hopp B. Application of a suitable particle engineering technique by pulsed laser ablation in liquid (PLAL) to modify the physicochemical properties of poorly soluble drugs. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Alshora DH, Alsaif S, Ibrahim MA, Ezzeldin E, Almeanazel OT, Abou El Ela AES, Ashri LY. Co-stabilization of pioglitazone HCL nanoparticles prepared by planetary ball milling: in-vitro and in-vivo evaluation. Pharm Dev Technol 2020; 25:845-854. [PMID: 32174213 DOI: 10.1080/10837450.2020.1744163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pioglitazone (PGZ) is an oral antidiabetic agent that increases cell resistance to insulin, thereby decreasing blood glucose levels. PGZ is a class II drug. Because of its pH-dependent solubility, it precipitates at the intestinal pH, resulting in an erratic and incomplete absorption following oral administration, which causes fluctuations in its plasma concentration. A nanoparticle drug delivery system offers a solution to enhance the dissolution rate of this poorly water-soluble drug. PGZ nanoparticles were formulated by the wet milling technique using a planetary ball mill. The effects of the steric stabilizer (Pluronic F-127, PL F-127), electrostatic stabilizer (sodium deoxycholate, SDC), and number of milling cycles were optimized using a Box-Behnken factorial design. The results showed that the ratio of PL F-127: SDC significantly affected the zeta potential and the dissolution efficiency (DE%) of PGZ. The optimized PGZ nanoparticle formulation enhanced the dissolution to reach 100% after 5 min. The in-vivo results showed significant enhancement in Cmax (1.3-fold) compared to that of the raw powder, and both AUC0-24 and AUC0-∞ were significantly (p < 0.05) enhanced. In conclusion, PGZ nanoparticle formulation had enhanced dissolution rate in the alkaline media, which improved its drug bioavailability relative to that of the untreated drug.
Collapse
Affiliation(s)
- Doaa H Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shaikha Alsaif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Essam Ezzeldin
- Department of Pharmaceutical Chemistry and Drug Bioavailability Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Drug Bioavailability Center, National Organization for Drug Control and Research, (NODCAR), Cairo, Egypt
| | - Osaid T Almeanazel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal El Sayeh Abou El Ela
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, Assiut University, Assiut, Egypt
| | - Lubna Y Ashri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Bolourchian N, Nili M, Foroutan SM, Mahboubi A, Nokhodchi A. The use of cooling and anti-solvent precipitation technique to tailor dissolution and physicochemical properties of meloxicam for better performance. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Bartos C, Ambrus R, Katona G, Sovány T, Gáspár R, Márki Á, Ducza E, Ivanov A, Tömösi F, Janáky T, Szabó-Révész P. Transformation of Meloxicam Containing Nanosuspension into Surfactant-Free Solid Compositions to Increase the Product Stability and Drug Bioavailability for Rapid Analgesia. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4007-4020. [PMID: 31819372 PMCID: PMC6886534 DOI: 10.2147/dddt.s220876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/13/2019] [Indexed: 12/03/2022]
Abstract
Purpose The aim of this work was to study the influence of solidification of meloxicam (Mel) containing nanosuspension (nanoMel) on the physical stability and drug bioavailability of the products. The nanoMel sample had poly(vinyl alcohol) (PVA) as a protective polymer, but no surfactant as a further stabilizing agent because the final aim was to produce surfactant-free solid phase products as well. Methods The solidified samples produced by fluidization and lyophilization (fluidMel, lyoMel) were examined for particle size, crystallinity, and in vitro release of Mel compared to similar parameters of nanoMel. The products were subjected to an animal experiment using per oral administration to verify their bioavailability. Results Mel containing (1%) nanoMel sample was produced by wet milling process using an optimized amount of PVA (0.5%) which resulted in 130 nm as mean particle size and a significant reduction in the degree of crystallinity (13.43%) of Mel. The fluidization technique using microcrystalline cellulose (MCC) as carrier resulted in a quick conversion and no significant change in the critical product parameters. The process of lyophilization required a longer operation time, which resulted in the amorphization of the crystalline carrier (trehalose) and the recrystallization of Mel increased its particle size and crystallinity. The fluidMel and lyoMel samples had nearly five-fold higher relative bioavailability than nanoMel application by oral administration. The correlation between in vitro and in vivo studies showed that the fixed Mel nanoparticles on the surface of solid carriers (MCC, trehalose) in both the artificial gastric juice and the stomach of the animals rapidly reached saturation concentration leading to faster dissolution and rapid absorption. Conclusion The solidification of the nanosuspension not only increased the stability of the Mel nanoparticles but also allowed the preparation of surfactant-free compositions with excellent bioavailability which may be an important consideration for certain groups of patients to achieve rapid analgesia.
