1
|
Ilovaisky AI, Scherbakov AM, Chernoburova EI, Shchetinina MA, Merkulova VM, Bogdanov FB, Sorokin DV, Salnikova DI, Bozhenko EI, Zavarzin IV, Terent'ev AO. Secosteroid diacylhydrazines as novel effective agents against hormone-dependent breast cancer cells. J Steroid Biochem Mol Biol 2024; 244:106597. [PMID: 39127416 DOI: 10.1016/j.jsbmb.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This research aimed to develop novel selective secosteroids that are highly active against hormone-dependent breast cancer. A simple and convenient approach to N'-acylated 13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazides was disclosed and these novel types of secosteroids were screened for cytotoxicity against the hormone-dependent human breast cancer cell line MCF7. Most secosteroid N'-benzoyl hydrazides have demonstrated high cytotoxicity against MCF7 cells with IC50 values below 5 μM, which are superior to that of the reference drug cisplatin. Hit compounds 2c, 2e and 2i were characterized by high cytotoxicity (IC50 = 1.6-1.9 μM) and very good selectivity towards MCF7 breast cancer cells. The lead secosteroids 2c, 2e and 2i also exhibit antiestrogenic effects and alter the expression of cell cycle regulating proteins. The effect of selected compounds on PARP (poly(ADP-ribose) polymerase) and Bcl-2 (B-cell CLL/lymphoma 2) indicates their proapoptotic potential. The synthesized secosteroids may be considered as new promising anti-breast cancer agents targeting ERα and apoptosis pathways.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia; Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya ulitsa 11, Moscow 119021, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Fedor B Bogdanov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Danila V Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Diana I Salnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia; N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Eugene I Bozhenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
2
|
Bózsity N, Nagy V, Szabó J, Pálházi B, Kele Z, Resch V, Paragi G, Zupkó I, Minorics R, Mernyák E. Synthesis of Estrone Heterodimers and Evaluation of Their In Vitro Antiproliferative Activity. Int J Mol Sci 2024; 25:4274. [PMID: 38673860 PMCID: PMC11050183 DOI: 10.3390/ijms25084274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Directed structural modifications of natural products offer excellent opportunities to develop selectively acting drug candidates. Natural product hybrids represent a particular compound group. The components of hybrids constructed from different molecular entities may result in synergic action with diminished side effects. Steroidal homo- or heterodimers deserve special attention owing to their potentially high anticancer effect. Inspired by our recently described antiproliferative core-modified estrone derivatives, here, we combined them into heterodimers via Cu(I)-catalyzed azide-alkyne cycloaddition reactions. The two trans-16-azido-3-(O-benzyl)-17-hydroxy-13α-estrone derivatives were reacted with 3-O-propargyl-D-secoestrone alcohol or oxime. The antiproliferative activities of the four newly synthesized dimers were evaluated against a panel of human adherent gynecological cancer cell lines (cervical: Hela, SiHa, C33A; breast: MCF-7, T47D, MDA-MB-231, MDA-MB-361; ovarian: A2780). One heterodimer (12) exerted substantial antiproliferative activity against all investigated cell lines in the submicromolar or low micromolar range. A pronounced proapoptotic effect was observed by fluorescent double staining and flow cytometry on three cervical cell lines. Additionally, cell cycle blockade in the G2/M phase was detected, which might be a consequence of the effect of the dimer on tubulin polymerization. Computational calculations on the taxoid binding site of tubulin revealed potential binding of both steroidal building blocks, mainly with hydrophobic interactions and water bridges.
Collapse
Affiliation(s)
- Noémi Bózsity
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (N.B.); (V.N.)
| | - Viktória Nagy
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (N.B.); (V.N.)
| | - Johanna Szabó
- Department of Analytical and Molecular Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (J.S.); (B.P.)
| | - Balázs Pálházi
- Department of Analytical and Molecular Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (J.S.); (B.P.)
| | - Zoltán Kele
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.K.); (V.R.); (G.P.)
| | - Vivien Resch
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.K.); (V.R.); (G.P.)
| | - Gábor Paragi
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.K.); (V.R.); (G.P.)
- Institute of Physics, University of Pécs, Ifjúság útja 6, H-7625 Pécs, Hungary
- Department of Theoretical Physics, University of Szeged, Tisza Lajos krt. 84-86, H-6720 Szeged, Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (N.B.); (V.N.)
| | - Renáta Minorics
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (N.B.); (V.N.)
| | - Erzsébet Mernyák
- Department of Analytical and Molecular Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (J.S.); (B.P.)
