1
|
Lu QP, Wu ML, Li HL, Zhou Y, Xian MH, Huang WZ, Piao XH, Ge YW. Combined Metabolite Analysis and Network Pharmacology to Elucidate the Mechanisms of Therapeutic Effect of Melastoma dodecandrum Ellagitannins on Abnormal Uterine Bleeding. Chem Biodivers 2023; 20:e202300646. [PMID: 37358391 DOI: 10.1002/cbdv.202300646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
The abnormal uterine bleeding (AUB) is complex and usually leads to severe anemia. Melastomadodecandrum (MD) is clinically used for the treatment of metrorrhagia bleeding. The MD ellagitannins (MD-ETs) had been evidenced being effective at hemorrhage, and exerts biological activities upon their metabolites including ellagic acid and urolithins. In this study, the blood-permeated metabolites from theMD-ETs were analyzed using LC-MS approach, and 19 metabolites including ellagic acid and urolithin A derivatives were identified. Furthermore, a network pharmacology analysis including the target prediction analysis, AUB target analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to reveal the relationships between "metabolites-targets-pathways", which was further verified by molecular docking analysis. The results showed that methyl ellagic acid, urolithin A and isourolithin A produced from MD-ETs can be absorbed into the blood, and might act on the core targets of VEGFA, SRC, MTOR, EGFR and CCND1. And the hemostatic effects were exerted through PI3K-Akt, endocrine resistance and Rap 1 signaling pathways. These results implied the potential effective constituents and action mechanism of MD-ETs in the therapy of AUB, which will promote the application of MD-ETs as natural agent for the treatment of gynecological bleeding diseases.
Collapse
Affiliation(s)
- Qiu-Ping Lu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Miao-Li Wu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ming-Hua Xian
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wei-Zhong Huang
- Guangdong Luofushan Sinopharm Co., Ltd., Huizhou, 516133, China
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Dai Y, Zhang K, Wang L, Xiong L, Huang F, Huang Q, Wu J, Zeng J. Rapid Profiling of Metabolites Combined with Network Pharmacology to Explore the Potential Mechanism of Sanguisorba officinalis L. against Thrombocytopenia. Metabolites 2022; 12:1074. [PMID: 36355157 PMCID: PMC9693491 DOI: 10.3390/metabo12111074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Sanguisorba officinalis L. (SO), a well-known herbal medicine, has been proven to show effect against thrombocytopenia. However, metabolites of SO in vivo are still unclear, and the underlying mechanism of SO against thrombocytopenia from the aspect of metabolites have not been well elucidated. In this study, an improved analytical method combined with UHPLC-QTOF MS and a molecular network was developed for the rapid characterization of metabolites in vivo based on fragmentation patterns. Then, network pharmacology (NP) was used to elucidate the potential mechanism of SO against thrombocytopenia. As a result, a total of 1678 exogenous metabolites were detected in urine, feces, plasma, and bone marrow, in which 104 metabolites were tentatively characterized. These characterized metabolites that originated from plasma, urine, and feces were then imported to the NP analysis. The results showed that the metabolites from plasma, urine, and feces could be responsible for the pharmacological activity against thrombocytopenia by regulating the PI3K-Akt, MAPK, JAK-STAT, VEGF, chemokine, actin cytoskeleton, HIF-1, and pluripotency of stem cells. This study provides a rapid method for metabolite characterization and a new perspective of underlying mechanism study from the aspect of active metabolites in vivo.
