1
|
Yang Z, Zuo Y, Dai L, Zhang L, Yu Y, Zhou L. Effect of ultrasonic-induced selenium crystallization behavior during selenium reduction. ULTRASONICS SONOCHEMISTRY 2023; 95:106392. [PMID: 37011518 PMCID: PMC10457590 DOI: 10.1016/j.ultsonch.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
In this work, the crystallization process of selenium was accelerated by ultrasonic wave. The effects of ultrasonic waves and conventional conditions of selenium crystallization were compared to understand the effects of different conditions on crystallization, including ultrasonic time, ultrasonic power, reduction temperature, and H2SeO3 concentration. The mechanism of ultrasound affecting selenium crystallization was also investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results showed that ultrasonic time, ultrasonic power, and reduction temperature significantly influenced the crystallization process and morphology of selenium. Ultrasonic time had a large effect on the completeness (all products have been crystallized) and integrity of the crystallization of the products. Meanwhile, ultrasonic power and reduction temperature had no effect on the completeness of crystallization. However, it had a significant effect on the morphology and integrity of the crystallized products, and different morphologies of the nano-selenium materials could be obtained by changing the ultrasonic parameters. Both primary and secondary nucleation are important in the process of ultrasound-accelerated selenium crystallization. The cavitation effect and mechanical fluctuant effects generated by ultrasound could reduce the crystallization induction time and accelerate the primary nucleation rate. The high-speed micro-jet formed in the rupture of the cavitation bubble generated is the most important reason to influence the secondary nucleation of the system.
Collapse
Affiliation(s)
- Zheng Yang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy Ministry of Education, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Special Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yonggang Zuo
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy Ministry of Education, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Special Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Linqing Dai
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy Ministry of Education, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Special Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy Ministry of Education, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Special Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Yusen Yu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy Ministry of Education, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Special Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Liang Zhou
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy Ministry of Education, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Special Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
2
|
Abstract
Photocatalysis represents a promising technology that might alleviate the current environmental crisis. One of the most representative photocatalysts is graphitic carbon nitride (g-C3N4) due to its stability, cost-effectiveness, facile synthesis procedure, and absorption properties in visible light. Nevertheless, pristine g-C3N4 still exhibits low photoactivity due to the rapid recombination of photo-induced electron-hole (e−-h+) pairs. To solve this drawback, Z-scheme photocatalysts based on g-C3N4 are superior alternatives since these systems present the same band configuration but follow a different charge carrier recombination mechanism. To contextualize the topic, the main drawbacks of using g-C3N4 as a photocatalyst in environmental applications are mentioned in this review. Then, the basic concepts of the Z-scheme and the synthesis and characterization of the Z-scheme based on g-C3N4 are addressed to obtain novel systems with suitable photocatalytic activity in environmental applications (pollutant abatement, H2 production, and CO2 reduction). Focusing on the applications of the Z-scheme based on g-C3N4, the most representative examples of these systems are referred to, analyzed, and commented on in the main text. To conclude this review, an outlook of the future challenges and prospects of g-C3N4-based Z-scheme photocatalysts is addressed.
Collapse
|
3
|
Jean-Louis Luche and the Interpretation of Sonochemical Reaction Mechanisms. Molecules 2021; 26:molecules26030755. [PMID: 33535612 PMCID: PMC7867199 DOI: 10.3390/molecules26030755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
Sonochemistry can be broadly defined as the science of chemical and physical transformations produced under the influence of sound. The use of sound energy is rather a young branch of chemistry and does not have the clear definitive rules of other, more established, divisions such as those in cycloaddition reactions or photochemistry. Nevertheless, there are a few guidelines which can help to predict what is going to happen when a reaction mixture is submitted to ultrasonic irradiation. Jean-Louis Luche, formulated some ideas of the mechanistic pathways involved in sonochemistry more than 30 years ago. He introduced the idea of “true” and “false” sonochemical reactions both of which are the result of acoustic cavitation. The difference was that the former involved a free radical component whereas only mechanical effects played a role the latter. The authors of this paper were scientific collaborators and friends of Jean-Louis Luche during those early years and had the chance to discuss and work with him on the mechanisms of sonochemistry. In this paper we will review the original rules (laws) as predicted by Jean-Louis Luche and how they have been further developed and extended in recent years.