Collapse
Affiliation(s)
- Csaba Bartos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Gábor Katona
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Tamás Sovány
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Róbert Gáspár
- Faculty of Medicine, Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Árpád Márki
- Faculty of Medicine, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Ducza
- Faculty of Pharmacy, Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Anita Ivanov
- Faculty of Pharmacy, Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Ferenc Tömösi
- Interdisciplinary Excellence Centre, Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Tamás Janáky
- Interdisciplinary Excellence Centre, Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Piroska Szabó-Révész
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Alshora D, Ibrahim M, Elzayat E, Almeanazel OT, Alanazi F. Defining the process parameters affecting the fabrication of rosuvastatin calcium nanoparticles by planetary ball mill. Int J Nanomedicine 2019; 14:4625-4636. [PMID: 31303752 PMCID: PMC6603996 DOI: 10.2147/ijn.s207301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/06/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Rosuvastatin calcium (ROSCa) nanoparticles were fabricated by planetary ball mill to enhance ROSCa dissolution rate and bioavailability. Methods Milling time factors (milling cycle time and number as well as pause time) were explored. The effect of different milling ball size, speed, and solid-to-solvent ratio were also studied using Box-Behnken factorial design. The fabricated nanoparticles were evaluated in term of physicochemical properties and long-term stability. Results The obtained data revealed that the integrated formulation and process factors should be monitored to obtain desirable nanoparticle attributes in terms of particle size, zeta potential, dissolution rate, and bioavailability. The optimized ROSCa nanoparticles prepared by milling technique showed a significant enhancement in the dissolution rate by 1.3-fold and the plasma concentration increased by 2-fold (P<0.05). Moreover, stability study showed that the optimized formula of ROSCa nanoparticles exhibits higher stability in long-term stability conditions at 30°C with humidity of 60%. Conclusion Formulation of ROSCa as nanoparticles using milling technique showed a significant enhancement in both dissolution rate and plasma concentration as well as stability compared with untreated drug.
Collapse
Affiliation(s)
- Doaa Alshora
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Ibrahim
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ehab Elzayat
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Osaid T Almeanazel
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fars Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Luciani CV. Impact of Process Parameters on the Grinding Limit in High-Shear Wet Milling. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carla V. Luciani
- Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly & Co., 1400 West Raymond Street, Indianapolis, Indiana 46221, United States
| |
Collapse
|
22
|
Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Eur J Pharm Sci 2018; 122:94-104. [PMID: 29908301 DOI: 10.1016/j.ejps.2018.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/18/2018] [Accepted: 06/12/2018] [Indexed: 01/06/2023]
Abstract
Nanoparticle engineering is a well-defined technique employed as a novel and effective method in drug design and delivery. It is widely used to control particle size, as well as the morphological and physicochemical properties of active pharmaceutical ingredients. Furthermore, it serves as a method of pre-dispersion preparation for various dosage form developments. Nanotechnology produces nanomaterials with enhanced properties in terms of solubility, dissolution and permeability. In this work, ultrasonic-assisted precipitation was employed to produce nanosuspensions of poorly water-soluble loratadine, using different stabilizers. The objective of our study was attempting to prepare solid nanoparticles of loratadine to be used as a possible intermediate for designing various dosage forms. The effects of the type(s) and concentration(s) of stabilizer(s) on mean particle size were assessed. Optimal process parameters required to produce homogeneous nanoparticles with particle size below 500 nm and polydispersity less than 0.3 were determined both for precipitation and ultrasonication. Pre-dispersions were evaluated for their particle size, polydispersity index and zeta potential. Freeze-drying was employed to produce dry nanoparticles. Particle size, particle size distribution and zeta potential of the dried nanoparticles were measured after reconstitution in water. Besides thermal analysis using DSC and structural analyses (XRPD and FT-IR), the morphological characteristics and dissolution behaviors were also investigated. The selected freeze-dried nanoparticles had a mean particle size range of 353-441 nm, a polydispersity index ranging between 0.167 and 0.229 and a zeta potential between -25.7 and -20.7 mV. These results suggest that material and process parameters were successfully optimized. DSC and XRPD spectra confirmed interactions between the formulation's components during freeze-drying. The solid nanoparticles showed 30-42% of cumulative release after 10 min compared to less than 1% of dissolution characterizing loratadine without pre-processing. This study demonstrates that preparing dried loratadine nanoparticles suitable for designing effective drug preparations is a feasible approach.
Collapse
|
23
|
Bartos C, Jójárt-Laczkovich O, Katona G, Budai-Szűcs M, Ambrus R, Bocsik A, Gróf I, Deli MA, Szabó-Révész P. Optimization of a combined wet milling process in order to produce poly(vinyl alcohol) stabilized nanosuspension. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1567-1580. [PMID: 29910603 PMCID: PMC5987755 DOI: 10.2147/dddt.s159965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Purpose The article reports a wet milling process, where the planetary ball mill was combined with pearl milling technology to reach nanosize range of meloxicam (Mel; 100–500 nm). The main purpose was to increase the dissolution rate and extent of a poorly water-soluble Mel as nonsteroidal anti-inflammatory drug as well as to study its permeability across cultured intestinal epithelial cell layers. Methods Viscosity of milled dispersion and particle size distribution and zeta potential of Mel were investigated and differential scanning calorimeter and X-ray powder diffractometer were used to analyse the structure of the suspended Mel. Finally in vitro dissolution test and in vitro cell culture studies were made. Results It was found that the ratio of predispersion and pearls 1:1 (w/w) resulted in the most effective grinding system (200-fold particle size reduction in one step) with optimized process parameters, 437 rpm and 43 min. Nanosuspension (1% Mel and 0.5% poly[vinyl alcohol]) as an intermediate product showed a stable system with 2 weeks of holding time. This optimized nanosuspension enhanced the penetration of Mel across cultured intestinal epithelial cell layers without toxic effects. Conclusion The dissolution rate of Mel from the poly(vinyl alcohol) stabilized nanosuspension justified its applicability in the design of innovative per oral dosage form (capsule) in order to ensure/give a rapid analgesia.
Collapse
Affiliation(s)
- Csaba Bartos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Orsolya Jójárt-Laczkovich
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Gábor Katona
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Mária Budai-Szűcs
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Alexandra Bocsik
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ilona Gróf
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária Anna Deli
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Piroska Szabó-Révész
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|