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Ilovaisky AI, Scherbakov AM, Chernoburova EI, Povarov AA, Shchetinina MA, Merkulova VM, Salnikova DI, Sorokin DV, Bozhenko EI, Zavarzin IV, Terent'ev AO. Secosteroid thiosemicarbazides and secosteroid-1,2,4-triazoles as antiproliferative agents targeting breast cancer cells: Synthesis and biological evaluation. J Steroid Biochem Mol Biol 2023; 234:106386. [PMID: 37666392 DOI: 10.1016/j.jsbmb.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
A convenient and selective approach to 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-arylcarbothioamido]hydrazides and hybrid molecules containing secosteroid and 1,2,4-triazole fragments was disclosed and these novel types of secosteroids were screened for cytotoxicity against hormone-dependent human breast cancer cell line MCF-7. Most of secosteroid-1,2,4-triazole hybrids showed significant cytotoxic effect comparable or superior to that of the reference drug cisplatin. Hit secosteroid-1,2,4-triazole hybrids 4b and 4h were characterized by high cytotoxicity and good selectivity towards MCF-7 breast cancer cells. PARP cleavage (marker of apoptosis) and ERα and cyclin D1 downregulation were discovered in MCF-7 cells treated with lead secosteroid-1,2,4-triazole hybrid 4b. The synthesized secosteroids may be considered as new promising anticancer agents.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Andrey A Povarov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Diana I Salnikova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Danila V Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Eugene I Bozhenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
4
|
Ali H, Traj P, Szebeni GJ, Gémes N, Resch V, Paragi G, Mernyák E, Minorics R, Zupkó I. Investigation of the Antineoplastic Effects of 2-(4-Chlorophenyl)-13α-Estrone Sulfamate against the HPV16-Positive Human Invasive Cervical Carcinoma Cell Line SiHa. Int J Mol Sci 2023; 24:ijms24076625. [PMID: 37047597 PMCID: PMC10095317 DOI: 10.3390/ijms24076625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cervical carcinoma is one of the most frequent malignant gynecological cancers in women of reproductive age. Because of the poor tolerability of currently available chemotherapeutic agents, efforts have been focused on developing innovative molecules, including steroids, that exert antineoplastic effects with a better safety profile. In addition to their endocrine properties, certain estrogens exhibit additional biological activities, such as antiangiogenic and anticancer effects. Based on previous studies, the antineoplastic properties of 13α-estrone sulfamate derivatives (13AES1-3) were investigated, and the mechanism of action for the most promising compound 13AES3 was explored. Based on their effects on the viability of different human adherent gynecological cancer cells, the SiHa cervical cell line was used for mechanistic experiments. The most active analog 13AES3 was shown to exert considerable proapoptotic effects, as evidenced by a colorimetric caspase-3 assay and fluorescent double staining. It also elicited antimigratory and anti-invasive effects in a concentration-dependent manner, as evidenced by wound healing and Boyden chamber assays, respectively. Regarding their mechanism of action, 13AES derivatives were shown to inhibit tubulin polymerization, and computer simulations provided a possible explanation for the importance of the presence of the chlorophenyl ring on the estrane skeleton. 13AES3 is considered to be the first 13α-estrone derivative with a significant antineoplastic potency against SiHa cancer cells. Therefore, it might serve as a valuable lead molecule for the design of anticancer agents targeting cervical carcinomas.
Collapse
Affiliation(s)
- Hazhmat Ali
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Péter Traj
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor J. Szebeni
- Laboratory of Functional Genomics, Biological Research Centre, H-6726 Szeged, Hungary
| | - Nikolett Gémes
- Laboratory of Functional Genomics, Biological Research Centre, H-6726 Szeged, Hungary
| | - Vivien Resch
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Paragi
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary
- Institute of Physics, University of Pécs, H-7622 Pécs, Hungary
- Department of Theoretical Physics, University of Szeged, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Renáta Minorics
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
5
|
Kumar R, Wang T, Veedu RN, Kumar S. Novel 3'-[4-fluoroaryl-(1,2,3-triazol-1-yl)]-3'-deoxythymidine analogues: Design, synthesis, characterization and their potential as anticancer agents. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:343-360. [PMID: 35094645 DOI: 10.1080/15257770.2022.2029883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Novel 3'-[4-fluoroaryl-(1,2,3-triazol-1-yl)]-3'-deoxythymidine analogues (7a-l) were developed by the Cu alkyne-azide cycloaddition (CuAAC) reaction. The obtained lead compounds were confirmed by using 1H NMR, 13C NMR, 2 D NMR, HRMS and their anticancer activities were screened against Huh-7 liver cancer cells and U87MG human glioblastoma cells. Among the synthesized fluorinated 1,2,3-triazolyl nucleosides, three compounds (7i, 7a-b) demonstrated promising anti-proliferative against Huh-7 and U87MG cell lines. Significantly, compound 7i has displayed remarkable promising anticancer activity with IC50 value in the micromole range (22.41-24.92 µM) and (18.12-21.36 µM) against Huh-7 cancer cells and U87MG glioblastoma cells, respectively.
Collapse
Affiliation(s)
- Ritik Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Tao Wang
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Surender Kumar
- Bioorganic Laboratory, Department of Chemistry, Institute of Integrated & Honors Studies (IIHS), Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
6
|
Traj P, Abdolkhaliq AH, Németh A, Dajcs ST, Tömösi F, Lanisnik-Rizner T, Zupkó I, Mernyák E. Transition metal-catalysed A-ring C-H activations and C(sp 2)-C(sp 2) couplings in the 13α-oestrone series and in vitro evaluation of antiproliferative properties. J Enzyme Inhib Med Chem 2021; 36:895-902. [PMID: 33771084 PMCID: PMC8008932 DOI: 10.1080/14756366.2021.1900165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/06/2022] Open
Abstract
Facile syntheses of 3-O-carbamoyl, -sulfamoyl, or -pivaloyl derivatives of 13α-oestrone and its 17-deoxy counterpart have been carried out. Microwave-induced, Ni-catalysed Suzuki-Miyaura couplings of the newly synthesised phenol esters with phenylboronic acid afforded 3-deoxy-3-phenyl-13α-oestrone derivatives. The carbamate and pivalate esters proved to be suitable for regioselective arylations. 2-(4-Substituted) phenyl derivatives were synthesised via Pd-catalysed, microwave-assisted C-H activation reactions. An efficient, one-pot, tandem methodology was elaborated for the introduction of the carbamoyl or pivaloyl group followed by regioselective C-2-arylation and subsequent removal of the directing group. The antiproliferative properties of the novel 13α-oestrone derivatives were evaluated in vitro on five human adherent cancer cell lines of gynaecological origin. 3-Sulfamate derivatives displayed substantial cell growth inhibitory potential against certain cell lines. The newly identified antiproliferative compounds having hormonally inactive core might be promising candidates for the design of more active anticancer agents.
