1
|
Rong X, Zhang L, He W, Guo Z, Lv H, Bai J, Yu L, Zhang L, Zhang T. Exploration of diverse secondary metabolites from Penicillium brasilianum by co-culturing with Armillaria mellea. Appl Microbiol Biotechnol 2024; 108:462. [PMID: 39264460 PMCID: PMC11393291 DOI: 10.1007/s00253-024-13282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024]
Abstract
Bioinformatic analysis revealed that the genomes of ubiquitous Penicillium spp. might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained uncharacterized. In this study, a detailed investigation of co-culture fermentation including the basidiomycete Armillaria mellea CPCC 400891 and the P. brasilianum CGMCC 3.4402 enabled the isolation of five new compounds including two bisabolene-type sesquiterpenes (arpenibisabolanes A and B), two carotane-type sesquiterpenes (arpenicarotanes A and B), and one polyketide (arpenichorismite A) along with seven known compounds. The assignments of their structures were deduced by the extensive analyses of detailed spectroscopic data, electronic circular dichroism spectra, together with delimitation of the biogenesis. Most new compounds were not detected in monocultures under the same fermentation conditions. Arpenibisabolane A represents the first example of a 6/5-fused bicyclic bisabolene. The bioassay of these five new compounds exhibited no cytotoxic activities in vitro against three human cancer cell lines (A549, MCF-7, and HepG2). Moreover, sequence alignments and bioinformatic analysis to other metabolic pathways, two BGCs including Pb-bis and Pb-car, responsible for generating sesquiterpenoids from co-culture were identified, respectively. Furthermore, based on the chemical structures and deduced gene functions of the two clusters, a hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed. These results demonstrated that the co-culture approach would facilitate bioprospecting for new metabolites even from the well-studied microbes. Our findings would provide opportunities for further understanding of the biosynthesis of intriguing sesquiterpenoids via metabolic engineering strategies. KEY POINTS: • Penicillium and Armillaria co-culture facilitates the production of diverse secondary metabolites • Arpenibisabolane A represents the first example of 6/5-fused bicyclic bisabolenes • A hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed.
Collapse
Affiliation(s)
- Xiaoting Rong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lihua Zhang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenni He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhe Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hui Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jinglin Bai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Jahan I, Wang Y, Li P, Hussain S, Song J, Yan J. Comprehensive Analysis of Penicillium Sclerotiorum: Biology, Secondary Metabolites, and Bioactive Compound Potential─A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9555-9566. [PMID: 38648511 DOI: 10.1021/acs.jafc.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The filamentous fungus Penicillium sclerotiorum is significant in ecological and industrial domains due to its vast supply of secondary metabolites that have a diverse array of biological functions. We have gathered the metabolic potential and biological activities associated with P. sclerotiorum metabolites of various structures, based on extensive research of the latest literature. The review incorporated literature spanning from 2000 to 2023, drawing from reputable databases including Google Scholar, ScienceDirect, Scopus, and PubMed, among others. Ranging from azaphilones, meroterpenoids, polyketides, and peptides group exhibits fascinating potential pharmacological activities such as antimicrobial, anti-inflammatory, and antitumor effects, holding promise in pharmaceutical and industrial sectors. Additionally, P. sclerotiorum showcases biotechnological potential through the production of enzymes like β-xylosidases, β-d-glucosidase, and xylanases, pivotal in various industrial processes. This review underscores the need for further exploration into its genetic foundations and cultivation conditions to optimize the yield of valuable compounds and enzymes, highlighting the unexplored potential of P. sclerotiorum in diverse applications across industries.
