1
|
Bangar NS, Ravindran S, Shaikh SA, Shah N, Tupe RS. Homeopathic Formulations of Syzygium jambolanum Alleviate Glycation-Mediated Structural and Functional Modifications of Albumin: Evaluation through Multi-Spectroscopic and Microscopic Approaches. HOMEOPATHY 2024; 113:98-111. [PMID: 37857331 DOI: 10.1055/s-0043-1771024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
BACKGROUND The growing interest in identifying the mode of action of traditional medicines has strengthened its research. Syzygium jambolanum (Syzyg) is commonly prescribed in homeopathy and is a rich source of phytochemicals. OBJECTIVE The present study aims to shed light on the anti-glycation molecular mechanism of Syzyg mother tincture (MT), 30c, and 200c on glycated human serum albumin (HSA) by multi-spectroscopic and microscopic approaches. METHODS The phytochemicals and antioxidant potential of the Syzyg formulations were estimated by the high-performance liquid chromatography and spectroscopic technique, respectively. Glycation was initiated by incubating HSA with methylglyoxal, three Syzyg formulations, and the known inhibitor aminoguanidine in separate tubes at 37°C for 48 hours. The formation of glycation adducts was assessed by spectrofluorometer and affinity chromatography. The structural modifications were analyzed through circular dichroism, Fourier transform infrared spectroscopy, turbidity, 8-anilinonapthalene-1-sulfonic acid fluorescence, and nuclear magnetic resonance. Further, the formation of the aggregates was examined by thioflavin T, native-polyacrylamide gel electrophoresis, and transmission electron microscopy. Additionally, the functional modifications of glycated HSA were determined by esterase-like activity and antioxidant capacity. The binding analysis of Syzyg formulations with glycated HSA was evaluated by surface plasmon resonance (SPR). RESULTS Syzyg formulations MT, 30c, and 200c contained gallic acid and ellagic acid as major phytochemicals, with concentrations of 16.02, 0.86, and 0.52 µg/mL, and 227.35, 1.35, and 0.84 µg/mL, respectively. Additionally, all three formulations had remarkable radical scavenging ability and could significantly inhibit glycation compared with aminoguanidine. Further, Syzyg formulations inhibited albumin's structural and functional modifications. SPR data showed that Syzyg formulations bind to glycated HSA with an equilibrium dissociation constant of 1.10 nM. CONCLUSION Syzyg formulations inhibited the glycation process while maintaining the structural and functional integrity of HSA.
Collapse
Affiliation(s)
- Nilima S Bangar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, India
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, India
| | - Shamim A Shaikh
- Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Katraj, Pune, Maharashtra, India
| | - Nilesh Shah
- Department of Surgery and Homeopathic Therapeutics, Bharati Vidyapeeth (Deemed to be University), Homoeopathic Medical College, Katraj, Pune, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, India
| |
Collapse
|
2
|
Garg A, Kumar G, Singh V, Sinha S. Doxorubicin catalyses self-assembly of p53 by phase separation. Curr Res Struct Biol 2024; 7:100133. [PMID: 38435052 PMCID: PMC10906149 DOI: 10.1016/j.crstbi.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Liquid-liquid phase separation plays a crucial role in cellular physiology, as it leads to the formation of membrane-less organelles in response to various internal stimuli, contributing to various cellular functions. However, the influence of exogenous stimuli on this process in the context of disease intervention remains unexplored. In this current investigation, we explore the impact of doxorubicin on the abnormal self-assembly of p53 using a combination of biophysical and imaging techniques. Additionally, we shed light on the potential mechanisms behind chemoresistance in cancer cells carrying mutant p53. Our findings reveal that doxorubicin co-localizes with both wild-type p53 (WTp53) and its mutant variants. Our in vitro experiments indicate that doxorubicin interacts with the N-terminal-deleted form of WTp53 (WTp53ΔNterm), inducing liquid-liquid phase separation, ultimately leading to protein aggregation. Notably, the p53 variants at the R273 position exhibit a propensity for phase separation even in the absence of doxorubicin, highlighting the destabilizing effects of point mutations at this position. The strong interaction between doxorubicin and p53 variants, along with its localization within the protein condensates, provides a potential explanation for the development of chemotherapy resistance. Collectively, our cellular and in vitro studies emphasize the role of exogenous agents in driving phase separation-mediated p53 aggregation.