Collapse
Affiliation(s)
- Péter Traj
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | | | - Anett Németh
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | | | - Ferenc Tömösi
- Department of Medicinal Chemistry, University of Szeged, Szeged, Hungary
| | - Tea Lanisnik-Rizner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Ilovaisky AI, Merkulova VM, Chernoburova EI, Shchetinina MA, Salnikova DI, Scherbakov AM, Zavarzin IV, Terent'ev AO. Secosteroidal hydrazides: Promising scaffolds for anti-breast cancer agents. J Steroid Biochem Mol Biol 2021; 214:106000. [PMID: 34547379 DOI: 10.1016/j.jsbmb.2021.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022]
Abstract
A convenient and selective approach to 13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazides and their N'-(het)arylmethylene derivatives was disclosed and these novel types of secosteroids were screened for cytotoxicity against hormone-dependent human breast cancer cell line MCF-7. A number of 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-(het)arylmethylene]hydrazides show significant cytotoxic effect comparable or superior to that for reference drug cisplatin. Compound 3l exhibits the highest activity with the IC50 value of about 2 μM and is 2.8 times more active than cisplatin. Hit 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-(het)arylmethylene]hydrazides 3d, 3l and 3q are characterized by high cytotoxicity and good selectivity towards MCF-7 breast cancer cells. The synthesized secosteroids may be considered as new promising antitumor agents.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Diana I Salnikova
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24 Kashirskoye sh., Moscow, 115522, Russia
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24 Kashirskoye sh., Moscow, 115522, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.
| |
Collapse
|
8
|
Laczkó-Rigó R, Bakos É, Jójárt R, Tömböly C, Mernyák E, Özvegy-Laczka C. Selective antiproliferative effect of C-2 halogenated 13α-estrones on cells expressing Organic anion-transporting polypeptide 2B1 (OATP2B1). Toxicol Appl Pharmacol 2021; 429:115704. [PMID: 34474082 DOI: 10.1016/j.taap.2021.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022]
Abstract
Organic anion-transporting polypeptide 2B1 (OATP2B1) is a multispecific transporter mediating the cellular uptake of steroids and numerous drugs. OATP2B1 is abundantly expressed in the intestine and is also present in various tumors. Increased steroid hormone uptake by OATP2B1 has been suggested to promote progression of hormone dependent tumors. 13α-estrones are effective inhibitors of endogenous estrogen formation and are potential candidates to inhibit proliferation of hormone dependent cancers. Recently, we have identified a variety of 13α/β-estrone-based inhibitors of OATP2B1. However, the nature of this interaction, whether these inhibitors are potential transported substrates of OATP2B1 and hence may be enriched in OATP2B1-overexpressing cells, has not yet been investigated. In the current study we explored the antiproliferative effect of the most effective OATP2B1 inhibitor 13α/β-estrones in control and OATP2B1-overexpressing A431 carcinoma cells. We found an increased antiproliferative effect of 3-O-benzyl 13α/β-estrones in both mock transfected and OATP2B1-overexpressing cells. However, C-2 halogenated 13α-estrones had a selective OATP2B1-mediated cell growth inhibitory effect. In order to demonstrate that increased sensitization can be attributed to OATP2B1-mediated cellular uptake, tritium labeled 2-bromo-13α-estrone was synthesized for direct transport measurements. These experiments revealed increased accumulation of [3H]2-bromo-13α-estrone due to OATP2B1 function. Our results indicate that C-2 halogenated 13α-estrones are good candidates in the design of anti-cancer drugs targeting OATP2B1.
Collapse
Affiliation(s)
- Réka Laczkó-Rigó
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Center, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| | - Éva Bakos
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Center, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| | - Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Center, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| |
Collapse
|
9
|
Mernyák E, Bartha S, Kóczán L, Jójárt R, Resch V, Paragi G, Vágvölgyi M, Hunyadi A, Bruszel B, Zupkó I, Minorics R. Microwave-assisted Phospha-Michael addition reactions in the 13α-oestrone series and in vitro antiproliferative properties. J Enzyme Inhib Med Chem 2021; 36:1931-1937. [PMID: 34445919 PMCID: PMC8405091 DOI: 10.1080/14756366.2021.1963241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microwave-assisted phospha-Michael addition reactions were carried out in the 13α-oestrone series. The exocyclic 16-methylene-17-ketones as α,β-unsaturated ketones were reacted with secondary phosphine oxides as nucleophilic partners. The addition reactions furnished the two tertiary phosphine oxide diastereomers in high yields. The main product was the 16α-isomer. The antiproliferative activities of the newly synthesised organophosphorus compounds against a panel of nine human cancer cell lines were investigated by means of MTT assays. The most potent compound, the diphenylphosphine oxide derivative in the 3-O-methyl-13α-oestrone series (9), exerted selective cell growth-inhibitory activity against UPCI-SCC-131 and T47D cell lines with low micromolar IC50 values. Moreover, it displayed good tumour selectivity property determined against non-cancerous mouse fibroblast cells.
