1
|
Zou P, Ma S, Yuan Y, Ma J, Yang X, Hu X, Meng Q, Jing C, Li Y. A glucomannan produced by Bacillus velezensis HY23 and its growth promoting effect on soybeans under salt stress. Int J Biol Macromol 2024; 275:133474. [PMID: 38945338 DOI: 10.1016/j.ijbiomac.2024.133474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The Bacillus genus is widely distributed in nature, has bacteriostatic and growth-promoting activities, and has broad application potential in agriculture. An exopolysaccharide (EPS) was extracted and purified from Bacillus velezensis HY23. Structural characterisation of the EPS was performed by chemical and spectroscopic analyses. Methylation analysis showed that the EPS of HY23 was composed of mannose and glucose at a ratio of 82:18 and was identified as glucomannan. Combined with the nuclear magnetic resonance (NMR) analysis, EPS from HY23 had a backbone of →2)-α-D-Manp-(1 → and →2,6)-α-D-Manp-(1 → branched at C-6 with terminal α-(3-O-Me)-D-Manp-(1 → and →6)-α-D-Manp-(1 → residues as the side chain. A certain amount of β-D-Glcp residues were also present in backbone. Moreover, EPS significantly improved the nitrogen-fixing activity and salt resistance of soybean seedlings by regulating the antioxidant pool and expression of ion transporters. These findings indicate that EPS from B. velezensis HY23 is a potential biostimulant for enhancing plant resistance to salt stress.
Collapse
Affiliation(s)
- Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Junqing Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xia Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xihao Hu
- Shandong Qingdao Tobacco Co., Ltd., Qingdao 266000, China
| | - Qi Meng
- Qingdao Agricultural University, Qingdao 266000, China
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| |
Collapse
|
2
|
Cui X, Zhang X, Sun H, Zheng Y, Su C. Effects of elicitors from culture filtrate of Fusarium solani CL105 on flavonoid production of Scutellaria baicalensis calli. FRONTIERS IN PLANT SCIENCE 2024; 15:1383918. [PMID: 38899155 PMCID: PMC11186380 DOI: 10.3389/fpls.2024.1383918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Introduction Endophytic fungi can promote secondary metabolite accumulation in medicinal plants. Previously, we observed that the culture filtrate of Fusarium solani CL105 promoted flavonoid production in Scutellaria baicalensis calli. However, the active ingredients and mechanisms associated with this secondary metabolite accumulation remain unclear. Methods This study evaluates the effects of different elicitors from the culture filtrate of F. solani CL105 namely, exopolysaccharide (EPS), exoprotein (EP), and other parts (OP), on the flavonoid production in S. baicalensis calli by HPLC. Subsequently, the underlying mechanism of EPS induced flavonoid production in S. baicalensis calli was revealed by transcriptomics and RT-PCR. Results and discussion The results indicated a significant increase in flavonoid production in S. baicalensis calli following treatment with EPS. Baicalin (1.40 fold), wogonoside (1.91 fold), and wogonin (2.76 fold) were most significantly up-regulated compared with the control. Transcriptome analysis further revealed up-regulation of key enzyme genes (CHS, CHI, FNS, and F6H) involved in flavonoid synthesis after 5 days of EPS treatment. Moreover, the expression of GA2ox and CYP707A-genes involved in gibberellin acid (GA) and abscisic acid biosynthesis (ABA), respectively-were significantly up-regulated. The expression levels of certain transcription factors, including MYB3, MYB8, and MYB13, were also significantly higher than in controls. Our results indicated that EPS was a main active elicitor involved in promoting flavonoid production in S. baicalensis calli. We postulated that EPS might stimulate the expression of MYB3, MYB8, MYB13, GA2ox, and CYP707A, leading to markedly upregulated CHS, CHI, FNS, and F6H expression levels, ultimately promoting flavonoid synthesis. This study provides a novel avenue for large-scale in vitro production of flavonoids in S. baicalensis.