Collapse
Affiliation(s)
- Ankush Garg
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector- 81, Mohali (SAS Nagar), Punjab, 140306, India
| | - Gaurav Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector- 81, Mohali (SAS Nagar), Punjab, 140306, India
| | - Varinder Singh
- Indian Institute of Science Education and Research, Sector- 81, Mohali (SAS Nagar), Punjab, 140306, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector- 81, Mohali (SAS Nagar), Punjab, 140306, India
| |
Collapse
|
3
|
Katrahalli U, Shanker G, Pal D, Hadagali MD. Molecular spectroscopic and docking analysis of the interaction of fluorescent thiadicarbocyanine dye with biomolecule bovine serum albumin. J Biomol Struct Dyn 2023; 41:10702-10712. [PMID: 36546697 DOI: 10.1080/07391102.2022.2158135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Binding studies of the water-soluble thiadicarbocyanine dye 3,3'-diethylthiadicarbocyanine acetate (DTC) with bovine serum albumin (BSA) were examined under physiological conditions using spectroscopic techniques like fluorescence, UV-Visible, circular dichroism (CD), FT-IR and molecular docking methods. Compiled experimental results envisage that DTC quench the fluorescence intensity of BSA. The increasing binding constants (K) were found to be in the order of 103 Mol-1 as a function of temperature, as calculated from the fluorescence quenching data. The quenching mechanism, thermodynamic parameters (ΔH0, ΔS0 and ΔG0) and the number of binding sites have been explored. CD values showed that the secondary structure of the BSA has been altered upon binding to DTC. Displacement experiments were carried out with different site probes to find out the binding site of DTC on BSA and it was found that binding interaction at site II of sub-domain IIIA. The interference of common metal ions on the interaction of DTC with BSA has also been studied. The experimental data exhibit that DTC interacts with BSA by hydrophobic forces. The experimental findings from BSA binding studies were validated by using in silico molecular docking technique. The results of the investigations were accurately supported by studies on molecular docking. The optimal shape of the molecular probe demonstrated the affinity as a free binding energy release of -7.37 Kcal/mol. The present research report endeavors to the approachable nature of water-soluble DTC dye and paves way for targeted biological interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Govindaswamy Shanker
- Department of Chemistry, Jnana Bharathi Campus, Bangalore University, Bangalore, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Manjunatha Devagondanahalli Hadagali
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
- Department of Studies in Chemistry, Davangere University, Davangere, India
| |
Collapse
|
4
|
Zhang S, Li R, Zheng Y, Zhou Y, Fan X. Erythrocyte Membrane-Enveloped Salvianolic Acid B Nanoparticles Attenuate Cerebral Ischemia-Reperfusion Injury. Int J Nanomedicine 2022; 17:3561-3577. [PMID: 35974873 PMCID: PMC9376004 DOI: 10.2147/ijn.s375908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Ischemic stroke is the second leading cause of death and the third leading cause of disability worldwide. Salvianolic acid B (SAB), a water-soluble phenolic acid derived from the traditional Chinese medicine Salvia miltiorrhiza, exerted protective effects on cerebral ischemia-reperfusion injury. However, the efficacy of SAB is seriously hindered by poor blood brain barrier (BBB) permeability and short biological half-life in plasma. Brain targeted biomimetic nanoparticle delivery systems offer much promise in overcoming these