1
|
Sandu T, Chiriac AL, Zaharia A, Iordache TV, Sarbu A. New Trends in Preparation and Use of Hydrogels for Water Treatment. Gels 2025; 11:238. [PMID: 40277674 PMCID: PMC12026611 DOI: 10.3390/gels11040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Hydrogel-based wastewater treatment technologies show certain outstanding features, which include exceptional efficiency, sustainability, reusability, and the precise targeting of specific contaminants. Moreover, it becomes possible to minimize the environmental impact when using these materials. Their flexibility, low energy consumption, and adaptability to meet specific requirements for different purposes offer significant advantages over traditional methods like activated carbon filtration, membrane filtration, and chemical treatments. Recent advancements in hydrogel technology, including new production methods and hybrid materials, enhance their ability to efficiently adsorb contaminants without altering their biocompatibility and biodegradability. Therefore, innovative materials that are ideal for sustainable water purification were developed. However, these materials also suffer from several limitations, mostly regarding the scalability, long-term stability in real-world systems, and the need for precise functionalization. Therefore, overcoming these issues remains a challenge. Additionally, improving the efficiency and cost-effectiveness of regeneration methods is essential for their practical use. Finally, assessing the environmental impact of hydrogel production, use, and disposal is crucial to ensure these technologies are beneficial in the long run. This review summarizes recent advancements in developing polymer-based hydrogels for wastewater treatment by adsorption processes to help us understand the progress made during recent years. In particular, the studies presented within this work are compared from the point of view of the synthesis method, raw materials used such as synthetic/natural or hybrid networks, and the targeted class of pollutants-dyes or heavy metal ions. In several sections of this paper, discussions regarding the most important properties of the newly emerged adsorbents, e.g., kinetics, the adsorption capacity, and reusability, are also discussed.
Collapse
Affiliation(s)
| | | | | | - Tanta-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (T.S.); (A.-L.C.); (A.Z.)
| | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (T.S.); (A.-L.C.); (A.Z.)
| |
Collapse
|
2
|
Abdelwahab HE, Elhag M, El Sadek MM. Removal of As(V) and Cr(VI) using quinoxaline chitosan schiff base: synthesis, characterization and adsorption mechanism. BMC Chem 2024; 18:225. [PMID: 39529185 PMCID: PMC11555967 DOI: 10.1186/s13065-024-01328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Elevated Arsenic and Chromium levels in surface and ground waters are a significant health concern in several parts of the world. Chitosan quinoxaline Schiff base (CsQ) and cross-linked chitosan quinoxaline Schiff base (CsQG) were prepared to adsorb both Arsenate [As(V)] and Chromium [Cr(VI)] ions. The thermo-gravimetric analysis (TGA), X-ray diffraction analysis (XRD), and Fourier-transform infrared spectroscopy (FTIR) were used to investigate the prepared Schiff bases (CsQ) and (CsQG). The UV-VIS spectra showed a shift in the wavelength area of the modified polymer, indicating the reaction occurrence, besides the variation of the shape and intensity of the peaks. The XRD patterns showed the incensement of the amorphous characteristic. On the other hand, the thermal stability of the modified polymers is better according to TGA studies; also, the morphology of the modified chitosan was investigated before and after crosslinking (CsQ and CsQG) using a scanning electron microscope (SEM) where the surface was fall of wrinkles and pores, which then were decreased after cross-linking. Contact time, temperature, pH, and initial metal ion concentration were all studied as factors influencing metal ion uptake behavior. The Langmuir, Temkin, Dubinin-Radushkevich, and Freundlich isotherm models were used to describe the equilibrium data using metal concentrations of 10-1000 mg/L at pH = 7 and 1 g of adsorbent. The pseudo-first-order and pseudo-second-order kinetic parameters were evaluated. The experimental data revealed that the adsorption kinetics follow the mechanism of the pseudo-second-order equation with R2 values (0.9969, 0.9061) in case of using CsQ and R2 values (0.9989, 0.9999) in case of using CsQG, demonstrating chemical sorption is the rate-limiting step of the adsorption mechanism. Comparing the adsorption efficiency of the synthesized Schiff base and the cross-linked one, it was found that CsQ is a better adsorbent than CsQG in both cases of As(V) and Cr(VI) removal. This means that cross-linking doesn't enhance the efficiency as expected, but on the contrary, in some cases, it decreases the removal. In addition, the newly modified chitosan polymers work better in As(V) removal than Cr(VI); the removal is 22.33% for Cr(VI) and 98.36% for As(V) using CsQ polymer, whereas using CsQG, the values are 6.20% and 91.75% respectively. On the other hand, the maximum adsorption capacity (Qm) for As(V) and Cr(VI) are 8.811 and 3.003 mg/g, respectively, using CsQ, while in the case of using CsQG, the Qm value reaches 31.95 mg/g for As(V), and 103.09 mg/g for Cr(VI).