Collapse
Affiliation(s)
- Xiaoxuan Cui
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National ResourceCenter for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Huigai Sun
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Pharmaceutical Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang, China
| | - Chunyan Su
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
3
|
Sun K, Li Z, Lian M, Li Q, Wang R, Gu Y, Lei P, He H, Xu H, Sha F, Sun L. Characterization of a novel exopolysaccharide from Acinetobacter rhizosphaerae with ability to enhance the salt stress resistance of rice seedlings. Int J Biol Macromol 2024; 256:128438. [PMID: 38042318 DOI: 10.1016/j.ijbiomac.2023.128438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
We here describe the isolation of a novel exopolysaccharide from Acinetobacter rhizosphaerae, named ArEPS. The structure of ArEPS was characterized by analysis of the monosaccharide composition, molecular weight, infrared spectrum, methylation, and nuclear magnetic resonance spectrum. ArEPS was found to be an acidic heteropolysaccharide composed of glucose, galactose, galacturonic acid, glucuronic acid, mannose, and glucosamine; the molecular weight was 1533 kDa. Structural analysis showed that the main-chain structure of ArEPS predominantly comprised 1,3,6-β-Glcp, 1,3,4-α-Galp, 1,2-β-Glcp, 1,4-β-GlcpA, 1,4-β-GalpA, and the side-chain structure comprised 1,6-β-Glcp, 1,3-β-Galp, 1-α-Glcp, 1-β-Galp, 1-α-Manp, 1,4,6-α-Glcp, 1,2,4-β-Glcp, 1,2,3-β-Glcp, and 1,3-β-GlcpN. ArEPS significantly enhanced the tolerance of rice seedlings to salt stress. Specifically, plant height, fresh weight, chlorophyll content, and the K+/Na+ ratio increased by 51 %, 63 %, 29 %, and 162 %, respectively, and the malondialdehyde content was reduced by 45 % after treatment with 100 mg/kg ArEPS compared to treatment with 100 mM NaCl. Finally, based on the quadratic regression between fresh weight and ArEPS addition, the optimal ArEPS addition level was estimated to be 135.12 mg/kg. These results indicate the prospects of ArEPS application in agriculture.
Collapse
Affiliation(s)
- Ke Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Suzhou Cornigs Polyols CO., LTD., Suzhou 215000, China
| | - Zhen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Mengyu Lian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Quan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hongjie He
- Westa College, Southwest University, Chongqing 400715, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Feng Sha
- Suzhou Cornigs Polyols CO., LTD., Suzhou 215000, China; School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
4
|
Zheng M, Zhong S, Wang W, Tang Z, Bu T, Li Q. Serendipita indica Promotes the Growth of Tartary Buckwheat by Stimulating Hormone Synthesis, Metabolite Production, and Increasing Systemic Resistance. J Fungi (Basel) 2023; 9:1114. [PMID: 37998919 PMCID: PMC10671858 DOI: 10.3390/jof9111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The main objective of this study was to investigate the influence of Serendipita indica on the growth of Tartary buckwheat plants. This study highlighted that the roots of Tartary buckwheat can be colonized by S. indica and that this fungal endophyte improved plants height, fresh weight, dry weight, and grain yield. In the meantime, the colonization of S. indica in Tartary buckwheat leaves resulted in elevated levels of photosynthesis, plant hormone content, antioxidant enzyme activity, proline content, chlorophyll content, soluble sugars, and protein content. Additionally, the introduction of S. indica to Tartary buckwheat roots led to a substantial rise in the levels of flavonoids and phenols found in the leaves and seeds of Tartary buckwheat. In addition, S. indica colonization reduced the content of malondialdehyde and hydrogen peroxide when compared to non-colonized plants. Importantly, the drought tolerance of Tartary buckwheat plants is increased, which benefits from physiology and bio-chemical changes in plants after S. indica colonized. In conclusion, we have shown that S. indica can improve systematic resistance and promote the growth of Tartary buckwheat by enhancing the photosynthetic capacity of Tartary buckwheat, inducing the production of IAA, increasing the content of secondary metabolites such as total phenols and total flavonoids, and improving the antioxidant enzyme activity of the plant.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (M.Z.); (S.Z.); (W.W.); (Z.T.); (T.B.)
| |
Collapse
|
5
|
Wang D, Ren H. Microbial community in buckwheat rhizosphere with different nitrogen application rates. PeerJ 2023; 11:e15514. [PMID: 37361045 PMCID: PMC10290450 DOI: 10.7717/peerj.15514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Microorganism plays a pivotal role in regulating sustainable development of agriculture. The excessive application of nitrogen fertilizer is considered to affect the microbial structure in many agricultural systems. The present study aimed to assess the impacts of nitrogen application rate on microbial diversity, community and functionality in rhizosphere of Tartary buckwheat in short-time. The nitrogen fertilizer was applied at rates of 90 kg (N90), 120 kg (N120) and 150 kg (N150) urea per hectare, respectively. The soil properties were measured chemical analysis and displayed no difference among treatments. Metagenome analysis results showed that the microbial diversity was not affected, but the microbial community and functionality were affected by the nitrogen application rate. According to the Linear discriminant analysis effect size (LEfSe) analysis, 15 taxa were significantly enriched in the N120 and N150 groups, no taxon was enriched in the N90 group. Kyoto Encyclopaedia of Genes and Genomes (KEGG) annotation results revealed that the genes related to butanoate and beta alanine metabolism were significantly enriched in the N90 group, the genes related to thiamine metabolism, lipopolysaccharide biosynthesis and biofilm formation were significantly enriched in the N120 group, and the genes related to neurodegenerative disease was significantly enriched in the N150 group. In conclusion, short-time nitrogen fertilizer application shifted the microbial community structure and functionality.