Collapse
|
4
|
Costa JM, Almeida Neto AFD. Ultrasound-assisted electrodeposition and synthesis of alloys and composite materials: A review. ULTRASONICS SONOCHEMISTRY 2020; 68:105193. [PMID: 32505102 DOI: 10.1016/j.ultsonch.2020.105193] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 05/10/2023]
Abstract
The development of electrodeposited materials with improved technological properties has been attracting the attention of researchers and companies from different industrial sectors. Many studies have demonstrated that the electrodeposition and synthesis of alloys and composite materials assisted by ultrasound may promote the de-agglomeration of particles in the electrolytic solution due to microturbulence, microjets, shock waves, and breaking of Van der Waals forces. The sonoelectrochemical technique, in which the ultrasound probe acts as a working electrode, also has been used for the formation of nanostructures in greater quantity, in addition to accelerating the electrolysis process and eliminating the reaction products on the electrode surface. Regarding the morphological aspects, the acoustic cavitation promotes the formation of smooth and uniform surfaces with incorporated particles homogeneously distributed. These changes have a direct impact on the composition and physical properties of the material, such as corrosion resistance, magnetization, wear, and microhardness. Despite the widespread use of acoustic cavitation in the synthesis of nanostructured materials, the discussion of how process variables such as acoustic power, frequency, and type of ultrasound device, as well as their effects still are scarce. In this sense, this review discusses the influence of ultrasound technology on obtaining electrodeposited coatings. The trends and challenges in this research field were reviewed from 2014 to 2019. Moreover, the effects of process variables in electrodeposition and how these ones change the technological properties of these materials were evaluated.
Collapse
Affiliation(s)
- Josiel Martins Costa
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Products and Processes Design, School of Chemical Engineering, University of Campinas, Avenida Albert Einstein, 500, Campinas 13083-852, SP, Brazil.
| | - Ambrósio Florêncio de Almeida Neto
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Products and Processes Design, School of Chemical Engineering, University of Campinas, Avenida Albert Einstein, 500, Campinas 13083-852, SP, Brazil
| |
Collapse
|
5
|
Thomson CG, Lee AL, Vilela F. Heterogeneous photocatalysis in flow chemical reactors. Beilstein J Org Chem 2020; 16:1495-1549. [PMID: 32647551 PMCID: PMC7323633 DOI: 10.3762/bjoc.16.125] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
The synergy between photocatalysis and continuous flow chemical reactors has shifted the paradigms of photochemistry, opening new avenues of research with safer and scalable processes that can be readily implemented in academia and industry. Current state-of-the-art photocatalysts are homogeneous transition metal complexes that have favourable photophysical properties, wide electrochemical redox potentials, and photostability. However, these photocatalysts present serious drawbacks, such as toxicity, limited availability, and the overall cost of rare transition metal elements. This reduces their long-term viability, especially at an industrial scale. Heterogeneous photocatalysts (HPCats) are an attractive alternative, as the requirement for the separation and purification is largely removed, but typically at the cost of efficiency. Flow chemical reactors can, to a large extent, mitigate the loss in efficiency through reactor designs that enhance mass transport and irradiation. Herein, we review some important developments of heterogeneous photocatalytic materials and their application in flow reactors for sustainable organic synthesis. Further, the application of continuous flow heterogeneous photocatalysis in environmental remediation is briefly discussed to present some interesting reactor designs that could be implemented to enhance organic synthesis.
Collapse
Affiliation(s)
- Christopher G Thomson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| | - Filipe Vilela
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| |
Collapse
|
6
|
Gogate PR. Improvements in Catalyst Synthesis and Photocatalytic Oxidation Processing Based on the Use of Ultrasound. Top Curr Chem (Cham) 2020; 378:29. [PMID: 32125542 DOI: 10.1007/s41061-020-0293-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/18/2020] [Indexed: 10/24/2022]
Abstract
The efficacy of photocatalysis strongly depends on the activity of the catalysts and the operational factors, especially factors associated with mass transfer and the possibility of catalyst deactivation. The use of ultrasound has great potential to enhance catalyst activity, during both the synthesis and actual oxidation processes due to the cavitational effects of turbulence and liquid streaming. This article presents an overview of the application aspects of ultrasound, both in the synthesis of the photocatalyst and applications for wastewater treatment. A review of the literature revealed that the use of ultrasound in the synthesis processes can result in a catalyst with a lower mean size and higher surface area as well as uniform size distribution. The application of ultrasound in the actual photocatalytic oxidation facilitates enhancement of the oxidation capacity, leading to higher degradation rates, sometimes synergistic results and definitely lower treatment times. This article also presents guidelines for the selection of the best operating conditions for the use of ultrasound in photocatalytic systems and includes a discussion on the possible reactor configurations suitable for large-scale operations. Overall, a combination of ultrasound with photocatalytic oxidation or the optimized application of ultrasound in catalyst synthesis can yield significant benefits.