Collapse
Affiliation(s)
- Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Sándor Bartha
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Lili Kóczán
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Vivien Resch
- Department of Medicinal Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary.,Institute of Physics, University of Pécs, Pécs, Hungary
| | - Máté Vágvölgyi
- Department of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Attila Hunyadi
- Department of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Bella Bruszel
- Department of Medicinal Chemistry, University of Szeged, Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Renáta Minorics
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Jójárt R, Tahaei SAS, Trungel-Nagy P, Kele Z, Minorics R, Paragi G, Zupkó I, Mernyák E. Synthesis and evaluation of anticancer activities of 2- or 4-substituted 3-( N-benzyltriazolylmethyl)-13α-oestrone derivatives. J Enzyme Inhib Med Chem 2021; 36:58-67. [PMID: 33121276 PMCID: PMC7598997 DOI: 10.1080/14756366.2020.1838500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
2- or 4-Substituted 3-N-benzyltriazolylmethyl-13α-oestrone derivatives were synthesised via bromination of ring A and subsequent microwave-assisted, Pd-catalysed C(sp2)–P couplings. The antiproliferative activities of the newly synthesised brominated and phosphonated compounds against a panel of human cancer cell lines (A2780, MCF-7, MDA-MB 231) were investigated by means of MTT assays. The most potent compound, the 3-N-benzyltriazolylmethyl-4-bromo-13α-oestrone derivative exerted substantial selective cell growth-inhibitory activity against A2780 cell line with a submicromolar IC50 value. Computational calculations reveal strong interactions of the 4-bromo derivative with both colchicine and taxoid binding sites of tubulin. Disturbance of tubulin function has been confirmed by photometric polymerisation assay.
Collapse
Affiliation(s)
- Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | | | | | - Zoltán Kele
- Department of Medicinal Chemistry, University of Szeged, Szeged, Hungary
| | - Renáta Minorics
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Jójárt R, Laczkó-Rigó R, Klement M, Kőhl G, Kecskeméti G, Özvegy-Laczka C, Mernyák E. Design, synthesis and biological evaluation of novel estrone phosphonates as high affinity organic anion-transporting polypeptide 2B1 (OATP2B1) inhibitors. Bioorg Chem 2021; 112:104914. [PMID: 33932771 DOI: 10.1016/j.bioorg.2021.104914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
Organic anion-transporting polypeptide 2B1 (OATP2B1) is a multispecific membrane transporter mediating the cellular uptake of various exo- and endobiotics, including drugs and steroid hormones. Increased uptake of steroid hormones by OATP2B1 may increase tumor proliferation. Therefore, understanding OATP2B1's substrate/inhibitor recognition and inhibition of its function, e.g., in hormone-dependent tumors, would be highly desirable. To identify the crucial structural features that correlate with OATP2B1 inhibition, here we designed modifications at four positions of the estrane skeleton. 13α- or 13β-estrone phosphonates modified at ring A or ring D were synthesized. Hirao and Cu(I)-catalyzed azide-alkyne click reactions served in the syntheses as key steps. 13β-Derivatives displayed outstanding OATP2B1 inhibitory action with IC50 values in the nanomolar range (41-87 nM). A BODIPY-13α-estrone conjugate was additionally synthesized, modified at C-3-O of the steroid, containing a four-carbon linker between the triazole moiety and the BODIPY core. The fluorescent conjugate displayed efficient, submicromolar OATP2B1 inhibitory potency. The newly identified inhibitors and the structure-activity relationships specified here promote our understanding about drug recognition of OATP2B1.
Collapse
Affiliation(s)
- Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Réka Laczkó-Rigó
- Drug Resistance Research Group instead of Membrane Protein Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Máté Klement
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gabriella Kőhl
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gábor Kecskeméti
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group instead of Membrane Protein Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
12
|
Jójárt R, Ali H, Horváth G, Kele Z, Zupkó I, Mernyák E. Pd-catalyzed Suzuki-Miyaura couplings and evaluation of 13α-estrone derivatives as potential anticancer agents. Steroids 2020; 164:108731. [PMID: 32946911 DOI: 10.1016/j.steroids.2020.108731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023]
Abstract
13α-Estrones are of great value owing to their potent multiple bioactivity, including anticancer activity. 3-OH or 3-OBn derivatives of 2- or 4-[(subst.) phenyl]-13α-estrone as potential antiproliferative agents have been synthesized via facile, microwave-induced, Pd-catalyzed Suzuki-Miyaura coupling. 2- or 4-Halogenated 13α-estrone derivatives have been reacted with (4-subst.)phenylboronic acids using Pd(PPh3)4 as catalyst. The nature of para substituents at the introduced phenyl group did not influence the outcome of couplings. Certain newly synthesized compounds displayed substantial antiproliferative action against human adherent cancer cell lines of gynecological origin. Important structure-activity relationships were revealed, which might be helpful in the design of potent and selective anticancer derivatives based on the hormonally inactive 13α-estrane core.