Collapse
Affiliation(s)
- Huda E Abdelwahab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21231, Egypt
- Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt
| | - Mohammed Elhag
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt.
| | - Mohamed M El Sadek
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21231, Egypt.
| |
Collapse
|
3
|
Uddin MN, Saha GC, Hasanath MA, Badsha MAH, Chowdhury MH, Islam ARMT. Hexavalent chromium removal from aqueous medium by ternary nanoadsorbent: A study of kinetics, equilibrium, and thermodynamic mechanism. PLoS One 2023; 18:e0290234. [PMID: 38134202 PMCID: PMC10745142 DOI: 10.1371/journal.pone.0290234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/05/2023] [Indexed: 12/24/2023] Open
Abstract
Although many studies have focused on chromium removal from aqueous media by ternary Nano adsorbents, still the integrated kinetics, equilibrium, and thermodynamic mechanisms of chromium removal remain unknown. Thus in this study, we have synthesized a novel ternary oxide nanocomposite comprising iron, manganese, and stannous (Fe2O3-MnO2-SnO2) in a facile method as a promising adsorbent for the removal of Cr(VI) from an aqueous medium. The Fe2O3-MnO2-SnO2 system was firstly characterized by FTIR, XRD, TGA, BET, and SEM/EDX. The effect of parameters, for instance, pH, temperature, initial Cr(VI) intensity, and adsorbent dose, have been examined to optimize the Cr(VI) adsorption performance. The adsorption of Cr(VI) onto Fe2O3-MnO2-SnO2 nanoadsorbent is associated with an adsorption/reduction mechanism. Using an initial Cr(VI) intensity of 50 mg L-1, 200 rpm agitation, 2.5-g L-1 of adsorbent, pH 2, 90 minutes adsorption time, and 298 K temperature, a maximum adsorption capability of 69.2 mg Cr(VI) g-1 for Fe2O3-MnO2-SnO2 was obtained. Models of pseudo-2nd-order kinetics and Langmuir's isotherm were best suited to the investigated data. Besides, thermodynamic parameters show that Cr(VI) adsorption onto Fe2O3-MnO2-SnO2 was random and dominated by entropy. The reusability of Fe2O3-MnO2-SnO2 was found to be consistently high (remaining above 80% for Cr(VI)) over four adsorption-desorption cycles. Chromium adsorption from the tannery wastewater was achieved 91.89% on Fe2O3-MnO2-SnO2. Therefore, Fe2O3-MnO2-SnO2 nanoparticles, being easy to be synthesized, reusable and having improved adsorption capability with higher surface area, could be a desirable option for removing Cr(VI) from aqueous environments.
Collapse
Affiliation(s)
- Md Nashir Uddin
- Department of Civil Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Ganesh Chandra Saha
- Department of Civil Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Md Abul Hasanath
- Department of Civil Engineering, Indian Institute of Technology, Hyderabad, India
| | - M. A. H. Badsha
- Department of Civil and Environmental Engineering, California Polytechnic State University, San Luis Obispo, CA, United States of America
| | | | - Abu Reza Md. Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh
- Department of Development Studies, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
4
|
Sharifi MJ, Nouralishahi A, Hallajisani A. Fe 3O 4-chitosan nanocomposite as a magnetic biosorbent for removal of nickel and cobalt heavy metals from polluted water. Int J Biol Macromol 2023; 248:125984. [PMID: 37506786 DOI: 10.1016/j.ijbiomac.2023.125984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Recently, natural polymers like chitosan have gained attention as promising adsorbents for water treatment. By combining chitosan with magnetic nanoparticles, their adsorption capabilities can be enhanced. In this study, chitosan-magnetite nanocomposite (CMNC) was synthesized via coprecipitation method to remove nickel and cobalt from aqueous solutions. The physicochemical properties of the synthesized CMNC were investigated by various techniques, including FESEM, TEM, XPS, FTIR, XRD, and VSM. The electron microscopy results confirmed the uniform dispersion of magnetite nanoparticles within CMNC nanocomposites, while VSM confirmed their significant magnetic properties. The adsorption experiments showed that at optimal conditions (pH = 6, contact time = 2 h, adsorbent dosage = 2 g/l), CMNC has high adsorption capacities of 30.03 mg/g for Ni2+ and 53.19 mg/g for Co2+. Furthermore, the adsorption data fitted best with the Langmuir isotherm, show that the active sites on CMNC are energetically homogenous. According to kinetic analysis, the experimental data were in good agreement with both pseudo-second-order and intra-particle diffusion models, which suggest that chemical sorption, along with mass transfer steps, influence the overall adsorption process. Finally, investigating the thermodynamic parameters (∆Gads, ∆Hads, ∆Sads) showed that the adsorption process on CMNC was endothermic and spontaneous, with stronger interactions observed between CMNC and Co2+ compared to Ni2+.
