1
|
Wang Y, Xu W, Zhang J, Liu J, Wang Z, Liu Y, Mai K, Ai Q. Effects of Glycyrrhizin (GL) Supplementation on Survival, Growth Performance, Expression of Feeding-Related Genes, Activities of Digestive Enzymes, Antioxidant Capacity, and Expression of Inflammatory Factors in Large Yellow Croaker ( Larimichthys crocea) Larvae. AQUACULTURE NUTRITION 2022; 2022:5508120. [PMID: 36860459 PMCID: PMC9973149 DOI: 10.1155/2022/5508120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
A 30-day feeding trial was conducted to determine the effects of dietary glycyrrhizin (GL) on survival, growth performance, expression of feeding-related genes, activities of digestive enzymes, antioxidant capacity, and expression of inflammatory factors of large yellow croaker larvae with an initial weight of 3.78 ± 0.27 mg. Four 53.80% crude protein and 16.40% crude lipid diets were formulated with supplementation of 0%, 0.005%, 0.01%, and 0.02% GL, respectively. Results indicated that larvae fed diets with GL had higher survival rate and specific growth rate than the control (P < 0.05). Compared with the control, the mRNA expression of orexigenic factor genes including neuropeptide Y (npy) and agouti-related protein (agrp) were significantly increased in larvae fed the diet with 0.005% GL, while the mRNA expression of anorexigenic factor genes including thyrotropin-releasing hormone (trh), cocaine and amphetamine regulated transcript (cart), and leptin receptor (lepr) were significantly decreased in larvae fed the diet with 0.005% GL (P < 0.05). The trypsin activity in larvae fed the diet with 0.005% GL was significantly higher than the control (P < 0.05). The alkaline phosphatase (AKP) activity in larvae fed the diet with 0.01% GL was significantly higher than the control (P < 0.05). A clear increase of total glutathione (T-GSH) content, activities of superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) was observed in larvae fed the diet with 0.01% GL compared with the control (P < 0.05). Moreover, the mRNA expression of interleukin-1β (il-1β) and interleukin-6 (il-6) (proinflammatory genes) in larvae fed the diet with 0.02% GL were significantly lower than the control (P < 0.05). In conclusion, the supplementation of 0.005% -0.01% GL could enhance the expression of orexigenic factor genes, activities of digestive enzymes and antioxidant capacity, ultimately improving the survival, and growth performance of large yellow croaker larvae.
Collapse
Affiliation(s)
- Yuntao Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Wenxuan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jianmin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jiahui Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Zhen Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Tuli HS, Garg VK, Mehta JK, Kaur G, Mohapatra RK, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D, Anand U, Kaur J, Gillan R, Sethi G, Bishayee A. Licorice ( Glycyrrhiza glabra L.)-Derived Phytochemicals Target Multiple Signaling Pathways to Confer Oncopreventive and Oncotherapeutic Effects. Onco Targets Ther 2022; 15:1419-1448. [PMID: 36474507 PMCID: PMC9719702 DOI: 10.2147/ott.s366630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cancer is a highly lethal disease, and its incidence has rapidly increased worldwide over the past few decades. Although chemotherapeutics and surgery are widely used in clinical settings, they are often insufficient to provide the cure for cancer patients. Hence, more effective treatment options are highly needed. Although licorice has been used as a medicinal herb since ancient times, the knowledge about molecular mechanisms behind its diverse bioactivities is still rather new. In this review article, different anticancer properties (antiproliferative, antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory effects) of various bioactive constituents of licorice (Glycyrrhiza glabra L.) are thoroughly described. Multiple licorice constituents have been shown to bind to and inhibit the activities of various cellular targets, including B-cell lymphoma 2, cyclin-dependent kinase 2, phosphatidylinositol 3-kinase, c-Jun N-terminal kinases, mammalian target of rapamycin, nuclear factor-κB, signal transducer and activator of transcription 3, vascular endothelial growth factor, and matrix metalloproteinase-3, resulting in reduced carcinogenesis in several in vitro and in vivo models with no evident toxicity. Emerging evidence is bringing forth licorice as an anticancer agent as well as bottlenecks in its potential clinical application. It is expected that overcoming toxicity-related obstacles by using novel nanotechnological methods might importantly facilitate the use of anticancer properties of licorice-derived phytochemicals in the future. Therefore, anticancer studies with licorice components must be continued. Overall, licorice could be a natural alternative to the present medication for eradicating new emergent illnesses while having just minor side effects.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India
| | - Jinit K Mehta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jagjit Kaur
- Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, Australia
| | - Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
3
|