Collapse
|
6
|
Liang X, Zhou K, Li P, Wan D, Liu J, Yi X, Peng Y. Characteristics of endophytic bacteria and active ingredients in the Eucommiae cortex from different origins. Front Microbiol 2023; 14:1164674. [PMID: 37266017 PMCID: PMC10229866 DOI: 10.3389/fmicb.2023.1164674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Objective This study aimed to explore the differences between Eucommiae cortex (EC) endophytic bacteria from different origins and their effects on the active ingredients of EC. Methods A total of 10 samples of Eucommia ulmoides Oliv. (E. ulmoides) bark were collected from each of the following four regions, namely, Zunyi in Guizhou (GZ), Baokang in Hubei (HUB), Cili in Hunan (HUN), and Loyang in Shaanxi (SX). Subsequently, the contents of the main active ingredients of EC were determined by ultra-performance liquid chromatography (UPLC), and the endophytic bacteria of EC were detected by 16S rRNA sequencing. The relationship between the dominant endophytic bacteria and the active ingredients was investigated by correlation analysis. Results A total of 4,551 different operational taxonomic units (OTUs) were delineated in the four groups of samples, of which 585, 439, 957, and 684 genera were annotated from GZ, HUB, HUN, and SX, respectively. The richness and diversity of endophytic bacteria from different origins were ranked as HUN > SX > GZ or HUB. The analysis demonstrated that there was no significant correlation between the diversity and richness of endophytic bacteria in EC and its active ingredients. Nevertheless, notable variations in the community structures of endophytic bacteria were observed across different origins, and they had a considerable impact on certain active ingredients in EC. Comamonas and Cedecea were the dominant genera. Characteristic bacteria of different origins could be clearly distinguished. Simultaneous, significant correlations had been identified between some characteristic endophytic bacteria derived from different origins and active ingredients of EC. For example, Delftia, a characteristic bacterium from GZ, showed a significant positive correlation with pinoresinol diglucoside. Paenibacillus and Klebsiella, two characteristic bacteria from HUB, exhibited significant positive correlations with geniposidic acid. Thauera, a characteristic bacterium from HUN, demonstrated a significant positive correlation with geniposide. Brevundimonas, a characteristic bacterium from SX, displayed a significant positive correlation with pinoresinol diglucoside. Conclusion There was a complex correlation between EC endophytic bacteria and active ingredient content, while EC endophytic bacteria from different origins had significant differences at the genus level.
Collapse
Affiliation(s)
- Xuejuan Liang
- Innovative Medicine Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Kang Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Penghui Li
- Innovative Medicine Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Dan Wan
- Innovative Medicine Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yanmei Peng
- Innovative Medicine Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Kamat S, Kumari M, Sajna KV, Singh SK, Kumar A, Jayabaskaran C. Improved Chrysin Production by a Combination of Fermentation Factors and Elicitation from Chaetomium globosum. Microorganisms 2023; 11:microorganisms11040999. [PMID: 37110422 PMCID: PMC10146793 DOI: 10.3390/microorganisms11040999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Flavonoids encompass a heterogeneous group of secondary metabolites with exceptional health benefits. Chrysin, a natural dihydroxyflavone, possesses numerous bioactive properties, such as anticancer, antioxidative, antidiabetic, anti-inflammatory, etc. However, using traditional sources of chrysin involves extracting honey from plants, which is non-scalable, unsustainable, and depends on several factors, including geography, climatic conditions, and the season, which limits its production at a larger scale. Recently, microbial production of desirable metabolites has garnered attention due to the cost-effectiveness, easy scale-up, sustainability, and low emission of waste. We previously reported for the first time the chrysin-producing marine endophytic fungus Chaetomium globosum, associated with a marine green alga. To extend our understanding of chrysin biosynthesis in C. globosum, in the present study, we have assessed the presence of flavonoid pathway intermediates in C. globosum extracts using LC-MS/MS. The presence of several key metabolites, such as dihydrokaempferol, chalcone, galangin, baicalein, chrysin, p-Coumaroyl-CoA, and p-Cinnamoyl-CoA, indicates the role of flavonoid biosynthesis machinery in the marine fungus. Further, we have aimed to enhance the production of chrysin with three different strategies: (1) optimizing the fermentation parameters, namely, growth medium, incubation time, pH, and temperature; (2) feeding key flavonoid pathway intermediates, i.e., phenylalanine and cinnamic acid; (3) elicitation with biotic elicitors, such as polysaccharide, yeast extract, and abiotic elicitors that include UV radiation, salinity, and metal stress. The combined effect of the optimized parameters resulted in a 97-fold increase in the chrysin yield, resulting in a fungal cell factory. This work reports the first approach for enhanced production of chrysin and can serve as a template for flavonoid production enhancement using marine endophytic fungi.