Collapse
Affiliation(s)
- Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Hazhmat Ali
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Gergely Horváth
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Zoltán Kele
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
13
|
Synthesis, Characterization and Photodynamic Activity against Bladder Cancer Cells of Novel Triazole-Porphyrin Derivatives. Molecules 2020; 25:molecules25071607. [PMID: 32244514 PMCID: PMC7180931 DOI: 10.3390/molecules25071607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 11/16/2022] Open
Abstract
Novel triazole-porphyrin derivatives (TZ-PORs) were synthesized through the Heck reaction and then incorporated into polyvinylpyrrolidone (PVP) micelles. After verifying that this incorporation did not compromise the photophysical and chemical features of TZ-PORs as photosensitizers, the phototoxicity of the formulations towards cancer cells was screened. Biological studies show high photodynamic activity of all PVP-TZ-POR formulations against a bladder cancer cell line with a particular highlight to PVP-TZ-POR 7e and 7f that are able to significantly reduce HT-1376 cell viability, while they had no effect on control ARPE-19 cells.
Collapse
|
14
|
Synthesis and Cytotoxic Activity of New Vindoline Derivatives Coupled to Natural and Synthetic Pharmacophores. Molecules 2020; 25:molecules25041010. [PMID: 32102414 PMCID: PMC7070384 DOI: 10.3390/molecules25041010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
New Vinca alkaloid derivatives were synthesized to improve the biological activity of the natural alkaloid vindoline. To this end, experiments were performed to link vindoline with various structural units, such as amino acids, a 1,2,3-triazole derivative, morpholine, piperazine and N-methylpiperazine. The structure of the new compounds was characterized by NMR spectroscopy and mass spectrometry (MS). Several compounds exhibited in vitro antiproliferative activity against human gynecological cancer cell lines with IC50 values in the low micromolar concentration range.
Collapse
|
15
|
Keglevich A, Zsiros V, Keglevich P, Szigetvári Á, Dékány M, Szántay C, Mernyák E, Wölfling J, Hazai L. Synthesis and In Vitro Antitumor Effect of New Vindoline-steroid Hybrids. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190614113218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
10-Aminovindoline and 17-desacetylvindoline were coupled with 5α-
dihydrotestosterone hemisuccinate and 19-nortestosterone hemisuccinate. As a result,
four vindoline-steroid hybrids were synthesized via a succinate linker. One of the new
hybrid compounds showed significant anticancer effect in vitro in the case of colon cancer
and melanoma cell lines.
Collapse
Affiliation(s)
- András Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Gellert ter 4, Hungary
| | - Vivian Zsiros
- Quality Process Development Department, Egis Pharmaceuticals Plc., H-1106 Budapest, Kereszturi ut 30-38, Hungary
| | - Péter Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Gellert ter 4, Hungary
| | - Áron Szigetvári
- Spectroscopic Research Department, Gedeon Richter Plc., H-1475 Budapest, 10, P. O. Box 27, Hungary
| | - Miklós Dékány
- Spectroscopic Research Department, Gedeon Richter Plc., H-1475 Budapest, 10, P. O. Box 27, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc., H-1475 Budapest, 10, P. O. Box 27, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Dom ter 8, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Dom ter 8, Hungary
| | - László Hazai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Gellert ter 4, Hungary
| |
Collapse
|
16
|
El-Naggar M, Amr AEGE, Fayed AA, Elsayed EA, Al-Omar MA, Abdalla MM. Potent Anti-Ovarian Cancer with Inhibitor Activities on both Topoisomerase II and V600EBRAF of Synthesized Substituted Estrone Candidates. Molecules 2019; 24:E2054. [PMID: 31146483 PMCID: PMC6600292 DOI: 10.3390/molecules24112054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/05/2023] Open
Abstract
A series of 16-(α-alkoxyalkane)-17-hydrazino-estra-1(10),2,4-trien[17,16-c]-3-ol (3a-l) and estra-1(10),2,4-trien-[17,16-c]pyrazoline-3-ol derivatives (4a-d) were synthesized from corresponding arylidines 2a,b which was prepared from estrone 1 as starting material. Condensation of 1 with aldehydes gave the corresponding arylidine derivatives 2a,b which were treated with hydrazine derivatives in alcohols to give the corresponding derivatives 3a-l, respectively. Additionally, treatment of 2a,b with methyl- or phenylhydrazine in ethanolic potassium hydroxide afforded the corresponding N-substituted pyrazoline derivatives 4a-d, respectively. All these derivatives showed potent anti-ovarian cancer both in vitro and in vivo. The mechanism of anti-ovarian cancer was suggested to process via topoisomerase II and V600EBRAF inhibition.
Collapse
Affiliation(s)
- Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah 27272, UAE.
| | - Abd El-Galil E Amr
- Drug Exploration & Development Chair (DEDC), Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Center, Cairo 12622, Egypt.
| | - Ahmed A Fayed
- Applied Organic Chemistry Department, National Research Center, Cairo 12622, Egypt.