Gajewski A, Kośmider A, Nowacka A, Puk O, Wiciński M. Potential of herbal products in prevention and treatment of COVID-19. Literature review. Biomed Pharmacother 2021; 143:112150. [PMID: 34507112 PMCID: PMC8410512 DOI: 10.1016/j.biopha.2021.112150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 epidemic is the greatest pandemic that human kind experienced for decades, with high morbidity and mortality. Despite recent development of vaccines there is still many severe cases of COVID-19. Unfortunately there is still no standardized therapies and treatment of severe cases is very challenging. The aim of this study is to indicate if herbs administered alone or as a complementary therapy could be used as prophylaxis or treatment of SARS-CoV-2 infection. Over 85% of patients with COVID-19 in China used Traditional Chinese Medicine (TCM), and a most common herb is Glycyrrhiza glabra, which in vitro inhibits replication of different enveloped viruses, including coronaviruses. Glycyrrhizin in vitro connects and changes conformation of ACE2 receptors, which are vital for SARS-CoV-2 penetration into host cells. Pelargonium sidoides show immunomodulatory and antiviral properties in clinical and in vitro studies, and it inhibits replication of HCo-229E coronavirus. Glycyrrhiza glabra in combination with standard therapies significantly reduces the hospitalization rate and occurrence of COVID-19 symptoms. As complementary therapies lianhuaqingwen capsules and jinhua qinggan granules reduces hospitalization rates, time to symptoms recovery and improve patient psychological comfort. In view of SARS-CoV-2 other herbs are not effective, e.g. maxingshigan–yinqiaosan, or therapeutic concentration would be impossible to achieve, e.g. ephedra herb, or there is simply no proper data. Therefore, Liquorice and Pelargonium sidoides are effective against coronaviruses and could be possibly used as prophylaxis and treatment of COVID-19, while lianhuaqingwen capsules and jinhua qinggan granules can be useful as a complementary therapy to conventional treatment.
Collapse
Affiliation(s)
- Aleksander Gajewski
- Department of Botany, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland.
| | - Anna Kośmider
- Department of Botany, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Aleksandra Nowacka
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Oskar Puk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| |
Collapse
|
4
|
Zhao X, Zhang H, Gao Y, Lin Y, Hu J. A Simple Injectable Moldable Hydrogel Assembled from Natural Glycyrrhizic Acid with Inherent Antibacterial Activity. ACS APPLIED BIO MATERIALS 2020; 3:648-653. [PMID: 35019409 DOI: 10.1021/acsabm.9b01007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Injectable low-molecular-weight hydrogels (LMWHs) from biocompatible materials have attracted much attention in biomedical applications because they can adapt any desired sizes and cavity shapes. Searching for simple, biocompatible injectable LMWHs owning inherent antibacterial activity without complicated chemical modification remains an open question to avoid the tedious synthesis/purification process and the easy bacterial infection of hydrogels in a moist environment. In this work, glycyrrhizic acid (GL), a naturally occurring compound, was found to form a stable transparent LMWH at 37 °C in physiological phosphate buffered saline (PBS) with nanoclusters as the microstructures. Moreover, this hydrogel exhibited great injectable and moldable properties. The antibacterial study showed that the growth of Gram-positive Staphylococcus aureus (S. aureus) could be completely inhibited by GL, whereas noneffect on Gram-negative Escherichia coli (E. coli) was observed. In addition, cell viability and hemolysis assay revealed that GL had good biocompatibility and hemocompatibility to mammalian cells because of its natural origin. Our simple biocompatible injectable moldable LMWH with inherent antibacterial ability has potential in the area of biomaterials and 3D bioprinting.
Collapse
Affiliation(s)
- Xia Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxia Gao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Enzymatic Synthesis of Novel Glycyrrhizic Acid Glucosides Using a Promiscuous Bacillus Glycosyltransferase. Catalysts 2018. [DOI: 10.3390/catal8120615] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glycyrrhetinic acid (GA) and glycyrrhizin (GA-3-O-[β-d-glucuronopyranosyl-(1→2)-β-d-glucuronopyranoside], GL) are the major bioactive components of Glycyrrhiza uralensis and possess multifarious notable biological activities. UDP-glycosyltransferase (UGT)–catalyzed glycosylation remarkably extends the structural and functional diversification of GA-glycoside derivatives. In this study, six glucosides (1–6) of GA and GL were synthesized using a Bacillus subtilis 168–originated flexible UDP-glycosyltransferase Bs-YjiC. Bs-YjiC could transfer a glucosyl moiety from UDP-glucose to the free C3 hydroxyl and/or C30 carboxyl groups of GA and GL and further elongate the C30 glucosyl chain via a β-1-2-glycosidic bond. Glycosylation significantly increased the water solubility of these novel glucosides by 4–90 folds. In vitro assays showed that GA monoglucosides (1 and 2) showed stronger antiproliferative activity against human liver cancer cells HepG2 and breast cancer cells MCF-7 than that of GL and GL glucosides. These findings provide significant insights into the important role of promiscuous UGTs for the enzymatic synthesis of novel bioactive GA derivatives.
Collapse
|