Collapse
Affiliation(s)
- Mohammad Javad Sharifi
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Rezvanshahr, Iran
| | - Amideddin Nouralishahi
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Rezvanshahr, Iran; Chemistry Department, Missouri University of Science and Technology, Rolla, MO, USA, 65409.
| | - Ahmad Hallajisani
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Rezvanshahr, Iran
| |
Collapse
|
5
|
Cortes Ortega JA, Hernández-Montelongo J, Hernández-Montelongo R, Alvarado Mendoza AG. Effective Removal of Cu 2+ Ions from Aqueous Media Using Poly(acrylamide-co-itaconic acid) Hydrogels in a Semi-Continuous Process. Gels 2023; 9:702. [PMID: 37754382 PMCID: PMC10529496 DOI: 10.3390/gels9090702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/28/2023] Open
Abstract
Adsorption is one of the most crucial processes in water treatment today. It offers a low-cost solution that does not require specialized equipment or state-of-the-art technology while efficiently removing dissolved contaminants, including heavy metals. This process allows for the utilization of natural or artificial adsorbents or a combination of both. In this context, polymeric materials play a fundamental role, as they enable the development of adsorbent materials using biopolymers and synthetic polymers. The latter can be used multiple times and can absorb large amounts of water per gram of polymer. This paper focuses on utilizing adsorption through hydrogels composed of poly(acrylamide-co-itaconic acid) for removing Cu2+ ions dissolved in aqueous media in a semi-continuous process. The synthesized hydrogels were first immersed in 0.1 M NaOH aqueous solutions, enabling OH- ions to enter the gel matrix and incorporate into the polymer surface. Consequently, the copper ions were recovered as Cu(OH)2 on the surface of the hydrogel rather than within it, allowing the solid precipitates to be easily separated by decantation. Remarkably, the hydrogels demonstrated an impressive 98% removal efficiency of the ions from the solution in unstirred conditions at 30 °C within 48 h. A subsequent study involved a serial process, demonstrating the hydrogels' reusability for up to eight cycles while maintaining their Cu2+ ion recovery capacity above 80%. Additionally, these hydrogels showcased their capability to remove Cu2+ ions even from media with ion concentrations below 100 ppm.