Collapse
Affiliation(s)
- Israt Jahan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yihan Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ping Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Sarfaraz Hussain
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Jiayi Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jian Yan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| |
Collapse
|
3
|
Paramalingam P, Baharum NA, Abdullah JO, Hong JK, Saidi NB. Antifungal Potential of Melaleuca alternifolia against Fungal Pathogen Fusarium oxysporum f. sp. cubense Tropical Race 4. Molecules 2023; 28:molecules28114456. [PMID: 37298932 DOI: 10.3390/molecules28114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Fusarium wilt of bananas caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4) poses the most serious threat to banana production globally. The disease has been managed using chemical fungicides, yet the control levels are still unsatisfactory. This study investigated the antifungal activities of tea tree (Melaleuca alternifolia) essential oil (TTO) and hydrosol (TTH) against Foc TR4 and their bioactive components. The potential of TTO and TTH in inhibiting the growth of Foc TR4 was evaluated in vitro using agar well diffusion and spore germination assays. Compared to the chemical fungicide, TTO effectively suppressed the mycelial growth of Foc TR4 at 69%. Both the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of TTO and TTH were established at 0.2 µg/µL and 50% v/v, respectively, suggesting the fungicidal nature of the plant extracts. The disease control efficacies were also demonstrated by a (p ≤ 0.05) delayed Fusarium wilt symptom development in the susceptible banana plants with reduced LSI dan RDI scores from 70% to around 20-30%. A GC/MS analysis of TTO identified terpinen-4-ol, eucalyptol, and α-terpineol as the major components. In contrast, an LC/MS analysis of TTH identified different compounds, including dihydro-jasmonic acid and methyl ester. Our findings indicate the potential of tea tree extracts as natural alternatives to chemical fungicides to control Foc TR4.
Collapse
Affiliation(s)
- Pavitra Paramalingam
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nadiya Akmal Baharum
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jeum Kyu Hong
- Division of Horticultural Science, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
4
|
Arriel-Elias MT, Pereira AK, Arriel GCTF, Alexandre G, de Andrade Bezerra G, Fill TP, Severino VGP, de Filippi MCC. Molecular networking as a tool to annotate the metabolites of Bacillus sp. and Serratia marcescens isolates and evaluate their fungicidal effects against Magnapothe oryzae and Bipolaris oryzae. 3 Biotech 2023; 13:148. [PMID: 37128476 PMCID: PMC10147858 DOI: 10.1007/s13205-023-03547-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023] Open
Abstract
Rhizobacteria are valuable sources of compounds that can be used for the integrated management of diseases in rice. Here, we aimed to explore the metabolism and organize and annotate the metabolites of Bacillus sp. and Serratia marcescens isolates using molecular networking and evaluate their fungicidal effects against Magnaporthe oryzae and Bipolaris oryzae. We obtained bacterial extracts after 6 and 16-h incubation via liquid-liquid extraction using ethyl acetate as solvent. We performed UHPLC-MS analysis and data processing using molecular networking and conducted biological assays in rice plants. Using the Global Natural Product Social spectral libraries, we annotated the following compounds: austinoneol, Phe-Pro, N-acetyl-l-leucine, Leu-Gly, Ile-Leu, Phe-Pro, 2,5-piperazinedione, 3-(1H-indol-3-methyl)-6-methyl-cyclo(d-Trp-l-Pro), and cholic acid. Results of the biological assays showed that the bacterial extracts reduced the mycelial growth of both pathogens in all treatments compared to the control. In the greenhouse setup, 8 days after the challenge for leaf gray spot and leaf blast, all treatments affected up to 4.4% of the leaf area, with an area under disease progress curve of 13.24, showing significant difference compared to the control, which affected 23% of the leaf area, with an AUDPC of 44.65. Our study provides potential new sources of natural products to be applied in the integrated management of rice. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03547-6.
Collapse
Affiliation(s)
| | - Alana Kelyene Pereira
- Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Gerso Alexandre
- Institute of Chemistry, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Taícia Pacheco Fill
- Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Marta Cristina Corsi de Filippi
- Phytopathology Laboratory (Laboratório de Fitopatologia), Brazilian Enterprise for Agricultural Research-Rice and Beans (Embrapa Arroz E Feijão), Goiânia, GO 75375-000 Brazil
| |
Collapse
|
5
|
Li P, Xie D, Chen H, Qiu Y, Zhang X, Zhang S, Wang L, Lin H, Li X, Liu K. Secondary metabolites from marine derived fungus Penicillium chrysogenum Y19-1 with proangiogenic and antithrombotic activities. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
6
|