Collapse
Affiliation(s)
- Parag R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India.
| |
Collapse
|
7
|
Rezk AR, Ahmed H, Ramesan S, Yeo LY. High Frequency Sonoprocessing: A New Field of Cavitation-Free Acoustic Materials Synthesis, Processing, and Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001983. [PMID: 33437572 PMCID: PMC7788597 DOI: 10.1002/advs.202001983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/17/2020] [Indexed: 04/14/2023]
Abstract
Ultrasound constitutes a powerful means for materials processing. Similarly, a new field has emerged demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (⩽3 MHz) for synthesizing and manipulating a variety of bulk, nanoscale, and biological materials. At these frequencies and the typical acoustic intensities employed, cavitation-which underpins most sonochemical or, more broadly, ultrasound-mediated processes-is largely absent, suggesting that altogether fundamentally different mechanisms are at play. Examples include the crystallization of novel morphologies or highly oriented structures; exfoliation of 2D quantum dots and nanosheets; polymer nanoparticle synthesis and encapsulation; and the possibility for manipulating the bandgap of 2D semiconducting materials or the lipid structure that makes up the cell membrane, the latter resulting in the ability to enhance intracellular molecular uptake. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with such high-frequency surface vibration gives rise to a variety of static and dynamic charge generation and transfer effects, in addition to molecular ordering, polarization, and assembly-remarkably, given the vast dimensional separation between the acoustic wavelength and characteristic molecular length scales, or between the MHz-order excitation frequencies and typical THz-order molecular vibration frequencies.
Collapse
Affiliation(s)
- Amgad R. Rezk
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Heba Ahmed
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| |
Collapse
|
8
|
Hujjatul Islam M, Paul MTY, Burheim OS, Pollet BG. Recent developments in the sonoelectrochemical synthesis of nanomaterials. ULTRASONICS SONOCHEMISTRY 2019; 59:104711. [PMID: 31421622 DOI: 10.1016/j.ultsonch.2019.104711] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/09/2019] [Accepted: 07/28/2019] [Indexed: 05/09/2023]
Abstract
In recent years, the synthesis and use of nanoparticles have been of special interest among the scientific communities due to their unique properties and applications in various advanced technologies. The production of these materials at industrial scale can be difficult to achieve due to high cost, intense labour and use of hazardous solvents that are often required by traditional chemical synthetic methods. Sonoelectrochemistry is a hybrid technique that combines ultrasound and electrochemistry in a specially designed electrochemical setup. This technique can be used to produce nanomaterials with controlled sizes and shapes. The production of nanoparticles by sonoelectrochemistry as a technique offers many advantages: (i) a great enhancement in mass transport near the electrode, thereby altering the rate, and sometimes the mechanism of the electrochemical reactions, (ii) a modification of surface morphology through cavitation jets at the electrode-electrolyte interface, usually causing an increase of the surface area and (iii) a thinning of the electrode diffusion layer thickness and therefore ion depletion. The scalability of sonoelectrochemistry for producing nanomaterials at industrial scale is also very plausible due to its "one-pot" synthetic approach. Recent advancements in sonoelectrochemistry for producing various types of nanomaterials are briefly reviewed in this article. It is with hope that the presentation of these studies therein can generate more interest in the field to "catalyze" future investigations in novel nanomaterial development and industrial scale-up studies.