limitations. Methods A brain targeted biomimetic nanomedicine (RR@SABNPs) was developed, which comprised of SAB loaded bovine serum albumin nanoparticles and functionalized red blood cell membrane (RBCM) with Arg-Gly-Asp (RGD). The characterization parameters, including particle size, zeta potential, morphology, Encapsulation Efficiency (EE), Drug Loading (DL), release behavior, stability, and biocompatibility, were investigated. Moreover, the middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model was used to assess the therapeutic efficacy of RR@SABNPs on ischemic stroke. Finally, the reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were detected by DHE and JC‑1 staining in oxygen-glucose deprivation/reperfusion (OGD/R) and H2O2 injured PC12 cells. Results RR@SABNPs exhibited spheric morphology with core-shell structures and good stability and biocompatibility. Meanwhile, RR@SABNPs can significantly prolong SAB circulation time by overcoming the reticuloendothelial system (RES) and actively targeting ischemic BBB. Moreover, RR@SABNPs had comprehensive protective effects on MCAO/R model mice, manifested as a reduced infarct volume and improved neurological and sensorimotor functions, and significantly scavenged excess ROS and maintained MMP. Conclusion The designed brain targeted biomimetic nanomedicine RR@SABNPs can significantly prolong the half-time of SAB, deliver SAB into the ischemic brain and exhibit good therapeutic effects on MCAO/R model mice.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Yingyi Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| |
Collapse
|
5
|
Influence of Low Molecular Weight Salts on the Viscosity of Aqueous-Buffer Bovine Serum Albumin Solutions. Molecules 2022; 27:molecules27030999. [PMID: 35164264 PMCID: PMC8839888 DOI: 10.3390/molecules27030999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Pharmaceutical design of protein formulations aims at maximum efficiency (protein concentration) and minimum viscosity. Therefore, it is important to know the nature of protein-protein interactions and their influence on viscosity. In this work, we investigated the dependence of the viscosity of BSA in an aqueous 20 mM acetate buffer at pH = 4.3 on protein concentration and on temperature (5-45 °C). The viscosity of the solution increased with protein concentration and was 230% higher than the viscosity of the protein-free formulation at 160 mg/mL. The viscosity decreased by almost 60% in the temperature range from 5 to 45 °C. The agreement of the modified Arrhenius theory with experiment was quantitative, whereas a hard-sphere model provided only a qualitative description of the experimental results. We also investigated the viscosity of a 100 mg/mL BSA solution as a function of the concentration of added low molecular weight salts (LiCl, NaCl, KCl, RbCl, CsCl, NaBr, NaI) in the range of salt concentrations up to 1.75 mol/L. In addition, the particle size and zeta potential of BSA-salt mixtures were determined for solutions containing 0.5 mol/L salt. The trends with respect to the different anions followed a direct Hofmeister series (Cl- > Br- > I-), whereas for cations in the case of viscosity the indirect Hofmeister series was observed (Li+ > Na+ > K+ > Rb+ > Cs+), but the values of particle sizes and zeta potential did not show cation-specific effects. Since the protein is positively charged at pH = 4.3, anions are more attracted to the protein surface and shield its charge, while the interaction with cations is less pronounced. We hypothesize that salt surface charge shielding reduces protein colloidal stability and promotes protein aggregate formation.