Collapse
Affiliation(s)
- Yubei Dai
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ling Xiong
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qianqian Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
- Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Lin Y, He L, Chen XJ, Zhang X, Yan XL, Tu B, Zeng Z, He MH. Polygonum capitatum, the Hmong Medicinal Flora: A Comprehensive Review of Its Phytochemical, Pharmacological and Pharmacokinetic Characteristics. Molecules 2022; 27:6407. [PMID: 36234943 PMCID: PMC9571880 DOI: 10.3390/molecules27196407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Polygonum capitatum, known as "Tou Hua Liao" (Chinese name), is a crucial source of Hmong medicinal plants that has benefited human health for a long time. This folk-medicinal plant is widely distributed in the south-west of China for the treatment of various urologic disorders including urinary tract infections, pyelonephritis, and urinary calculus. The purpose of this paper was to provide a systematic and comprehensive overview of the traditional usages, botany, phytochemistry, pharmacology, pharmacokinetics and clinical applications of this flora. Up until the end of 2022, at least 91 compounds had been reported from P. capitatum, mainly covering the classes of flavonoids, lignanoids, phenols and other components. The compounds and extracts isolated from P. capitatum exhibit a wide range of pharmacological activities, such as anti-inflammatory, antioxidant, antimicrobial, anticancer, analgesic, hypothermic, diuretic and other pharmacological effects. Qualitative and quantitative chemical analyses were also covered. Furthermore, the possible development trends and perspectives for future research on this medicinal plant were also discussed.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Lei He
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Xing-Jun Chen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Xu Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Xue-Long Yan
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Bo Tu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Ming-Hui He
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| |
Collapse
|
4
|
The Tannins from Sanguisorba officinalis L. (Rosaceae): A Systematic Study on the Metabolites of Rats Based on HPLC-LTQ-Orbitrap MS 2 Analysis. Molecules 2021; 26:molecules26134053. [PMID: 34279393 PMCID: PMC8271367 DOI: 10.3390/molecules26134053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/02/2022] Open
Abstract
Sanguisorba tannins are the major active ingredients in Sanguisorba ofJicinalis L. (Rosaceae), one of the most popular herbal medicines in China, is widely prescribed for hemostasis. In this study, three kinds of tannins extract from Sanguisorba officinalis L. (Rosaceae), and the metabolites in vivo and in vitro were detected and identified by high-pressure liquid chromatography, coupled with linear ion trap orbitrap tandem mass spectrometry (HPLC–LTQ–Orbitrap). For in vivo assessment, the rats were administered at a single dose of 150 mg/kg, after which 12 metabolites were found in urine, 6 metabolites were found in feces, and 8 metabolites were found in bile, while metabolites were barely found in plasma and tissues. For in vitro assessment, 100 μM Sanguisorba tannins were incubated with rat liver microsomes, liver cytosol, and feces, after which nine metabolites were found in intestinal microbiota and five metabolites were found in liver microsomes and liver cytosol. Moreover, the metabolic pathways of Sanguisorba tannins were proposed, which shed light on their mechanism.
Collapse
|
5
|
Li YQ, Kitaoka M, Takayoshi J, Wang YF, Matsuo Y, Saito Y, Huang YL, Li DP, Nonaka GI, Jiang ZH, Tanaka T. Ellagitannins and Oligomeric Proanthocyanidins of Three Polygonaceous Plants. Molecules 2021; 26:molecules26020337. [PMID: 33440779 PMCID: PMC7828057 DOI: 10.3390/molecules26020337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to characterize hydrolyzable tannins in Polygonaceous plants, as only a few plants have previously been reported to contain ellagitannins. From Persicaria chinensis, a new hydrolyzable tannin called persicarianin was isolated and characterized to be 3-O-galloyl-4,6-(S)-dehydrohexahydroxydiphenoyl-d-glucose. Interestingly, acid hydrolysis of this compound afforded ellagic acid, despite the absence of a hexahydroxydiphenoyl group. From the rhizome of Polygonum runcinatum var. sinense, a large amount of granatin A, along with minor ellagitannins, helioscpoinin A, davicratinic acids B and C, and a new ellagitannin called polygonanin A, were isolated. Based on 2D nuclear magnetic resonance (NMR) spectroscopic examination, the structure of polygonanin A was determined to be 1,6-(S)-hexahydroxydiphenoyl-2,4-hydroxychebuloyl-β-d-glucopyranose. These are the second and third hydrolyzable tannins isolated from Polygonaceous plants. In addition, oligomeric proanthocyanidins of Persicaria capitatum and P. chinensis were characterized by thiol degradation. These results suggested that some Polygonaceous plants are the source of hydrolyzable tannins not only proanthocyanidins.
Collapse
Affiliation(s)
- Yun-Qiu Li
- Department of Natural Product Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.-Q.L.); (Y.M.); (Y.S.)