- Respiratory Therapy Department, College of Medical Rehabilitation Sciences, Taibah University, Madinah Munawara 22624, Saudi Arabia.
| | - Elsayed A Elsayed
- Zoology Department, Bioproducts Research Chair, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo 12622, Egypt.
| | - Mohamed A Al-Omar
- Drug Exploration & Development Chair (DEDC), Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | | |
Collapse
|
17
|
Synthesis and In Vitro Antitumor Activity of Naringenin Oxime and Oxime Ether Derivatives. Int J Mol Sci 2019; 20:ijms20092184. [PMID: 31052551 PMCID: PMC6539930 DOI: 10.3390/ijms20092184] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Naringenin is one of the most abundant dietary flavonoids exerting several beneficial biological activities. Synthetic modification of naringenin is of continuous interest. During this study our aim was to synthesize a compound library of oxime and oxime ether derivatives of naringenin, and to investigate their biological activities. Two oximes and five oxime ether derivatives were prepared; their structure has been elucidated by NMR and high-resolution mass spectroscopy. The antiproliferative activity of the prepared compounds was evaluated by MTT assay against human leukemia (HL-60) and gynecological cancer cell lines isolated from cervical (HeLa, Siha) and breast (MCF-7, MDA-MB-231) cancers. Tert-butyl oxime ether derivative exerted the most potent cell growth inhibitory activity. Moreover, cell cycle analysis suggested that this derivative caused a significant increase in the hypodiploid (subG1) phase and induced apoptosis in Hela and Siha cells, and induced cell cycle arrest at G2/M phase in MCF-7 cells. The proapoptotic potential of the selected compound was confirmed by the activation of caspase-3. Antioxidant activities of the prepared molecules were also evaluated with xanthine oxidase, DPPH and ORAC assays, and the methyl substituted oxime ether exerted the most promising activity.
Collapse
|
18
|
Danciu C, Muntean D, Alexa E, Farcas C, Oprean C, Zupko I, Bor A, Minda D, Proks M, Buda V, Hancianu M, Cioanca O, Soica C, Popescu S, Dehelean CA. Phytochemical Characterization and Evaluation of the Antimicrobial, Antiproliferative and Pro-Apoptotic Potential of Ephedra alata Decne. Hydroalcoholic Extract against the MCF-7 Breast Cancer Cell Line. Molecules 2018; 24:E13. [PMID: 30577537 PMCID: PMC6337526 DOI: 10.3390/molecules24010013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 11/17/2022] Open
Abstract
Ephedra alata Decne. belongs to the Ephedraceae family. It is a species of Ephedra that grows mostly in the desert. Today, the main importance of Ephedra species in the medical field is due to the presence of the alkaloids derived from phenyl-alanine, which act on the sympathetic nervous system as a sympathomimetic. The aim of this study was to conduct a phytochemical characterization of the hydroalcoholic extract of the aerial part of Ephedra alata Decne., which is indigenous to Tunis, that involves the total phenolic content, individual phenolic content, and antioxidant activity as well as a biological screening for the evaluation of the antimicrobial, antifungal, antiproliferative, pro-apoptotic, and cytotoxic potential against the MCF-7 breast cancer cell line. The results show that the hydroalcoholic extract contains polyphenolic phytocompounds (156.226 ± 0.5 mgGAE/g extract) and elicits antioxidant activity (7453.18 ± 2.5 μmol Trolox/g extract). The extract acted as a bacteriostatic agent against all tested bacterial strains, but was bactericidal only against the Gram-positive cocci and Candida spp. In the set experimental parameters, the extract presents antiproliferative, pro-apoptotic, and cytotoxic potential against the MCF-7 human breast cancer cell line.
Collapse
Affiliation(s)
- Corina Danciu
- Department of Pharmacognosy, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Delia Muntean
- Department of Microbiology, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Ersilia Alexa
- Department of Food Control, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Calea Aradului No. 119, 300641 Timisoara, Romania.
| | - Claudia Farcas
- Department of Pharmaceutical Physics, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Camelia Oprean
- Department of Drug analysis; chemistry of the environment and food, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
- OncoGen Centre, County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania.
| | - Istvan Zupko
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., Szeged H-6720, Hungary.
| | - Andrea Bor
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., Szeged H-6720, Hungary.
| | - Daliana Minda
- Department of Pharmacognosy, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Maria Proks
- Department of Pharmacology and Clinical Pharmacy, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Valentina Buda
- Department of Pharmacology and Clinical Pharmacy, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T.Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania.
| | - Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T.Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania.
| | - Codruta Soica
- Department of Pharmaceutical chemistry, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Sofia Popescu
- Department of Food Control, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Calea Aradului No. 119, 300641 Timisoara, Romania.
| | - Cristina Adriana Dehelean
- Department of Toxicology, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| |
Collapse
|
19
|
Botanical Therapeutics: Phytochemical Screening and Biological Assessment of Chamomile, Parsley and Celery Extracts against A375 Human Melanoma and Dendritic Cells. Int J Mol Sci 2018; 19:ijms19113624. [PMID: 30453564 PMCID: PMC6274727 DOI: 10.3390/ijms19113624] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 01/04/2023] Open
Abstract
Chamomile, parsley, and celery represent major botanical sources of apigenin, a well-known flavone with chemopreventive properties. The aim of this study was to assess the phytochemical composition, antioxidant, and anti-inflammatory potential of methanol extracts obtained from chamomile, parsley, and celery collected from Romania, as well as the biological activity against A375 human melanoma and human dendritic cells. Results have shown that all three extracts are rich in polyphenolic compounds and flavonoids, and they generate a radical scavenger capacity, iron chelation potential, as well as lipoxygenase inhibition capacity. Chamomile and celery extracts present weak antiproliferative and pro-apoptotic properties in the set experimental conditions, while parsley extract draws out significant pro-apoptotic potential against A375 human melanoma cells. Parsley and chamomile extracts affected the fibroblast-like morphology of the screened tumor cell line. On the other hand, chamomile and celery extracts abrogated the expansion of LPS-activated dendritic cells, while the metabolic activity was attenuated by stimulation with celery extract; chamomile and parsley extracts had no effect upon this parameter. Chamomile and parsley extracts incubation with naive dendritic cells did not trigger cytokine secretion (TNF-alpha, IL-6, IL-10), but celery extract stimulation significantly reduced the anti-inflammatory, cytokine IL-10.