Collapse
Affiliation(s)
- Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kuttuvan Valappil Sajna
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
- Celignis Biomass Analysis Laboratory, V94 7Y42 Limerick, Ireland
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Zhang J, Zhu Y, Si J, Wu L. Metabolites of medicine food homology-derived endophytic fungi and their activities. Curr Res Food Sci 2022; 5:1882-1896. [PMID: 36276242 PMCID: PMC9579210 DOI: 10.1016/j.crfs.2022.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 11/04/2022] Open
Abstract
Medicine food homology (MFH) substances not only provide essential nutrients as food but also have corresponding factors that can prevent and help treat nutritional imbalances, chronic disease, and other related issues. Endophytic fungi associated with plants have potential for use in drug discovery and food therapy. However, the endophytic fungal metabolites from MFH plants and their effects have been overlooked. Therefore, this review focuses on the various biological activities of 108 new metabolites isolated from 53 MFH-derived endophytic fungi. The paper explores the potential nutritional and medicinal value of metabolites of MFH-derived endophytic fungi for food and medical applications. This research is important for the future development of effective, safe, and nontoxic therapeutic nutraceuticals for the prevention and treatment of human diseases.
Collapse
|
9
|
Zhang H, Zhou Q, Xiao P, Liu X, Liu L. Protective Effect of Buckwheat Polysaccharide on Streptozotocin-Induced Kidney Injury in Diabetic Rats and the Possible Mechanism. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We intend to explore the mechanism underlying the effect of Buckwheat polysaccharide on kidney damage in diabetics. In this study, rats received 5 week-STZ injection to induce type 2 diabetes and then were administered with 8-week buckwheat polysaccharide followed by analysis of the
diabetes-index and kidney histopathological changes by immunohistochemistry and ELISA as well as the expression of kidney Col IV, Akt, TGF-β1, FN, FoxO1 and MnSOD by western blot and RT-qPCR. Diabetic nephropathy rats exhibited significantly increased blood glucose, kidney body
mass index, Scr and glomerular mesangial index, with thickened glomerular basement membrane, and elevated BUN and urinary albumin excretion. Besides, podocyte was fused as demonstrated by significantly decreased expression of renal TGF-β1, FN, Col IV mRNA and renal MnSOD mRNA.
In conclusion, Buckwheat polysaccharides significantly alleviate kidney injury in diabetes possibly through regulation of FoxO1/MnSOD axis.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Endocrine, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Qibing Zhou
- Emergency Department of the Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Pengfei Xiao
- Department of Scientific Research, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Xiulan Liu
- Emergency Department of the Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Lingwei Liu
- Department of Endocrine, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| |
Collapse
|
10
|
Sun L, Cheng L, Ma Y, Lei P, Wang R, Gu Y, Li S, Zhang F, Xu H. Exopolysaccharides from Pantoea alhagi NX-11 specifically improve its root colonization and rice salt resistance. Int J Biol Macromol 2022; 209:396-404. [PMID: 35413311 DOI: 10.1016/j.ijbiomac.2022.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) and their extracellular polymers such as exopolysaccharides can enhance rice salt stress resistance, however, the relevant mechanism remains unclear. In this study, an exopolysaccharides-deficient strain, named ΔpspD, was obtained from Pantoea alhagi NX-11 by chromosomal pspD deletion. The yield and characteristics of ΔpspD exopolysaccharides was obviously different from P. alhagi NX-11 exopolysaccharides (PAPS). Subsequently, hydroponic experiments showed that NX-11 or PAPS could enhance rice salt tolerance, but ΔpspD could not. Furthermore, it was found that PAPS promoted P. alhagi rhizosphere colonization through a direct effect on biofilm formation, as well as through an indirect impact of enhancing the abilities of biofilm formation and chemotaxis by altering rice root exudates. Importantly, the effect of PAPS in promoting the root colonization of NX-11 was specific. Through transcriptome and RT-qPCR analysis, we revealed that this specificity correlated with PAPS-induced lectin overexpression. The specificity between exopolysaccharides and the host microorganism ensures the colonization of the latter, and prevents other microorganisms from hitchhiking to the rice roots.
Collapse
Affiliation(s)
- Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Lifangyu Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yuhang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Fuhai Zhang
- Agricultural and Rural Bureau of Yantai, Yantai 264000, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
11
|
Nutritional Improvement of Bean Sprouts by Using Chitooligosaccharide as an Elicitor in Germination of Soybean (Glycine max L.). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soybean sprouts are among the healthiest foods consumed in most Asian countries. Their nutritional content, especially bioactive compounds, may change according to the conditions of germination. The purpose of this study was to test the effect of chitooligosaccharide with different molecular weight and dosage on nutritional quality and enzymatic and antioxidant activities of soybean sprouts. The chitooligosaccharide elicitor strongly stimulated the accumulation of vitamin C, total phenolics, and total flavonoid. The stimulation effect was correlated with the molecular weight and concentration of chitooligosaccharide. With treatment of 0.01% of 1 kDa chitooligosaccharide, the nine phenolic constituents and six isoflavone compounds were significantly increased. The antioxidant capacity (DPPH radical and hydroxyl radical scavenging activity) and antioxidase activities (catalase and peroxidase) of soybean sprouts were also enhanced after treatment with chitooligosaccharide. The degree of chitooligosaccharide-induced elicitor activity increased as the molecular weight of chitooligosaccharide decreased. These results suggest that soaking soybean seeds in a solution of chitooligosaccharide, especially in 0.01% of 1 kDa chitooligosaccharide, may effectively improve the nutritional value and physiological function of soybean sprouts.