- College of Medical Laboratory Science, Guilin Medical University, 109, Huancheng North 2 Road, Guilin 541004, China
| | - Masako Kitaoka
- Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.K.); (J.T.)
| | - Juri Takayoshi
- Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.K.); (J.T.)
| | - Ya-Feng Wang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guilin 541006, China; (Y.-F.W.); (Y.-L.H.); (D.-P.L.)
| | - Yosuke Matsuo
- Department of Natural Product Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.-Q.L.); (Y.M.); (Y.S.)
| | - Yoshinori Saito
- Department of Natural Product Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.-Q.L.); (Y.M.); (Y.S.)
| | - Yong-Lin Huang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guilin 541006, China; (Y.-F.W.); (Y.-L.H.); (D.-P.L.)
| | - Dian-Peng Li
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guilin 541006, China; (Y.-F.W.); (Y.-L.H.); (D.-P.L.)
| | - Gen-ichiro Nonaka
- Usaien Pharmaceutical Company, Ltd., 1-4-6 Zaimoku, Saga 840-0055, Japan;
| | - Zhi-Hong Jiang
- Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China;
| | - Takashi Tanaka
- Department of Natural Product Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (Y.-Q.L.); (Y.M.); (Y.S.)
- Correspondence: ; Tel.: +81-95-819-2432
| |
Collapse
|
6
|
Phytosterol, Lipid and Phenolic Composition, and Biological Activities of Guava Seed Oil. Molecules 2020; 25:molecules25112474. [PMID: 32471050 PMCID: PMC7321134 DOI: 10.3390/molecules25112474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/16/2022] Open
Abstract
Plant seeds have been found to contain bioactive compounds that have potential nutraceutical benefits. Guava seeds (Psidium guajava) are by-products in the beverage and juice industry; however, they can be utilized for a variety of commercial purposes. This study was designed to analyze the phytochemicals of the n-hexane extract of guava seed oil (GSO), to study its free-radical scavenging activity, and to monitor the changes in serum lipids and fatty acid profiles in rats that were fed GSO. The GSO was analyzed for phytochemicals using chromatographic methods. It was also tested for free-radical scavenging activity in hepatoma and neuroblastoma cells, and analyzed in terms of serum lipids and fatty acids. GSO was found to contain phenolic compounds (e.g., chlorogenic acid and its derivatives) and phytosterols (e.g., stimasterol, β-sitosterol and campesterol), and exerted radical-scavenging activity in cell cultures in a concentration-dependent manner. Long-term consumption of GSO did not increase cholesterol and triglyceride levels in rat serum, but it tended to decrease serum fatty acid levels in a concentration-dependent manner. This is the first study to report on the lipid, phytosterol and phenolic compositions, antioxidant activity, and the hepato- and neuro-protection of hydrogen peroxide-induced oxidative stress levels in the GSO extract.
Collapse
|
7
|
Yisimayili Z, Guo X, Liu H, Xu Z, Abdulla R, Akber Aisa H, Huang C. Metabolic profiling analysis of corilagin in vivo and in vitro using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2019. [DOI: 10.1016/j.jpba.2018.12.013 pmid: 30562708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Oracz J, Nebesny E, Żyżelewicz D. Identification and quantification of free and bound phenolic compounds contained in the high-molecular weight melanoidin fractions derived from two different types of cocoa beans by UHPLC-DAD-ESI-HR-MSn. Food Res Int 2019; 115:135-149. [DOI: 10.1016/j.foodres.2018.08.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/26/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
|
9
|
Yisimayili Z, Guo X, Liu H, Xu Z, Abdulla R, Akber Aisa H, Huang C. Metabolic profiling analysis of corilagin in vivo and in vitro using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2018; 165:251-260. [PMID: 30562708 DOI: 10.1016/j.jpba.2018.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Corilagin is an Ellagitannin with favorable pharmacological activities. But there was no report regarding the metabolism of corilagin in vitro or in vivo. In this study, the metabolic profile of corilagin in rats as well as in rat intestinal bacteria and liver microsomes incubation system in vitro were investigated comprehensively for the first time. Consequently, with the aid of sensitive HPLC-Q-TOF-MS/MS, corilagin and its twenty-four metabolites (fourteen phase II conjugate metabolites of corilagin, three hydrolyzed metabolites EA, GA, M3 and their seven derived metabolites) were absolutely or tentatively identified in rat biological samples (urine, feces, plasma and tissues) after oral administration of corilagin. In vitro, the three hydrolyzed metabolites were identified in rat intestinal microflora and liver microsomes. These results demonstrated that corilagin itself not only could underwent extensive phase II metabolism in rats, but also could underwent hydrolysis reaction in rats as well as in rat intestinal bacteria and liver microsomes in vitro. This study is first report to identify phase II conjugate metabolites (except mono-methylate conjugated metabolites) of pure Ellagitannin and distribution of these metabolites in vivo. In addition, clear, detailed metabolic pathways of corilagin were shown to involve hydrolysis, methylation, glycosylation, reduction, glucuronidation and sulfation.