Collapse
|
6
|
Ou-Yang Q, Ren JL, Yan B, Feng JN, Yang AG, Zhao J. Syngeneic homograft of framework regions enhances the affinity of the mouse anti-human epidermal receptor 2 single-chain antibody e23sFv. Exp Ther Med 2020; 21:136. [PMID: 33456503 PMCID: PMC7791966 DOI: 10.3892/etm.2020.9568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/30/2020] [Indexed: 12/03/2022] Open
Abstract
e23sFv is a HER2-targeted single-chain variable fragment (scFV) that was characterized as the targeting portion of a HER2-targeted tumour proapoptotic molecule in our previous study. In vitro antibody affinity maturation is a method to enhance antibody affinity either by complementarity-determining region (CDR) mutagenesis or by framework region (FR) engraftment. In the present study, the affinity of e23sFv was enhanced using two strategies. In one approach, site-directed mutations were introduced into the FRs of e23sFv (designated EMEY), and in the other approach e23sFv FRs were substituted with FRs from the most homologous screened antibodies (designated EX1 and EX2). Notably, EX1 derived from the FR engraftment strategy demonstrated a 4-fold higher affinity for HER2 compared with e23sFv and was internalized into HER2-overexpressing cells; however, EMEY and EX2 exhibited reduced affinity for HER2 and decreased internalization potential compared with EX1. The 3D structure of EX1 and the HER2-EX1 complex was acquired using molecular homology modelling and docking and the HER2 epitopes of EX1 and the molecular interaction energy of the EX1-HER2 complex were predicted. In the present study, it was demonstrated that scFv affinity improvement based on sequence alignment was feasible and effective. Moreover, the FR grafting strategy was indicated to be more effective and simple compared with site-directed mutagenesis to improve e23sFv affinity. In conclusion, it was indicated that the affinity-improved candidate EX1 may present a great potential for the diagnosis and treatment of HER2-overexpressing tumours.
Collapse
Affiliation(s)
- Qing Ou-Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing 100853, P.R. China
| | - Jun-Lin Ren
- Department of Infectious Diseases, PLA Navy General Hospital, Beijing 100142, P.R. China
| | - Bo Yan
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian-Nan Feng
- Department of Immunology, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Zhao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
7
|
Bashiri M, Jarrahpour A, Nabavizadeh SM, Karimian S, Rastegari B, Haddadi E, Turos E. Potent antiproliferative active agents: novel bis Schiff bases and bis spiro β-lactams bearing isatin tethered with butylene and phenylene as spacer and DNA/BSA binding behavior as well as studying molecular docking. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02659-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Khezami K, Harmandar K, Bağda E, Bağda E, Şahin G, Karakodak N, Jamoussi B, Durmuş M. The new water soluble zinc(II) phthalocyanines substituted with morpholine groups- synthesis and optical properties. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Arsalan A, Qadeer K, Ali SA, Ahmed S, Khan RA, Sheraz MA, Hassan S, Ahmad I. The effect of albumin in photostabilization of riboflavin: A kinetic study. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Chaiwaree S, Prapan A, Suwannasom N, Laporte T, Neumann T, Pruß A, Georgieva R, Bäumler H. Doxorubicin-Loaded Human Serum Albumin Submicron Particles: Preparation, Characterization and In Vitro Cellular Uptake. Pharmaceutics 2020; 12:pharmaceutics12030224. [PMID: 32131545 PMCID: PMC7150780 DOI: 10.3390/pharmaceutics12030224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Doxorubicin (DOX) is an effective anthracycline antibiotic drug which is commonly used in a broad range cancer therapy. However, due to dose depending side effects and toxicity to non-cancerous tissues, its clinical applications are restricted. To overcome these limitations, human serum albumin (HSA) has been investigated as a biocompatible drug delivery vehicle. In this study, human serum albumin submicron particles (HSA-MPs) were fabricated by using the Co-precipitation–Crosslinking–Dissolution technique (CCD technique) and DOX was loaded into the protein particles by absorption. DOX-HSA-MPs showed uniform peanut-like shape, submicron size and negative zeta-potential (−13 mV). The DOX entrapment efficiency was 25% of the initial amount. The in vitro release in phosphate buffered saline pH 7.4 was less than 1% within 5 h. In contrast, up to 40% of the entrapped DOX was released in presence of a protein digesting enzyme mixture (Pronase®) within the same time. In addition, in vitro cytotoxicity and cellular uptake of DOX-HSA-MPs were evaluated using the lung carcinoma cell line A549. The results demonstrated that DOX-HSA-MPs reduced the cell metabolic activities after 72 h. Interestingly, DOX-HSA-MPs were taken up by A549 cells up to 98% and localized in the cell lysosomal compartment. This study suggests that DOX-HSA-MPs which was fabricated by CCD technique is seen as a promising biopolymer particle as well as a viable alternative for drug delivery application to use for cancer therapy.