Collapse
|
12
|
Witkowicz R, Biel W, Skrzypek E, Chłopicka J, Gleń-Karolczyk K, Krupa M, Prochownik E, Galanty A. Microorganisms and Biostimulants Impact on the Antioxidant Activity of Buckwheat ( Fagopyrum esculentum Moench) Sprouts. Antioxidants (Basel) 2020. [PMID: 32635447 DOI: 10.3390/agronomy9080469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
The study analyzes the influence of plant growth promoters and biological control agents on the chemical composition and antioxidant activity (AA) in the sprouts of buckwheat. The AA of cv. Kora sprouts was higher than cv. Panda, with 110.0 µM Fe2+/g (FRAP-Ferric Reducing Antioxidant Power), 52.94 µM TRX (Trolox)/g (DPPH-1,1-diphenyl-2-picrylhydrazyl), 182.7 µM AAE (Ascorbic Acid Equivalent)/g (Photochemiluminescence-PCL-ACW-Water-Soluble Antioxidant Capacity) and 1.250 µM TRX/g (PCL-ACL-Lipid-Soluble Antioxidant Capacity). The highest AA was found in the sprouts grown from seeds soaked in Ecklonia maxima extract and Pythium oligandrum (121.31 µM Fe2+/g (FRAP), 56.33 µM TRX/g (DPPH), 195.6 µM AAE/g (PCL-ACW) and 1.568 µM TRX/g (PCL-ACL). These values show that the antioxidant potential of buckwheat sprouts is essentially due to the predominant hydrophilic fraction of antioxidants. The AA of the sprouts was strongly correlated with total polyphenol content.
Collapse
Affiliation(s)
- Robert Witkowicz
- Department of Agroecology and Crop Production, University of Agriculture in Krakow, Mickiewicza 21, 31120 Krakow, Poland
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego Street, 71270 Szczecin, Poland
| | - Edyta Skrzypek
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30239 Krakow, Poland
| | - Joanna Chłopicka
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30688 Krakow, Poland
| | - Katarzyna Gleń-Karolczyk
- Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, Mickiewicza 21, 31120 Krakow, Poland
| | - Mateusz Krupa
- Department of Agroecology and Crop Production, University of Agriculture in Krakow, Mickiewicza 21, 31120 Krakow, Poland
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30688 Krakow, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30688 Krakow, Poland
| |
Collapse
|
13
|
Witkowicz R, Biel W, Skrzypek E, Chłopicka J, Gleń-Karolczyk K, Krupa M, Prochownik E, Galanty A. Microorganisms and Biostimulants Impact on the Antioxidant Activity of Buckwheat ( Fagopyrum esculentum Moench) Sprouts. Antioxidants (Basel) 2020; 9:E584. [PMID: 32635447 PMCID: PMC7402131 DOI: 10.3390/antiox9070584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
The study analyzes the influence of plant growth promoters and biological control agents on the chemical composition and antioxidant activity (AA) in the sprouts of buckwheat. The AA of cv. Kora sprouts was higher than cv. Panda, with 110.0 µM Fe2+/g (FRAP-Ferric Reducing Antioxidant Power), 52.94 µM TRX (Trolox)/g (DPPH-1,1-diphenyl-2-picrylhydrazyl), 182.7 µM AAE (Ascorbic Acid Equivalent)/g (Photochemiluminescence-PCL-ACW-Water-Soluble Antioxidant Capacity) and 1.250 µM TRX/g (PCL-ACL-Lipid-Soluble Antioxidant Capacity). The highest AA was found in the sprouts grown from seeds soaked in Ecklonia maxima extract and Pythium oligandrum (121.31 µM Fe2+/g (FRAP), 56.33 µM TRX/g (DPPH), 195.6 µM AAE/g (PCL-ACW) and 1.568 µM TRX/g (PCL-ACL). These values show that the antioxidant potential of buckwheat sprouts is essentially due to the predominant hydrophilic fraction of antioxidants. The AA of the sprouts was strongly correlated with total polyphenol content.
Collapse
Affiliation(s)
- Robert Witkowicz
- Department of Agroecology and Crop Production, University of Agriculture in Krakow, Mickiewicza 21, 31120 Krakow, Poland or (R.W.); (M.K.)
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego Street, 71270 Szczecin, Poland
| | - Edyta Skrzypek
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30239 Krakow, Poland;
| | - Joanna Chłopicka
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30688 Krakow, Poland; (J.C.); (E.P.)
| | - Katarzyna Gleń-Karolczyk
- Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, Mickiewicza 21, 31120 Krakow, Poland;
| | - Mateusz Krupa
- Department of Agroecology and Crop Production, University of Agriculture in Krakow, Mickiewicza 21, 31120 Krakow, Poland or (R.W.); (M.K.)