Zhang H, Li H, Ma M, Ma B, Liu H, Niu L, Zhao D, Ni T, Yang W, Yang Y. Nitrogen reduction by aerobic denitrifying fungi isolated from reservoirs using biodegradation materials for electron donor: Capability and adaptability in the lower C/N raw water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161064. [PMID: 36565869 DOI: 10.1016/j.scitotenv.2022.161064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Biological denitrification was considered an efficient and environmentally friendly way to remove the nitrogen in the water body. However, biological denitrification showed poor nitrogen removal performance due to the lack of electron donors in the low C/N water. In this study, three novel aerobic denitrifying fungi (Trichoderma sp., Penicillium sp., and Fusarium sp.) were isolated and enhanced the performance of aerobic denitrification of fungi in low C/N water bodies combined with polylactic acid/polybutylene adipate-co-terephthalate (PLA/PBAT). In this work, the aerobic denitrifying fungi seed were added to denitrifying liquid medium and mixed with PLA/PBAT. The result showed that Trichoderma sp., Penicillium sp., and Fusarium sp. could reduce 89.93 %, 89.20 %, and 87.76 % nitrate. Meanwhile, the nitrate removal efficiency adding PLA/PBAT exceeded 1.40, 1.68, and 1.46 times that of none. The results of material characterization suggested that aerobic denitrifying fungi have different abilities to secrete proteases or lipases to catalyze ester bonds in PLA/PBAT and utilize it as nutrients in denitrification, especially in Penicillium brasiliensis D6. Besides, the electron transport system activity and the intracellular ATP concentration were increased significantly after adding PLA/PBAT, especially in Penicillium brasiliensis D6. Finally, the highest removal efficiency of total nitrogen in landscape water by fungi combined with PLA/PBAT was >80 %. The findings of this work provide new insight into the possibility of nitrogen removal by fungi in low C/N and the recycling of degradable resources.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; An De College, Xi'an University of Architecture and Technology, Xi'an 710311, China
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tongchao Ni
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
7
|
da Silva FMR, Paggi GM, Brust FR, Macedo AJ, Silva DB. Metabolomic Strategies to Improve Chemical Information from OSMAC Studies of Endophytic Fungi. Metabolites 2023; 13:metabo13020236. [PMID: 36837855 PMCID: PMC9961420 DOI: 10.3390/metabo13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Metabolomics strategies are important tools to get holistic chemical information from a system, but they are scarcely applied to endophytic fungi to understand their chemical profiles of biosynthesized metabolites. Here Penicillium sp. was cultured using One Strain Many Compounds (OSMAC) conditions as a model system to demonstrate how this strategy can help in understanding metabolic profiles and determining bioactive metabolites with the application of metabolomics and statistical analyses, as well as molecular networking. Penicillium sp. was fermented in different culture media and the crude extracts from mycelial biomass (CEm) and broth (CEb) were obtained, evaluated against bacterial strains (Staphylococcus aureus and Pseudomonas aeruginosa), and the metabolomic profiles by LC-DAD-MS were obtained and chemometrics statistical analyses were applied. The CEm and CEb extracts presented different chemical profiles and antibacterial activities; the highest activities observed were against S. aureus from CEm (MIC = 16, 64, and 128 µg/mL). The antibacterial properties from the extracts were impacted for culture media from which the strain was fermented. From the Volcano plot analysis, it was possible to determine statistically the most relevant features for the antibacterial activity, which were also confirmed from biplots of PCA as strong features for the bioactive extracts. These compounds included 75 (13-oxoverruculogen isomer), 78 (austalide P acid), 87 (austalide L or W), 88 (helvamide), 92 (viridicatumtoxin A), 96 (austalide P), 101 (dihydroaustalide K), 106 (austalide k), 110 (spirohexaline), and 112 (pre-viridicatumtoxin). Thus, these features included diketopiperazines, meroterpenoids, and polyketides, such as indole alkaloids, austalides, and viridicatumtoxin A, a rare tetracycline.
Collapse
Affiliation(s)
- Fernanda Motta Ribeiro da Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Gecele Matos Paggi
- Laboratory of Ecology and Evolutionary Biology (LEBio), Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Flávia Roberta Brust
- Biofilms and Diversity Laboratory, Faculty of Pharmacy and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Alexandre José Macedo
- Biofilms and Diversity Laboratory, Faculty of Pharmacy and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
- Correspondence:
| |
Collapse
|
8
|
Kim YS, Ngo MT, Kim B, Han JW, Song J, Park MS, Choi GJ, Kim H. Biological Control Potential of Penicillium brasilianum against Fire Blight Disease. THE PLANT PATHOLOGY JOURNAL 2022; 38:461-471. [PMID: 36221918 PMCID: PMC9561163 DOI: 10.5423/ppj.oa.06.2022.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
Erwinia amylovora is a causative pathogen of fire blight disease, affecting apple, pear, and other rosaceous plants. Currently, management of fire blight relies on cultural and chemical practices, whereas it has been known that few biological resources exhibit disease control efficacy against the fire blight. In the current study, we found that an SFC20201208-M01 fungal isolate exhibits antibacterial activity against E. amylovora TS3128, and the isolate was identified as a Penicillium brasilianum based on the β-tubulin (BenA) gene sequence. To identify active compounds from the P. brasilianum culture, the culture filtrate was partitioned with ethyl acetate and n-butanol sequentially. From the ethyl acetate layer, we identified two new compounds (compounds 3-4) and two known compounds (compounds 1-2) based on spectroscopic analyses and comparison with literature data. Of these active compounds, penicillic acid (1) exhibited promising antibacterial activity against E. amylovora TS3128 with a minimal inhibitory concentration value of 25 μg/ml. When culture filtrate and penicillic acid (125 μg/ml) were applied onto Chinese pearleaf crab apple seedlings prior to inoculation of E. amylovora TS3128, the development of fire blight disease was effectively suppressed in the treated plants. Our results provide new insight into the biocontrol potential of P. brasilianum SFC20201208-M01 with an active ingredient to control fire blight.