Collapse
|
20
|
In Vitro and In Vivo Anti-Breast Cancer Activities of Some Synthesized Pyrazolinyl-estran-17-one Candidates. Molecules 2018; 23:molecules23071572. [PMID: 29958453 PMCID: PMC6100451 DOI: 10.3390/molecules23071572] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 01/26/2023] Open
Abstract
A series of estrone derivatives, 2–4, were synthesized from the corresponding arylidine estrone, 2a,b, as starting materials, which were prepared by condensation of estrone (3-hydroxy-estran-17-one, 1) with 4-bromobenzaldehyde and thiophene-2-aldehyde. Treating of 2a,b with hydrazine derivatives in acetic acid or propionic acid afforded pyrazoline derivatives, 3a–f and 4a–f, respectively. Furthermore, results proved the superiority of thienyl derivatives over 4-bromophenol derivatives in terms of cytotoxic effects on MCF-7 cancer cells. In vivo xenograft breast cancer animal model experiments revealed that the synthesized derivatives can be used for decreasing tumor volume, while the most potent derivative (4f) decreased the development of tumor volume by about 87.0% after 12 days.
Collapse
|
21
|
Bacsa I, Szemerédi D, Wölfling J, Schneider G, Fekete L, Mernyák E. The first Pd-catalyzed Buchwald-Hartwig aminations at C-2 or C-4 in the estrone series. Beilstein J Org Chem 2018; 14:998-1003. [PMID: 29977371 PMCID: PMC6009172 DOI: 10.3762/bjoc.14.85] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 01/26/2023] Open
Abstract
A facile Pd-catalyzed C(sp2)–N coupling to provide a range of 2- or 4-[(subst.)phenyl]amino-13α-estrone derivatives has been achieved under microwave irradiation. The reactions were mediated with the use of Pd(OAc)2 as a catalyst and KOt-Bu as a base in the presence of X-Phos as a ligand. The desired products have been obtained in good to excellent yields. The nature and the position of the aniline substituent at the aromatic ring influenced the outcome of the couplings. 2-Amino-13α-estrone was also synthesized in a two-step protocol including an amination of 2-bromo-13α-estrone 3-benzyl ether with benzophenone imine and subsequent hydrogenolysis.
Collapse
Affiliation(s)
- Ildikó Bacsa
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Dávid Szemerédi
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Lilla Fekete
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| |
Collapse
|
22
|
Synthesis, spectral- and theoretical study, x-ray analysis, and antiproliferative activity of 4,5-dihydrobenzoferroceno[1,2-d][1,2,3]selenadiazole and its benzo-fused analogue. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Malkowski SN, Dishuck CF, Lamanilao GG, Embry CP, Grubb CS, Cafiero M, Peterson LW. Design, Modeling and Synthesis of 1,2,3-Triazole-Linked Nucleoside-Amino Acid Conjugates as Potential Antibacterial Agents. Molecules 2017; 22:molecules22101682. [PMID: 28994722 PMCID: PMC6151744 DOI: 10.3390/molecules22101682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 02/01/2023] Open
Abstract
Copper-catalyzed azide-alkyne cycloadditions (CuAAC or click chemistry) are convenient methods to easily couple various pharmacophores or bioactive molecules. A new series of 1,2,3-triazole-linked nucleoside-amino acid conjugates have been designed and synthesized in 57–76% yields using CuAAC. The azido group was introduced on the 5′-position of uridine or the acyclic analogue using the tosyl-azide exchange method and alkylated serine or proparylglycine was the alkyne. Modeling studies of the conjugates in the active site of LpxC indicate they have promise as antibacterial agents.
Collapse
Affiliation(s)
- Sarah N Malkowski
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA.
| | - Carolyn F Dishuck
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA.
| | - Gene G Lamanilao
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA.
| | - Carter P Embry
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA.
| | - Christopher S Grubb
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA.
| | - Mauricio Cafiero
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA.
| | - Larryn W Peterson
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA.
| |
Collapse
|
24
|
Tantawy MA, Nafie MS, Elmegeed GA, Ali IA. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs. Bioorg Chem 2017; 73:128-146. [DOI: 10.1016/j.bioorg.2017.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/10/2017] [Accepted: 06/17/2017] [Indexed: 01/20/2023]
|
25
|
Bacsa I, Jójárt R, Wölfling J, Schneider G, Herman BE, Szécsi M, Mernyák E. Synthesis of novel 13α-estrone derivatives by Sonogashira coupling as potential 17β-HSD1 inhibitors. Beilstein J Org Chem 2017; 13:1303-1309. [PMID: 28694873 PMCID: PMC5496578 DOI: 10.3762/bjoc.13.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023] Open
Abstract
Novel 13α-estrone derivatives were synthesized by Sonogashira coupling. Transformations of 2- or 4-iodo regioisomers of 13α-estrone and its 3-methyl ether were carried out under different conditions in a microwave reactor. The 2-iodo isomers were reacted with para-substituted phenylacetylenes using Pd(PPh3)4 as catalyst and CuI as a cocatalyst. Coupling reactions of 4-iodo derivatives could be achieved by changing the catalyst to Pd(PPh3)2Cl2. The product phenethynyl derivatives were partially or fully saturated. Compounds bearing a phenolic OH group furnished benzofurans under the conditions used for the partial saturation. The inhibitory effects of the compounds on human placental 17β-hydroxysteroid dehydrogenase type 1 isozyme (17β-HSD1) were investigated by an in vitro radiosubstrate incubation method. Certain 3-hydroxy-2-phenethynyl or -phenethyl derivatives proved to be potent 17β-HSD1 inhibitors, displaying submicromolar IC50 values.