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30688 Krakow, Poland; (J.C.); (E.P.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30688 Krakow, Poland;
| |
Collapse
|
14
|
Gutiérrez-Gamboa G, Garde-Cerdán T, Rubio-Bretón P, Pérez-Álvarez EP. Seaweed foliar applications at two dosages to Tempranillo blanco (Vitis vinifera L.) grapevines in two seasons: Effects on grape and wine volatile composition. Food Res Int 2020; 130:108918. [PMID: 32156366 DOI: 10.1016/j.foodres.2019.108918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 11/15/2022]
Abstract
The effects of seaweed applications to grapevines on grape and wine volatile composition are currently unknown. The aim of this work was to study the influence of seaweed foliar applications (Ascophyllum nodosum) to a Tempranillo blanco vineyard on grape and wine volatile composition. A low (Ld) and a high dosage (Hd) of the seaweed fertilizer was applied in two consecutive seasons (2017-2018). The most abundant family of varietal volatile compounds in Tempranillo blanco grapes was C13 norisoprenoid. Hd treatment tended to increase the concentration of certain C6 compounds in grapes in both seasons, whereas Ld application tended to decrease 2-phenylethanol and 2-phenylethanal content in grapes with a season dependence. Season factor affected to the concentration of most of the volatile compounds in grapes due to the differences on rainfall, which affected to the weight of 100 berries and physico-chemical parameters. Yeast assimilable nitrogen (YAN) in musts could have affected the concentration of most of the wine volatile compounds. According to odor activity values (OAV), Tempranillo blanco wines were characterized as floral, fruity, banana, pear, among others aroma compounds.
Collapse
Affiliation(s)
- G Gutiérrez-Gamboa
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain
| | - T Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain.
| | - P Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain
| | - E P Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain; Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Ed. 25, 30100 Murcia, Spain.
| |
Collapse
|
15
|
Jaroszuk-Ściseł J, Nowak A, Komaniecka I, Choma A, Jarosz-Wilkołazka A, Osińska-Jaroszuk M, Tyśkiewicz R, Wiater A, Rogalski J. Differences in Production, Composition, and Antioxidant Activities of Exopolymeric Substances (EPS) Obtained from Cultures of Endophytic Fusarium culmorum Strains with Different Effects on Cereals. Molecules 2020; 25:E616. [PMID: 32019268 PMCID: PMC7037457 DOI: 10.3390/molecules25030616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022] Open
Abstract
Exopolymeric substances (EPS) can determine plant-microorganism interactions and have great potential as bioactive compounds. The different amounts of EPS obtained from cultures of three endophytic Fusarium culmorum strains with different aggressiveness-growth promoting (PGPF), deleterious (DRMO), and pathogenic towards cereal plants-depended on growth conditions. The EPS concentrations (under optimized culture conditions) were the lowest (0.2 g/L) in the PGPF, about three times higher in the DRMO, and five times higher in the pathogen culture. The EPS of these strains differed in the content of proteins, phenolic components, total sugars, glycosidic linkages, and sugar composition (glucose, mannose, galactose, and smaller quantities of arabinose, galactosamine, and glucosamine). The pathogen EPS exhibited the highest total sugar and mannose concentration. FTIR analysis confirmed the β configuration of the sugars. The EPS differed in the number and weight of polysaccharidic subfractions. The EPS of PGPF and DRMO had two subfractions and the pathogen EPS exhibited a subfraction with the lowest weight (5 kDa). The three EPS preparations (ethanol-precipitated EP, crude C, and proteolysed P) had antioxidant activity (particularly high for the EP-EPS soluble in high concentrations). The EP-EPS of the PGPF strain had the highest antioxidant activity, most likely associated with the highest content of phenolic compounds in this EPS.
Collapse
Affiliation(s)
- Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (R.T.); (A.W.)
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (R.T.); (A.W.)
| | - Iwona Komaniecka
- Department of Genetic and Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Adam Choma
- Department of Genetic and Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (A.J.-W.); (M.O.-J.); (J.R.)
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (A.J.-W.); (M.O.-J.); (J.R.)
| | - Renata Tyśkiewicz
- Department of Industrial and Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (R.T.); (A.W.)
- Military Institute of Hygiene and Epidemiology, Lubelska St. 2, 24-100 Puławy, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (R.T.); (A.W.)
| | - Jerzy Rogalski
- Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (A.J.-W.); (M.O.-J.); (J.R.)