Collapse
Affiliation(s)
- Yeong Seok Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
- Division of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113,
Korea
| | - Men Thi Ngo
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
- Division of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113,
Korea
| | - Bomin Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
- Division of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113,
Korea
| | - Jae Woo Han
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365,
Korea
| | - Myung Soo Park
- Department of School of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
- Division of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113,
Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
- Division of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113,
Korea
| |
Collapse
|
9
|
Akiyama DY, Rocha MC, Costa JH, Teles CB, da Silva Zuccoli G, Malavazi I, Fill TP. The Penicillium brasilianum Histone Deacetylase Clr3 Regulates Secondary Metabolite Production and Tolerance to Oxidative Stress. J Fungi (Basel) 2022; 8:jof8050514. [PMID: 35628769 PMCID: PMC9146837 DOI: 10.3390/jof8050514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Most of the biosynthetic gene clusters (BGCs) found in microbes are silent under standard laboratory cultivation conditions due to the lack of expression triggering stimuli, representing a considerable drawback in drug discovery. To access the full biosynthetic potential, studies towards the activation of cryptic BGCs are essential. Histone acetylation status is an important regulator of chromatin structure, which impacts cell physiology and the expression of BGCs. In this study, clr3, a gene encoding a histone deacetylase in Penicillium brasilianum LaBioMMi 136, is deleted and associated phenotypic and metabolic changes are evaluated. The results indicate reduced growth under oxidative stress conditions in the ∆clr3 strain, higher intracellular reactive oxygen species (ROS) levels, and a different transcriptional profile of 13 ROS-related genes of both strains under basal and ROS-induced conditions. Moreover, the production of 14 secondary metabolites, including austin-related meroterpenoids, brasiliamides, verruculogen, penicillic acid, and cyclodepsipeptides was evaluated in the ∆clr3 strain, most of them being reduced. Accordingly, the addition of epigenetic modulators responsible for HDAC inhibition into P. brasilianum’s growth media also culminated in the reduction in secondary metabolite production. The results suggest that Clr3 plays an essential role in secondary metabolite biosynthesis in P. brasilianum, thus offering new strategies for the regulation of natural product synthesis by assessing chromatin modification.
Collapse
Affiliation(s)
- Daniel Yuri Akiyama
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas 13083-970, SP, Brazil; (D.Y.A.); (J.H.C.)
| | - Marina Campos Rocha
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
| | - Jonas Henrique Costa
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas 13083-970, SP, Brazil; (D.Y.A.); (J.H.C.)
| | - Caroline Brandão Teles
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas 13083-970, SP, Brazil; (C.B.T.); (G.d.S.Z.)
| | - Giuliana da Silva Zuccoli
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas 13083-970, SP, Brazil; (C.B.T.); (G.d.S.Z.)
| | - Iran Malavazi
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
- Correspondence: (I.M.); (T.P.F.)
| | - Taicia Pacheco Fill
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas 13083-970, SP, Brazil; (D.Y.A.); (J.H.C.)