Collapse
Affiliation(s)
- Jorge Alberto Cortes Ortega
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Mexico;
| | - Jacobo Hernández-Montelongo
- Department of Physical and Mathematical Sciences, Faculty of Engineering, Catholic University of Temuco, Av. Rudecindo Ortega #2959, Temuco 4813302, Chile;
- Department of Translational Bioengineering, University Center of Exact Sciences and Engineering, University of Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Mexico;
| | - Rosaura Hernández-Montelongo
- Department of Translational Bioengineering, University Center of Exact Sciences and Engineering, University of Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Mexico;
| | - Abraham Gabriel Alvarado Mendoza
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Mexico;
| |
Collapse
|
6
|
Ahmaruzzaman M, Roy P, Bonilla-Petriciolet A, Badawi M, Ganachari SV, Shetti NP, Aminabhavi TM. Polymeric hydrogels-based materials for wastewater treatment. CHEMOSPHERE 2023; 331:138743. [PMID: 37105310 DOI: 10.1016/j.chemosphere.2023.138743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Low-cost and reliable wastewater treatment is a relevant issue worldwide to reduce the concentration of environmental pollutants. Industrial effluents containing dyes, heavy metals, and other inorganic and organic compounds can pollute water resources; therefore, novel technologies are required to mitigate and control their release into the environment. Adsorption is one of the simplest methods for treating contaminated water in which a wide spectrum of adsorbents can be used to remove emerging compounds. Hydrogels are interesting materials with high adsorption capacities that can be synthesized via green routes. These adsorbents are promising for large-scale industrial wastewater treatment applications; however, gaps still exist in achieving sustainable commercial implementation. This review focuses on the discussion and analysis of preparation, characterization, and adsorption properties of hydrogels for water purification. The advantages of these polymeric materials for water treatment were analyzed, including their performance in the removal of different organic and inorganic contaminants. Recent advances in the functionalization of hydrogels and the synthesis of novel composites have also been described. The adsorption capacities of hydrogel-based adsorbents are higher than 500 mg/g for different organic and inorganic pollutants, and can reach values of up to >2000 mg/g for organic compounds, significantly outperforming other materials reported for water cleaning. The main interactions involved in the adsorption of water pollutants using hydrogel-based adsorbents were described and explained to allow the interpretation of their removal mechanisms. The current challenges in the implementation of hydrogels for water purification in real-life operations are also highlighted. This review provides an updated picture of hydrogels as interesting materials to address water depollution worldwide.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| | - Prerona Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | | | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India.
| |
Collapse
|
7
|
Ma J, Wang Y, Lu R. Mechanism and Application of Chitosan and Its Derivatives in Promoting Permeation in Transdermal Drug Delivery Systems: A Review. Pharmaceuticals (Basel) 2022; 15:ph15040459. [PMID: 35455456 PMCID: PMC9033127 DOI: 10.3390/ph15040459] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/15/2023] Open
Abstract
The mechanisms and applications of chitosan and its derivatives in transdermal drug delivery to promote drug permeation were reviewed in this paper. Specifically, we summarized the permeation-promoting mechanisms of chitosan and several of its derivatives, including changing the structure of stratum corneum proteins, acting on the tight junction of granular layers, affecting intercellular lipids, and increasing the water content of stratum corneum. These mechanisms are the reason why chitosan and its derivatives can increase the transdermal permeation of drugs. In addition, various transdermal preparations containing chitosan and its derivatives were summarized, and their respective advantages were expounded, including nanoparticles, emulsions, transdermal microneedles, nanocapsules, transdermal patches, transdermal membranes, hydrogels, liposomes, and nano-stents. The purpose of this review is to provide a theoretical basis for the further and wider application of chitosan in transdermal drug delivery systems. In the future, research results of chitosan and its derivatives in transdermal drug delivery need more support from in vivo experiments, as well as good correlation between in vitro and in vivo experiments. In conclusion, the excellent permeability-promoting property, good biocompatibility, and biodegradability of chitosan and its derivatives make them ideal materials for local transdermal drug delivery.
Collapse
|
8
|
Poly(N-vinyl imidazole)/nitrogen-doped graphene quantum dot nanocomposite hydrogel as an efficient metal ion adsorbent of aqueous systems. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-021-01010-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Rodríguez-Félix DE, Pérez-Caballero D, del Castillo-Castro T, Castillo-Ortega MM, Garmendía-Diago Y, Alvarado-Ibarra J, Plascencia-Jatomea M, Ledezma-Pérez AS, Burruel-Ibarra SE. Chitosan hydrogels chemically crosslinked with L-glutamic acid and their potential use in drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Perumal S, Atchudan R, Thirukumaran P, Yoon DH, Lee YR, Cheong IW. Simultaneous removal of heavy metal ions using carbon dots-doped hydrogel particles. CHEMOSPHERE 2022; 286:131760. [PMID: 34352536 DOI: 10.1016/j.chemosphere.2021.131760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal ions (HMI) have attracted worldwide concern due to their serious environmental pollution which led to the risk of health conditions. From Red Malus floribunda fruits, nitrogen-doped carbon dots (N-CDs) were prepared, followed by hybrid-spherical shaped hydrogel particles (CGCDs) were prepared. The prepared CGCDs were utilized as adsorbents for HMI-(Hg(II), Cd(II), Pb(II), and Cr(III)) from water. N-CDs with about 4.0 nm in diameter were characterized by various techniques such as field emission-scanning electron microscopy (FE-SEM) and attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR) that confirm the presence of nitrogen, oxygen, and carbon functionalities. The prepared spherical CGCDs were characterized very well before it was used as HMI adsorbents. The sizes of the CGCDs were ranges between 20 and 300 μm and the degree of swelling was calculated as 1320 %. ATR-FTIR and X-ray diffraction analyses reveal the presence of N-CDs in CGCDs. Further, FE-SEM confirms the spherical shape morphology of CGCDs. Three different concentrations of HMI solutions were 500 mg/L, 1000 mg/L, and 1500 mg/L. Hg(II) adsorbed proficiently by CGCDs in single metal ion systems with ~72 % and almost complete removal of Hg(II) ions (99 %) in multiple metal ion systems was observed. Moreover, all metal ions Hg(II), Cd(II), Pb(II), and Cr(III) were efficiently (>70 %) removed in multiple systems by CGCDs. After HMI adsorption experiments, the elemental mapping from FE-SEM and X-ray photoelectron spectroscopy studies conveys the presence of HMI on CGCDs. This suggests that CGCDs would be a suitable adsorbent for the simultaneous removal of multiple HMI from wastewater.