Collapse
Affiliation(s)
- Zainaipuguli Yisimayili
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumchi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaozhen Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huan Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rahima Abdulla
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumchi 830011, China
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumchi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chenggang Huang
- University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
10
|
Bowers JJ, Gunawardena HP, Cornu A, Narvekar AS, Richieu A, Deffieux D, Quideau S, Tharayil N. Rapid Screening of Ellagitannins in Natural Sources via Targeted Reporter Ion Triggered Tandem Mass Spectrometry. Sci Rep 2018; 8:10399. [PMID: 29991731 PMCID: PMC6039434 DOI: 10.1038/s41598-018-27708-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022] Open
Abstract
Complex biomolecules present in their natural sources have been difficult to analyze using traditional analytical approaches. Ultrahigh-performance liquid chromatography (UHPLC-MS/MS) methods have the potential to enhance the discovery of a less well characterized and challenging class of biomolecules in plants, the ellagitannins. We present an approach that allows for the screening of ellagitannins by employing higher energy collision dissociation (HCD) to generate reporter ions for classification and collision-induced dissociation (CID) to generate unique fragmentation spectra for isomeric variants of previously unreported species. Ellagitannin anions efficiently form three characteristic reporter ions after HCD fragmentation that allows for the classification of unknown precursors that we call targeted reporter ion triggering (TRT). We demonstrate how a tandem HCD-CID experiment might be used to screen natural sources using UHPLC-MS/MS by application of 22 method conditions from which an optimized data-dependent acquisition (DDA) emerged. The method was verified not to yield false-positive results in complex plant matrices. We were able to identify 154 non-isomeric ellagitannins from strawberry leaves, which is 17 times higher than previously reported in the same matrix. The systematic inclusion of CID spectra for isomers of each species classified as an ellagitannin has never been possible before the development of this approach.
Collapse
Affiliation(s)
- Jeremiah J Bowers
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29631, USA
| | - Harsha P Gunawardena
- Janssen Research and Development, The Janssen Pharmaceutical Companies of Johnson and Johnson, Spring House, PA, 19477, USA
| | - Anaëlle Cornu
- University Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Ashwini S Narvekar
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29631, USA
| | - Antoine Richieu
- University Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Denis Deffieux
- University Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Stéphane Quideau
- University Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29631, USA.
| |
Collapse
|
11
|
Tyc O, Tomás-Menor L, Garbeva P, Barrajón-Catalán E, Micol V. Validation of the AlamarBlue® Assay as a Fast Screening Method to Determine the Antimicrobial Activity of Botanical Extracts. PLoS One 2016; 11:e0169090. [PMID: 28033417 PMCID: PMC5199036 DOI: 10.1371/journal.pone.0169090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
Plant compounds are a potential source of new antimicrobial molecules against a variety of infections. Plant extracts suppose complex phytochemical libraries that may be used for the first stages of the screening process for antimicrobials. However, their large variability and complexity require fast and inexpensive methods that allow a rapid and adequate screening for antimicrobial activity against a variety of bacteria and fungi. In this study, a multi-well plate assay using the AlamarBlue® fluorescent dye was applied to screen for antimicrobial activity of several botanical extracts and the data were correlated with microbial colony forming units (CFU). This correlation was performed for three pathogenic model microorganisms: Escherichia coli (Gram negative bacteria), Staphylococcus aureus (Gram positive bacteria) and for the yeast-like fungi Candida albicans. A total of ten plant extracts from different Mediterranean plants, including several Cistus and Hibiscus species, were successfully tested. HPLC-DAD-ESI-MS/MS analysis was utilized for the characterization of the extracts in order to establish structure-activity correlations. The results show that extracts enriched in ellagitannins and flavonols are promising antibacterial agents against both Gram positive and Gram negative bacteria. In contrast, phenolic acids, anthocyanidins and flavonols may be related to the observed antifungal activity.
Collapse
Affiliation(s)
- Olaf Tyc
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Wageningen, The Netherlands
| | - Laura Tomás-Menor
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Avenida de la Universidad s/n, E-03202 Elche, Alicante, Spain
| | - Paolina Garbeva
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Wageningen, The Netherlands
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Avenida de la Universidad s/n, E-03202 Elche, Alicante, Spain
- INVITROTECNIA S.L., Santiago Grisolía 2, Tres Cantos, Madrid, Spain
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Avenida de la Universidad s/n, E-03202 Elche, Alicante, Spain
- * E-mail:
| |
Collapse
|