- Correspondence: (I.M.); (T.P.F.)
| |
Collapse
|
10
|
Cai D, Zhang JJ, Wu ZH, Qin FY, Yan YM, Zhang M, Cheng YX. Lucidumones B-H, racemic meroterpenoids that inhibit tumor cell migration from Ganoderma lucidum. Bioorg Chem 2021; 110:104774. [PMID: 33711656 DOI: 10.1016/j.bioorg.2021.104774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/10/2021] [Accepted: 02/21/2021] [Indexed: 01/28/2023]
Abstract
Seven new meroterpenoids, lucidumones B-H (1 and 3-8), along with one known meroterpenoid (2), were isolated from the fruiting bodies of Ganoderma lucidum. The structures of the new compounds were assigned by spectroscopic and computational methods. All the isolated compounds were tested for their inhibition on human cancer cell migration. It was found that compounds (-)-1, (+)-2, (-)-4, (+)-6, and (+)-8 could significantly inhibit cell migration in KYSE30 cell line. Further examination disclosed that cell migration inhibition of (+)-6 and (+)-8 might be related with downregulation of N-cadherin.
Collapse
Affiliation(s)
- Dan Cai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People's Republic of China
| | - Jiao-Jiao Zhang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People's Republic of China
| | - Ze-Hong Wu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People's Republic of China
| | - Fu-Ying Qin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People's Republic of China
| | - Yong-Ming Yan
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People's Republic of China
| | - Mei Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China.
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People's Republic of China.
| |
Collapse
|
11
|
El Hajj Assaf C, Zetina-Serrano C, Tahtah N, Khoury AE, Atoui A, Oswald IP, Puel O, Lorber S. Regulation of Secondary Metabolism in the Penicillium Genus. Int J Mol Sci 2020; 21:E9462. [PMID: 33322713 PMCID: PMC7763326 DOI: 10.3390/ijms21249462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Penicillium, one of the most common fungi occurring in a diverse range of habitats, has a worldwide distribution and a large economic impact on human health. Hundreds of the species belonging to this genus cause disastrous decay in food crops and are able to produce a varied range of secondary metabolites, from which we can distinguish harmful mycotoxins. Some Penicillium species are considered to be important producers of patulin and ochratoxin A, two well-known mycotoxins. The production of these mycotoxins and other secondary metabolites is controlled and regulated by different mechanisms. The aim of this review is to highlight the different levels of regulation of secondary metabolites in the Penicillium genus.
Collapse
Affiliation(s)
- Christelle El Hajj Assaf
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Chrystian Zetina-Serrano
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Nadia Tahtah
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
- Centre D’analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael, Beirut 1104, Lebanon;
| | - André El Khoury
- Centre D’analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael, Beirut 1104, Lebanon;
| | - Ali Atoui
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadath Campus, P.O. Box 5, Beirut 1104, Lebanon;
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| |
Collapse
|
12
|
Zetina-Serrano C, Rocher O, Naylies C, Lippi Y, Oswald IP, Lorber S, Puel O. The brlA Gene Deletion Reveals That Patulin Biosynthesis Is Not Related to Conidiation in Penicillium expansum. Int J Mol Sci 2020; 21:E6660. [PMID: 32932988 PMCID: PMC7555563 DOI: 10.3390/ijms21186660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
Dissemination and survival of ascomycetes is through asexual spores. The brlA gene encodes a C2H2-type zinc-finger transcription factor, which is essential for asexual development. Penicillium expansum causes blue mold disease and is the main source of patulin, a mycotoxin that contaminates apple-based food. A P. expansum PeΔbrlA deficient strain was generated by homologous recombination. In vivo, suppression of brlA completely blocked the development of conidiophores that takes place after the formation of coremia/synnemata, a required step for the perforation of the apple epicarp. Metabolome analysis displayed that patulin production was enhanced by brlA suppression, explaining a higher in vivo aggressiveness compared to the wild type (WT) strain. No patulin was detected in the synnemata, suggesting that patulin biosynthesis stopped when the fungus exited the apple. In vitro transcriptome analysis of PeΔbrlA unveiled an up-regulated biosynthetic gene cluster (PEXP_073960-PEXP_074060) that shares high similarity with the chaetoglobosin gene cluster of Chaetomium globosum. Metabolome analysis of PeΔbrlA confirmed these observations by unveiling a greater diversity of chaetoglobosin derivatives. We observed that chaetoglobosins A and C were found only in the synnemata, located outside of the apple, whereas other chaetoglobosins were detected in apple flesh, suggesting a spatial-temporal organization of the chaetoglobosin biosynthesis pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.Z.-S.); (O.R.); (C.N.); (Y.L.); (I.P.O.); (S.L.)