Collapse
Affiliation(s)
- Suguna Perumal
- Department of Applied Chemistry, School of Engineering, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu, 41566, Republic of Korea; School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Dong Ho Yoon
- R& D Center, Kuk-Il Paper Mfg. Co., Ltd., Baekok-daero 563, Cheoin-gu, Yongin, 17128, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - In Woo Cheong
- Department of Applied Chemistry, School of Engineering, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu, 41566, Republic of Korea.
| |
Collapse
|
11
|
Choi H, Kim T, Kim SY. Poly (Amidehydrazide) Hydrogel Particles for Removal of Cu 2+ and Cd 2+ Ions from Water. Gels 2021; 7:121. [PMID: 34449598 PMCID: PMC8395747 DOI: 10.3390/gels7030121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/04/2022] Open
Abstract
Poly(amidoamine)s (PAMAM) are very effective in the removal of heavy metal ions from water due to their abundant amine and amide functional groups, which have a high binding ability to heavy metal ions. We synthesized a new class of hyperbranched poly(amidehydrazide) (PAMH) hydrogel particles from dihydrazides and N,N'-methylenebisacrylamide (MBA) monomer by using the A2 + B4 polycondensation reaction in an inverse suspension polymerization process. In Cd2+ and Cu2+ ion sorption tests, the synthesized dihydrazide-based PAMH hydrogel particles exhibited sorption capacities of 85 mg/g for copper and 47 mg/g for cadmium. Interestingly, the PAMH showed only a 10% decrease in sorption ability in an acidic condition (pH = 4) compared to the diamine-based hyperbranched PAMAM, which showed a ~90% decrease in sorption ability at pH of 4. In addition, PAMH hydrogel particles remove trace amounts of copper (0.67 ppm) and cadmium (0.5 ppm) in water, below the detection limit.
Collapse
Affiliation(s)
| | | | - Sang Youl Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (H.C.); (T.K.)
| |
Collapse
|
12
|
Abou Taleb MF, Abou El Fadl FI, Albalwi H. Adsorption of toxic dye in wastewater onto magnetic NVP/CS nanocomposite hydrogels synthesized using gamma radiation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Akter M, Bhattacharjee M, Dhar AK, Rahman FBA, Haque S, Rashid TU, Kabir SMF. Cellulose-Based Hydrogels for Wastewater Treatment: A Concise Review. Gels 2021; 7:30. [PMID: 33803815 PMCID: PMC8005947 DOI: 10.3390/gels7010030] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 01/11/2023] Open
Abstract
Finding affordable and environment-friendly options to decontaminate wastewater generated with heavy metals and dyes to prevent the depletion of accessible freshwater resources is one of the indispensable challenges of the 21st century. Adsorption is yet to be the most effective and low-cost wastewater treatment method used for the removal of pollutants from wastewater, while naturally derived adsorbent materials have garnered tremendous attention. One promising example of such adsorbents is hydrogels (HGs), which constitute a three-dimensional polymeric network of hydrophilic groups that is highly capable of adsorbing a large quantity of metal ions and dyes from wastewater. Although HGs can also be prepared from synthetic polymers, natural polymers have improved environmental benignity. Recently, cellulose-based hydrogels (CBHs) have been extensively studied owing to their high abundance, biodegradability, non-toxicity, and excellent adsorption capacity. This review emphasizes different CBH adsorbents in the context of dyes and heavy metals removal from wastewater following diverse synthesis techniques and adsorption mechanisms. This study also summarizes various process parameters necessary to optimize adsorption capacity followed by future research directions.