| |
Collapse
|
16
|
Toghueo RMK. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology 2019; 11:1-21. [PMID: 32128278 PMCID: PMC7033707 DOI: 10.1080/21501203.2019.1645053] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022] Open
Abstract
Endophytic fungi became an attractive source for the discovery of new leads, because of the complexity and the structural diversity of their secondary metabolites. The genus Fusarium comprising about 70 species is extremely variable in terms of genetics, biology, ecology, and consequently, secondary metabolism and have been isolated from countless plants genera from diverse habitats. These endophytic microbes may provide protection and survival strategies in their host plants with production of a repertoire of chemically diverse and structurally unprecedented secondary metabolites reported to exhibit an incredible array of biological activities including antimicrobial, anticancer, antiviral, antioxidants, antiparasitics, immunosuppressants, immunomodulatory, antithrombotic, and biocontrol ability against plants pathogens and nematodes. This review comprehensively highlights over the period 1981-2019, the bioactive potential of metabolites produced by endophytes from Fusarium genus. Abbreviations: AIDS: Acquired immune deficiency syndrome; BAPT: C-13 phenylpropanoid side chain-CoA acyltransferase; CaBr2: Calcium bromide; DBAT: 10-deacetylbaccatin III-10-O-acetyl transferase; DNA: Deoxyribonucleic acid; EI-MS: Electron ionization mass spectrometer; EN: Enniatin; ERK: Extracellular regulated protein kinase; EtOAc: Ethyl acetate; FDA: Food and Drug Administration; GAE/g: Gallic acid equivalent per gram; GC-MS: Gas chromatography-mass spectrometry; HA: Hyperactivation; HCV: Hepatitis C Virus; HCVPR: Hepatitis C Virus protease; HeLa: Human cervical cancer cell line; HIV: Human immunodeficiency viruses; HPLC: High Performance Liquid Chromatography; IAA: Indole-3-acetic acid; IARC: International Agency for Research on Cancer; IC50: Half maximal inhibitory concentration; LC50: Concentration of the compound that is lethal for 50% of exposed population; LC-MS: Liquid chromatography-mass spectrometry; MCF-7: Human breast cancer cell line; MDR: Multidrug-resistant; MDRSA: Multidrug-resistant S. aureus; MFC: Minimum fungicidal concentration; MIC: Minimum inhibitory concentration; MRSA: Multidrug-resistant S. aureus; MTCC: Microbial type culture collection; PBMCs: Peripheral blood mononuclear cells; PCR: Polymerase chain reaction; TB: Tuberculosis; TLC: Thin layer chromatography; TNF: Tumor necrosis factor; WHO: World Health Organization http://www.zoobank.org/urn:lsid:zoobank.org:pub:D0A7B2D8-5952-436D-85C8-C79EAAD1013C.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
17
|
Wang Z, Gao W, Liu X, Chen P, Lu W, Wang F, Li H, Sun Q, Zhang H. Efficient production of polysaccharide by Chaetomium globosum CGMCC 6882 through co-culture with host plant Gynostemma pentaphyllum. Bioprocess Biosyst Eng 2019; 42:1731-1738. [PMID: 31321528 DOI: 10.1007/s00449-019-02169-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
Endophytic fungus, as a new kind of microbial resources and separated from plants, has attracted increasing attention due to its ability to synthesize the same or similar bioactive secondary metabolites as the host plants. Nevertheless, the effects of the symbiotic relationship between microorganisms and elicitors existed in host plant on metabolite production are not adequately understood. In the present work, the impacts of elicitors (ginseng saponin and puerarin) and symbiotic microorganisms on endophytic fungus Chaetomium globosum CGMCC 6882 synthesizing polysaccharide were evaluated. Results show that the polysaccharide titers increased from 2.36 to 3.88 g/L and 3.67 g/L with the addition of 16 μg/L ginseng saponin and puerarin, respectively. Moreover, the maximum polysaccharide titer reached 4.55 g/L when C. globosum CGMCC 6882 was co-cultured with UV-irradiated G. pentaphyllum. This work brings a significant contribution to the research and interpretation of the relationship between endophytic fungus and its host plant.
Collapse
Affiliation(s)
- Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenshuo Gao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xiaoying Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Peizhang Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenbo Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Fuzhuan Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Liu H, Kang Y, Zhao X, Liu Y, Zhang X, Zhang S. Effects of elicitation on bioactive compounds and biological activities of sprouts. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
19
|
Mattos BB, Montebianco C, Romanel E, da Franca Silva T, Bernabé RB, Simas-Tosin F, Souza LM, Sassaki GL, Vaslin MFS, Barreto-Bergter E. A peptidogalactomannan isolated from Cladosporium herbarum induces defense-related genes in BY-2 tobacco cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:206-216. [PMID: 29525444 DOI: 10.1016/j.plaphy.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/17/2023]
Abstract
Cladosporium herbarum is a plant pathogen associated with passion fruit scab and mild diseases in pea and soybean. In this study, a peptidogalactomannan (pGM) of C. herbarum mycelium was isolated and structurally characterized, and its role in plant-fungus interactions was evaluated. C. herbarum pGM is composed of carbohydrates (76%) and contains mannose, galactose and glucose as its main monosaccharides (molar ratio, 52:36:12). Methylation and 13C-nuclear magnetic resonance (13C-NMR) spectroscopy analysis have shown the presence of a main chain containing (1 → 6)-linked α-D-Manp residues, and β-D-Galf residues are present as (1 → 5)-interlinked side chains. β-Galactofuranose containing similar structures were characterized by our group in A. fumigatus, A. versicolor, A. flavus and C. resinae. Tobacco BY-2 cells were used as a model system to address the question of the role of C. herbarum pGM in cell viability and induction of the expression of plant defense-related genes. Native and partially acid hydrolyzed pGMs (lacking galactofuranosyl side-chain residues) were incubated with BY-2 cell suspensions at different concentrations. Cell viability drastically decreased after exposure to more than 400 μg ml-1 pGM; however no cell viability effect was observed after exposure to a partially acid hydrolyzed pGM. BY-2 cell contact with pGM strongly induce the expression of plant defense-related genes, such as phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX), as well as the pathogen-related PR-1a, PR-2 and PR-3 genes, suggesting that pGM activates defense responses in tobacco cells. Interestingly, contact with partially hydrolyzed pGM also induced defense-related gene expression at earlier times than native pGM. These results show that the side chains of the (1 → 5)-linked β-D-galactofuranosyl units from pGM play an important role in the first line fungus-plant interactions mediating plant responses against C. herbarum. In addition, it was observed that pGM and/or C. herbarum conidia are able to induced HR when in contact with tobacco leaves and in vitro plantlets roots, producing necrotic lesions and peroxidase and NO burst, respectively.