Collapse
Affiliation(s)
- Saranya Chaiwaree
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.C.); (A.P.); (N.S.); (T.L.); (A.P.); (R.G.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Payap University, Chiang Mai 50000, Thailand
| | - Ausanai Prapan
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.C.); (A.P.); (N.S.); (T.L.); (A.P.); (R.G.)
- Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Nittiya Suwannasom
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.C.); (A.P.); (N.S.); (T.L.); (A.P.); (R.G.)
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Tomás Laporte
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.C.); (A.P.); (N.S.); (T.L.); (A.P.); (R.G.)
- Instituto de Nanosistemas, Universidad Nacional de San Martín, San Martín, Pcia de Buenos Aires 1021, Argentina
| | - Tanja Neumann
- JPK BioAFM Business, Nano Surfaces Division, Bruker Nano GmbH, 12489 Berlin, Germany;
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.C.); (A.P.); (N.S.); (T.L.); (A.P.); (R.G.)
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.C.); (A.P.); (N.S.); (T.L.); (A.P.); (R.G.)
- Department of Medical Physics, Biophysics and Radiology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.C.); (A.P.); (N.S.); (T.L.); (A.P.); (R.G.)
- Correspondence: ; Tel.: +49-30-450525131
| |
Collapse
|
11
|
Mohammadzadeh-Asl S, Jafari A, Aghanejad A, Monirinasab H, Ezzati Nazhad Dolatabadi J. Kinetic and thermodynamic studies of sunitinib malate interaction with albumin using surface plasmon resonance and molecular docking methods. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Rosenberg EM, Harrison RES, Tsou LK, Drucker N, Humphries B, Rajasekaran D, Luker KE, Wu CH, Song JS, Wang CJ, Murphy JW, Cheng YC, Shia KS, Luker GD, Morikis D, Lolis EJ. Characterization, Dynamics, and Mechanism of CXCR4 Antagonists on a Constitutively Active Mutant. Cell Chem Biol 2019; 26:662-673.e7. [PMID: 30827936 PMCID: PMC6736600 DOI: 10.1016/j.chembiol.2019.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/21/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
The G protein-coupled receptor (GPCR) CXCR4 is a co-receptor for HIV and is involved in cancers and autoimmune diseases. We characterized five purine or quinazoline core polyamine pharmacophores used for targeting CXCR4 dysregulation in diseases. All were neutral antagonists for wild-type CXCR4 and two were biased antagonists with effects on β-arrestin-2 only at high concentrations. These compounds displayed various activities for a constitutively active mutant (CAM). We use the IT1t-CXCR4 crystal structure and molecular dynamics (MD) simulations to develop two hypotheses for the activation of the N1193.35A CAM. The N1193.35A mutation facilitates increased coupling of TM helices III and VI. IT1t deactivates the CAM by disrupting the coupling between TM helices III and VI, mediated primarily by residue F872.53. Mutants of F872.53 in N1193.35A CXCR4 precluded constitutive signaling and prevented inverse agonism. This work characterizes CXCR4 ligands and provides a mechanism for N1193.35A constitutive activation.
Collapse
Affiliation(s)
- Eric M Rosenberg
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Reed E S Harrison
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Natalie Drucker
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brock Humphries
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Deepa Rajasekaran
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kathryn E Luker
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Chuan-Jen Wang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - James W Murphy
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Gary D Luker
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Dimitrios Morikis
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| | - Elias J Lolis
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
13
|
Yasmeen S, Riyazuddeen, Khatun S, Abul Qais F. Characterization of interactions between cromolyn sodium and bovine serum albumin by spectroscopic, calorimetric and computational methods. J Biomol Struct Dyn 2019; 38:722-732. [DOI: 10.1080/07391102.2019.1586588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shama Yasmeen
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Riyazuddeen
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Samima Khatun
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
14
|
Rapid determination of bioactive compounds in the different organs of Salvia Miltiorrhiza by UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104:81-88. [DOI: 10.1016/j.jchromb.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
|
15
|
Precupas A, Leonties AR, Neacsu A, Sandu R, Popa VT. Gallic acid influence on bovine serum albumin thermal stability. NEW J CHEM 2019. [DOI: 10.1039/c9nj00115h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A thermoanalytical approach reveals the dual action of GA on BSA thermal stability.