Collapse
Affiliation(s)
- Md Hujjatul Islam
- Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway. http://www.brunogpollet.com
| | - Michael T Y Paul
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Odne S Burheim
- Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
9
|
Daltin AL, Beaufils S, Rouillon T, Millet P, Chopart JP. Calcium phosphate powder synthesis by out-of-phase pulsed sonoelectrochemistry. ULTRASONICS SONOCHEMISTRY 2019; 58:104662. [PMID: 31450292 DOI: 10.1016/j.ultsonch.2019.104662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
High aspect ratio calcium phosphate (CaP) nanorods were achieved by out-of-phase pulsed sonoelectrodeposition from electrolytic aqueous bath composed of calcium nitrate, ammonium dihydrogenophosphate and surfactant at pH of 4.9. The nature of CaP phases was determined by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDX). The results reveal the predominantly presence of calcium deficient hydroxyapatite (CDHA). The transmission electron microscopy (TEM) analyzes highlighted that the nanorods are polycristalline and have an aspect ratio up to 30.
Collapse
Affiliation(s)
- A L Daltin
- Laboratoire d'Ingénierie et Sciences des Matériaux (LISM), EA 4695, URCA, B.P. 1039, 51687 Reims Cedex 02, France.
| | - S Beaufils
- Laboratoire d'Ingénierie et Sciences des Matériaux (LISM), EA 4695, URCA, B.P. 1039, 51687 Reims Cedex 02, France; Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France
| | - T Rouillon
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - P Millet
- Laboratoire d'Ingénierie et Sciences des Matériaux (LISM), EA 4695, URCA, B.P. 1039, 51687 Reims Cedex 02, France; Centre Hospitalo-Universitaire de Reims, 51100 Reims, France
| | - J P Chopart
- Laboratoire d'Ingénierie et Sciences des Matériaux (LISM), EA 4695, URCA, B.P. 1039, 51687 Reims Cedex 02, France
| |
Collapse
|
10
|
Abstract
During the last few decades, magnetic nanoparticles have been evaluated as promising materials in the field of cancer detection, screening, and treatment. Early diagnosis and screening of cancer may be achieved using magnetic nanoparticles either within the magnetic resonance imaging technique and/or sensing systems. These sensors are designed to selectively detect specific biomarkers, compounds that can be related to the onset or evolution of cancer, during and after the treatment of this widespread disease. Some of the particular properties of magnetic nanoparticles are extensively exploited in cancer therapy as drug delivery agents to selectively target the envisaged location by tailored in vivo manipulation using an external magnetic field. Furthermore, individualized treatment with antineoplastic drugs may be combined with magnetic resonance imaging to achieve an efficient therapy. This review summarizes the studies about the implications of magnetic nanoparticles in cancer diagnosis, treatment and drug delivery as well as prospects for future development and challenges of magnetic nanoparticles in the field of oncology.
Collapse
|
11
|
Abstract
In this review paper, we have assembled the main characteristics of partial oxidation reactions (oxidative dehydrogenation and selective oxidation to olefins or oxygenates, as aldehydes and carboxylic acids and nitriles), as well as total oxidation, particularly for depollution, environmental issues and wastewater treatments. Both gas–solid and liquid–solid media have been considered with recent and representative examples within these fields. We have also discussed about their potential and prospective industrial applications. Particular attention has been brought to new raw materials stemming from biomass, as well as to liquid–solid catalysts cases. This review paper also summarizes the progresses made in the use of unconventional activation methods for performing oxidation reactions, highlighting the synergy of these technologies with heterogeneous catalysis. Focus has been centered on both usual catalysts activation methods and less usual ones, such as the use of ultrasounds, microwaves, grinding (mechanochemistry) and photo-activated processes, as well as their combined use.
Collapse
|
12
|
Chatel G, Valange S, Behling R, Colmenares JC. A Combined Approach using Sonochemistry and Photocatalysis: How to Apply Sonophotocatalysis for Biomass Conversion? ChemCatChem 2017. [DOI: 10.1002/cctc.201700297] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Sabine Valange
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP); Université de Poitiers, CNRS, ENSIP, B1; 1 rue Marcel Doré 86073 Poitiers Cedex 9 France
| | - Ronan Behling
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP); Université de Poitiers, CNRS, ENSIP, B1; 1 rue Marcel Doré 86073 Poitiers Cedex 9 France
| | - Juan Carlos Colmenares
- Institute of Physical Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|