Collapse
Affiliation(s)
- Bianca Braz Mattos
- Laboratório de Química Biológica de Microorganismos, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941599, Rio de Janeiro, Brazil
| | - Caroline Montebianco
- Laboratório de Química Biológica de Microorganismos, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941599, Rio de Janeiro, Brazil
| | - Elisson Romanel
- Laboratório de Química Biológica de Microorganismos, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941599, Rio de Janeiro, Brazil; Laboratório de Virologia Molecular Vegetal, Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941590, Rio de Janeiro, Brazil
| | - Tatiane da Franca Silva
- Laboratório de Virologia Molecular Vegetal, Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941590, Rio de Janeiro, Brazil
| | - Renato Barroso Bernabé
- Laboratório de Virologia Molecular Vegetal, Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941590, Rio de Janeiro, Brazil
| | - Fernanda Simas-Tosin
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Lauro M Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Guilherme L Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Maite F S Vaslin
- Laboratório de Virologia Molecular Vegetal, Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941590, Rio de Janeiro, Brazil.
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microorganismos, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941599, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Zhao J, Jiang L, Tang X, Peng L, Li X, Zhao G, Zhong L. Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum. Molecules 2018; 23:molecules23010182. [PMID: 29361741 PMCID: PMC6017370 DOI: 10.3390/molecules23010182] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the chemical composition and biological activity of the volatile oils (VOs) from the flowers of three buckwheat species, Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum cymosum. The VOs were obtained from the fresh buckwheat flowers by hydrodistillation, and were analyzed for their chemical composition by gas chromatography-mass spectrometry (GC-MS). Nonanoic acid (7.58%), (E)-3-hexen-1-ol (6.52%), and benzothiazole (5.08%) were the major constituents among the 28 identified components which accounted for 92.89% of the total oil of F. esculentum. 2-Pentadecanone (18.61%), eugenol (17.18%), 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester (13.19%), and (E,E)-farnesylacetone (7.15%) were the major compounds among the 14 identified components which accounted for 88.48% of the total oil of F. tataricum. Eugenol (12.22%), (E)-3-hexen-1-yl acetate (8.03%), linalool oxide (7.47%), 1-hexanol (7.07%), and benzothiazole (6.72%) were the main compounds of the 20 identified components which accounted for 90.23% of the total oil of F. cymosum. The three VOs were screened to have broad spectrum antibacterial activity with minimum inhibitory concentration (MIC) values ranged from 100.0 μg/mL to 800.0 μg/mL against the tested bacteria, and their median inhibitory concentration (IC50) values were from 68.32 μg/mL to 452.32 μg/mL. Xanthomonas vesicatoria was the most sensitive bacterium. Moreover, the flower VOs of F. esculentum, F. tataricum and F. cymosum also exhibited noteworthy antioxidant capacity with the IC50 value of 354.15 μg/mL, 210.63 μg/mL, and 264.92 μg/mL for the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, and the value of 242.06 μg/mL, 184.13 μg/mL, and 206.11 μg/mL respectively for the β-carotene-linoleic bleaching test. These results suggested the volatile oils of buckwheat flowers could be potential resource of natural antimicrobial and antioxidant agents.
Collapse
Affiliation(s)
- Jianglin Zhao
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
- Key Laboratory of Coarse Cereals Processing, Ministry of Agriculture, Chengdu 610106, Sichuan, China.
| | - Lan Jiang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Xiaohui Tang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Lianxin Peng
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Xing Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Gang Zhao
- Key Laboratory of Coarse Cereals Processing, Ministry of Agriculture, Chengdu 610106, Sichuan, China.
| | - Lingyun Zhong
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
- Key Laboratory of Coarse Cereals Processing, Ministry of Agriculture, Chengdu 610106, Sichuan, China.
| |
Collapse
|