Collapse
Affiliation(s)
- Ildikó Bacsa
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| |
Collapse
|
26
|
Synthesis and in vitro investigation of potential antiproliferative monosaccharide–d-secoestrone bioconjugates. Bioorg Med Chem Lett 2017; 27:1938-1942. [DOI: 10.1016/j.bmcl.2017.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 01/16/2023]
|
27
|
Bózsity N, Minorics R, Szabó J, Mernyák E, Schneider G, Wölfling J, Wang HC, Wu CC, Ocsovszki I, Zupkó I. Mechanism of antiproliferative action of a new d-secoestrone-triazole derivative in cervical cancer cells and its effect on cancer cell motility. J Steroid Biochem Mol Biol 2017; 165:247-257. [PMID: 27363663 DOI: 10.1016/j.jsbmb.2016.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022]
Abstract
Cervical cancer is the fourth most frequently diagnosed tumor and the fourth leading cause of cancer death in females worldwide. Cervical cancer is predominantly related with human papilloma virus (HPV) infection, with the most oncogenic types being HPV-18 and -16. Our previous studies demonstrated that some d-secoestrone derivatives exert pronounced antiproliferative activity. The aim of the current investigation was to characterize the mechanism of action of d-secoestrone-triazole (D-SET) on three cervical cancer cell lines with different pathological backgrounds. The growth-inhibitory effects of D-SET were determined by a standard MTT assay. We have found that D-SET exerts a pronounced growth-inhibitory effect on HPV 18-positive HeLa and HPV-negative C-33 A cells, but it has no substantial inhibitory activity on HPV 16-positive SiHa or on intact fibroblast MRC-5 cell lines. After 24h incubation, cells showed the morphological and biochemical signs of apoptosis determined by fluorescent double staining, flow cytometry and caspase-3 activity assay. Besides the elevation of the ratio of cells in the subG1 phase, flow cytometric analysis revealed a cell cycle arrest at G2/M in both HeLa and C-33 A cell lines. To distinguish the G2/M cell population immunocytochemical flow cytometric analysis was performed on HeLa cells. The results show that D-SET significantly increases the ratio of phosphorylated histone H3, indicating cell accumulation in the M phase. Additionally, D-SET significantly increased the maximum rate of microtube formation measured by an in vitro tubulin polymerization assay. Besides its direct antiproliferative activity, the antimigratory property of D-SET has been investigated. Our results demonstrate that D-SET significantly inhibits the migration and invasion of HeLa cells after 24h incubation. These results suggests that D-SET is a potent antiproliferative agent against HPV 16+ and HPV-negative cervical cancer cell lines, with an efficacious motility-inhibiting activity against HPV 16+ cells. Accordingly D-SET can be regarded as a potential drug candidate with a promising new mechanism of action among the antiproliferative steroids, potentially allowing for the design of novel anticancer agents.
Collapse
Affiliation(s)
- Noémi Bózsity
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Renáta Minorics
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Johanna Szabó
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Imre Ocsovszki
- Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| |
Collapse
|
28
|
Bodnár B, Mernyák E, Wölfling J, Schneider G, Herman BE, Szécsi M, Sinka I, Zupkó I, Kupihár Z, Kovács L. Synthesis and Biological Evaluation of Triazolyl 13α-Estrone-Nucleoside Bioconjugates. Molecules 2016; 21:molecules21091212. [PMID: 27626395 PMCID: PMC6273310 DOI: 10.3390/molecules21091212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 02/03/2023] Open
Abstract
2′-Deoxynucleoside conjugates of 13α-estrone were synthesized by applying the copper-catalyzed alkyne–azide click reaction (CuAAC). For the introduction of the azido group the 5′-position of the nucleosides and a propargyl ether functional group on the 3-hydroxy group of 13α-estrone were chosen. The best yields were realized in our hands when the 3′-hydroxy groups of the nucleosides were protected by acetyl groups and the 5′-hydroxy groups were modified by the tosyl–azide exchange method. The commonly used conditions for click reaction between the protected-5′-azidonucleosides and the steroid alkyne was slightly modified by using 1.5 equivalent of Cu(I) catalyst. All the prepared conjugates were evaluated in vitro by means of MTT assays for antiproliferative activity against a panel of human adherent cell lines (HeLa, MCF-7 and A2780) and the potential inhibitory activity of the new conjugates on human 17β-hydroxysteroid dehydrogenase 1 (17β-HSD1) was investigated via in vitro radiosubstrate incubation. Some protected conjugates displayed moderate antiproliferative properties against a panel of human adherent cancer cell lines (the protected cytidine conjugate proved to be the most potent with IC50 value of 9 μM). The thymidine conjugate displayed considerable 17β-HSD1 inhibitory activity (IC50 = 19 μM).
Collapse
Affiliation(s)
- Brigitta Bodnár
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary.
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary.
| | - Izabella Sinka
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Zoltán Kupihár
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Lajos Kovács
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|