Collapse
Affiliation(s)
- Maimuna Akter
- Department of Environmental Management, Independent University Bangladesh, Dhaka 1229, Bangladesh; (M.A.); (F.B.A.R.)
| | - Maitry Bhattacharjee
- Department of Textile Engineering, Shyamoli Textile Engineering College, University of Dhaka, Dhaka 1207, Bangladesh; (M.B.); (A.K.D.)
| | - Avik Kumar Dhar
- Department of Textile Engineering, Shyamoli Textile Engineering College, University of Dhaka, Dhaka 1207, Bangladesh; (M.B.); (A.K.D.)
| | - Fahim Bin Abdur Rahman
- Department of Environmental Management, Independent University Bangladesh, Dhaka 1229, Bangladesh; (M.A.); (F.B.A.R.)
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Siddika Haque
- Faculty of Textile Engineering, BGMEA University of Fashion and Technology, Dhaka 1230, Bangladesh;
| | - Taslim Ur Rashid
- Wislon College of Textiles, North Carolina State University, Raleigh, NC 27606, USA;
| | - S M Fijul Kabir
- Wislon College of Textiles, North Carolina State University, Raleigh, NC 27606, USA;
| |
Collapse
|
14
|
Synthesis and characterization of chitosan-pyrazoloquinoxaline Schiff bases for Cr (VI) removal from wastewater. Int J Biol Macromol 2020; 163:2180-2188. [DOI: 10.1016/j.ijbiomac.2020.09.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 01/12/2023]
|
15
|
Study and comparison of several methods to remove Ni(II) ions in aqueous solutions using poly(acrylamide-co-itaconic acid) hydrogels. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Humelnicu D, Dragan ES, Ignat M, Dinu MV. A Comparative Study on Cu 2+, Zn 2+, Ni 2+, Fe 3+, and Cr 3+ Metal Ions Removal from Industrial Wastewaters by Chitosan-Based Composite Cryogels. Molecules 2020; 25:E2664. [PMID: 32521721 PMCID: PMC7321311 DOI: 10.3390/molecules25112664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Materials coming from renewable resources have drawn recently an increased attention in various applications as an eco-friendly alternative in the synthesis of novel functional materials. Polysaccharides, with their prominent representative - chitosan (CS), are well-known for their sorption properties, being able to remove metal ions from dilute solutions either by electrostatic interactions or chelation. In this context, we proposed here a comparative study on Cu2+, Zn2+, Ni2+, Fe3+, and Cr3+ metal ions removal from industrial wastewaters by CS-based composite cryogels using batch technique. The composite cryogels consisting of CS embedding a natural zeolite, namely clinoptilolite, were synthesized by cryogelation, and their sorption performance were compared to those of CS cryogels and of acid-activated zeolite. A deeper analysis of thermodynamics and kinetics sorption data was performed to get insights into the sorption mechanism of all metal ions onto sorbents. Based on the optimized sorption conditions, the removal of the above-mentioned ions from aqueous solutions by the composite sorbent using dynamic technique was also evaluated.
Collapse
Affiliation(s)
- Doina Humelnicu
- Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania; (D.H.); (M.I.)
| | - Ecaterina Stela Dragan
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Maria Ignat
- Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania; (D.H.); (M.I.)