Collapse
Affiliation(s)
- Aurica Precupas
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| | - Anca Ruxandra Leonties
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| | - Andreea Neacsu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| | - Romica Sandu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| | - Vlad Tudor Popa
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| |
Collapse
|
16
|
Martínez VR, Aguirre MV, Todaro JS, Piro OE, Echeverría GA, Ferrer EG, Williams PAM. Azilsartan and its Zn(II) complex. Synthesis, anticancer mechanisms of action and binding to bovine serum albumin. Toxicol In Vitro 2018; 48:205-220. [PMID: 29408668 DOI: 10.1016/j.tiv.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/15/2017] [Accepted: 01/14/2018] [Indexed: 02/08/2023]
Abstract
Azilsartan is the eighth approved member of angiotensin II receptor blockers for hypertension treatment. Considering that some drugs have additional effects when administered, we studied its effects and mechanisms of action on a human lung cancer cell line A549. We have also modified the structure of the drug by complexation with Zn(II) cation and assayed the anticancer effect. The crystal structure of the new binuclear Zn(II) complex, for short [Zn2(azil)2(H2O)4]·2H2O (ZnAzil), was determined by X-ray diffraction methods. The zinc ions are bridged by azilsartan ligands through their carboxylate oxygen and oxadiazol nitrogen atoms. The compounds were examined for their cytotoxic effects against human lung fibroblast (MRC5) and human lung cancer (A549) cell lines. Azilsartan displayed low cytotoxic effects at 150 μM concentrations in A549 human lung cancer cells but the higher effect measured for the Zn complex suggested that this compound may act as an anticancer agent. An apoptotic oxidative stress mechanism of action via the mitochondrial-dependent intrinsic pathway has been determined. Besides, the compounds exerted weak cytotoxic effects in the normal lung related cell line MRC5. Binding constants of the complex formed between each compound and bovine serum albumin (BSA) are in the intermediate range, hence suggesting that azilsartan and ZnAzil could be bonded and transported by BSA.
Collapse
Affiliation(s)
- Valeria R Martínez
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP), 120 N° 1465, La Plata, Argentina
| | - María V Aguirre
- Laboratorio de Investigaciones Bioquímicas, Facultad de Medicina, UNNE, Moreno 1240, Corrientes, Argentina
| | - Juan S Todaro
- Laboratorio de Investigaciones Bioquímicas, Facultad de Medicina, UNNE, Moreno 1240, Corrientes, Argentina
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y IFLP (CONICET, CCT La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y IFLP (CONICET, CCT La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP), 120 N° 1465, La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP), 120 N° 1465, La Plata, Argentina.
| |
Collapse
|
17
|
Design and synthesis of novel phenyl -1, 4-beta-carboline-hybrid molecules as potential anticancer agents. Eur J Med Chem 2017; 128:123-139. [PMID: 28171832 DOI: 10.1016/j.ejmech.2017.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 11/22/2022]
Abstract
A series of beta-carbolines with other heterocycles linked by phenyl ring has been designed and synthesized. The key intermediates 3 and 5 were synthesized by condensing tryptamine and teraldehyde via Pictet- Spengler method. All the newly synthesized compounds were tested for their anticancer activity against sixty human cell lines at NCI. The five dose results of compounds 3 and 7a showed enhancement of anticancer activity (GI50 values range from 1.00 to 7.10 μM) against all the cell lines in comparison with some of earlier molecules. In addition to this protein binding and CT-DNA intercalation studies showed molecules are highly potential. The molecular docking studies, which support the multiple mode of interaction with DNA, moreover the synthesized compounds 3 and 7a are more potential and possess drug -like nature.
Collapse
|