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| |
Collapse
|
17
|
Ye S, Feng P, Zhang W. Rapid solidification of Portland cement/polyacrylamide hydrogel (PC/PAM) composites for diverse wastewater treatments. RSC Adv 2020; 10:18936-18944. [PMID: 35518298 PMCID: PMC9053980 DOI: 10.1039/d0ra03025b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Cementitious solidification is an effective but time-consuming method for waste disposal, and the incorporation of polyacrylamide hydrogel in Portland cement paste is a simple way to enhance the time-efficiency of cementitious solidification. In this study, a series of Portland cement/polyacrylamide hydrogel (PC/PAM) composites suitable for the wastewater treatment were prepared by a one-pot method and their time-dependent reaction processes, mechanical properties and microstructures were tested. Based on the gelation time method, PC/PAM composites showed great solidification efficiency when treating simulated radioactive liquids, organic dye waste and solutions with strong alkalinity and acidity. At temperatures ranging from 5 °C to 40 °C, it took only a few minutes for these composites to solidify wastes. Also, PC/PAM composites containing wastes had a compressive strength that is more than 2 MPa after reacting for 3 days and were suitable for landfill or secondary treatments. The rapid gelation and sufficient strength development demonstrated that PC/PAM composites have great potential for application in solidifying multi-component wastes, especially in some emergency circumstances.
Collapse
Affiliation(s)
- Shaoxiong Ye
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 China
| | - Pan Feng
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 China
- State Key Laboratory of High Performance Civil Engineering Materials Nanjing 210008 China
| | - Wei Zhang
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
18
|
Perumal S, Atchudan R, Yoon DH, Joo J, Cheong IW. Spherical Chitosan/Gelatin Hydrogel Particles for Removal of Multiple Heavy Metal Ions from Wastewater. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01298] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Suguna Perumal
- Department of Applied Chemistry, School of Engineering, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu 41566, South Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Dong Ho Yoon
- R & D Center, Kuk-Il Paper Mfg. Co., Ltd., Baekok-daero 563, Cheoin-gu, Yongin 17128, South Korea
| | - Jin Joo
- Department of Applied Chemistry, School of Engineering, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu 41566, South Korea
| | - In Woo Cheong
- Department of Applied Chemistry, School of Engineering, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu 41566, South Korea
| |
Collapse
|
19
|
Shojaeiarani J, Bajwa D, Shirzadifar A. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels. Carbohydr Polym 2019; 216:247-259. [PMID: 31047064 DOI: 10.1016/j.carbpol.2019.04.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/10/2019] [Accepted: 04/07/2019] [Indexed: 11/29/2022]
Abstract
Hydrogels are hydrophilic cross-linked polymer networks formed via the simple reaction of one or more monomers with the ability to retain a significant extent of water. Owing to an increased demand for environmentally friendly, biodegradable, and biocompatible products, cellulose nanocrystals (CNCs) with high hydrophilicity have emerged as a promising sustainable material for the formation of hydrogels. The cytocompatibility, swellability, and non-toxicity make CNC hydrogels of great interest in biomedical, biosensing, and wastewater treatment applications. There has been a considerable progress in the research of CNC hydrogels, as the number of scientific publications has exponentially increased (>600%) in the last five years. In this paper, recent progress in CNC hydrogels with particular emphasis on design, materials, and fabrication techniques to control hydrogel architecture, and advanced applications are discussed.
Collapse
Affiliation(s)
- Jamileh Shojaeiarani
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, 58102, United States.
| | - Dilpreet Bajwa
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, 58102, United States.
| | - Alimohammad Shirzadifar
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, United States.
| |
Collapse
|
20
|
Van Tran V, Park D, Lee YC. Hydrogel applications for adsorption of contaminants in water and wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24569-24599. [PMID: 30008169 DOI: 10.1007/s11356-018-2605-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/18/2018] [Indexed: 05/10/2023]
Abstract
During the last decade, hydrogels have been used as potential adsorbents for removal of contaminants from aqueous solution. To improve the adsorption efficiency, there are numerous different particles that can be chosen to encapsulate into hydrogels and each particle has their respective advantages. Depending on the type of pollutants and approaching method, the particles will be used to prepare hydrogels. The hydrogels commonly applied in water/wastewater treatment was mainly classified into three classes according to their shape included hydrogel beads, hydrogel films, and hydrogel nanocomposites. In review of many recently research papers, we take a closer look at hydrogels and their applications for removal of contaminants, such as heavy metal ion, dyes, and radionuclides from water/wastewater in order to elucidate the reactions between contaminants and particles and potential for recycling and regeneration of the post-treatment hydrogels. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Vinh Van Tran
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea
| | - Duckshin Park
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si, 16105, Gyeonggi-do, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
21
|
Special Issue: Chitin, Chitosan and Related Enzymes. Molecules 2017; 22:molecules22071066. [PMID: 28653994 PMCID: PMC6152307 DOI: 10.3390/molecules22071066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 11/26/2022] Open
|