| |
Collapse
|
13
|
Houbraken J, Kocsubé S, Visagie C, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Bensch K, Samson R, Frisvad J. Classification of Aspergillus, Penicillium, Talaromyces and related genera ( Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud Mycol 2020; 95:5-169. [PMID: 32855739 PMCID: PMC7426331 DOI: 10.1016/j.simyco.2020.05.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. Here, we re-evaluated the relationships between families and genera of the Eurotiales using a nine-gene sequence dataset. Based on this analysis, the new family Penicillaginaceae is introduced and four known families are accepted: Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae. The Eurotiales includes 28 genera: 15 genera are accommodated in the Aspergillaceae (Aspergillago, Aspergillus, Evansstolkia, Hamigera, Leiothecium, Monascus, Penicilliopsis, Penicillium, Phialomyces, Pseudohamigera, Pseudopenicillium, Sclerocleista, Warcupiella, Xerochrysium and Xeromyces), eight in the Trichocomaceae (Acidotalaromyces, Ascospirella, Dendrosphaera, Rasamsonia, Sagenomella, Talaromyces, Thermomyces, Trichocoma), two in the Thermoascaceae (Paecilomyces, Thermoascus) and one in the Penicillaginaceae (Penicillago). The classification of the Elaphomycetaceae was not part of this study, but according to literature two genera are present in this family (Elaphomyces and Pseudotulostoma). The use of an infrageneric classification system has a long tradition in Aspergillus and Penicillium. Most recent taxonomic studies focused on the sectional level, resulting in a well-established sectional classification in these genera. In contrast, a series classification in Aspergillus and Penicillium is often outdated or lacking, but is still relevant, e.g., the allocation of a species to a series can be highly predictive in what functional characters the species might have and might be useful when using a phenotype-based identification. The majority of the series in Aspergillus and Penicillium are invalidly described and here we introduce a new series classification. Using a phylogenetic approach, often supported by phenotypic, physiologic and/or extrolite data, Aspergillus is subdivided in six subgenera, 27 sections (five new) and 75 series (73 new, one new combination), and Penicillium in two subgenera, 32 sections (seven new) and 89 series (57 new, six new combinations). Correct identification of species belonging to the Eurotiales is difficult, but crucial, as the species name is the linking pin to information. Lists of accepted species are a helpful aid for researchers to obtain a correct identification using the current taxonomic schemes. In the most recent list from 2014, 339 Aspergillus, 354 Penicillium and 88 Talaromyces species were accepted. These numbers increased significantly, and the current list includes 446 Aspergillus (32 % increase), 483 Penicillium (36 % increase) and 171 Talaromyces (94 % increase) species, showing the large diversity and high interest in these genera. We expanded this list with all genera and species belonging to the Eurotiales (except those belonging to Elaphomycetaceae). The list includes 1 187 species, distributed over 27 genera, and contains MycoBank numbers, collection numbers of type and ex-type cultures, subgenus, section and series classification data, information on the mode of reproduction, and GenBank accession numbers of ITS, beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene sequences.
Collapse
Key Words
- Acidotalaromyces Houbraken, Frisvad & Samson
- Acidotalaromyces lignorum (Stolk) Houbraken, Frisvad & Samson
- Ascospirella Houbraken, Frisvad & Samson
- Ascospirella lutea (Zukal) Houbraken, Frisvad & Samson
- Aspergillus chaetosartoryae Hubka, Kocsubé & Houbraken
- Classification
- Evansstolkia Houbraken, Frisvad & Samson
- Evansstolkia leycettana (H.C. Evans & Stolk) Houbraken, Frisvad & Samson
- Hamigera brevicompacta (H.Z. Kong) Houbraken, Frisvad & Samson
- Infrageneric classification
- New combinations, series
- New combinations, species
- New genera
- New names
- New sections
- New series
- New taxa
- Nomenclature
- Paecilomyces lagunculariae (C. Ram) Houbraken, Frisvad & Samson
- Penicillaginaceae Houbraken, Frisvad & Samson
- Penicillago kabunica (Baghd.) Houbraken, Frisvad & Samson
- Penicillago mirabilis (Beliakova & Milko) Houbraken, Frisvad & Samson
- Penicillago moldavica (Milko & Beliakova) Houbraken, Frisvad & Samson
- Phialomyces arenicola (Chalab.) Houbraken, Frisvad & Samson
- Phialomyces humicoloides (Bills & Heredia) Houbraken, Frisvad & Samson
- Phylogeny
- Polythetic classes
- Pseudohamigera Houbraken, Frisvad & Samson
- Pseudohamigera striata (Raper & Fennell) Houbraken, Frisvad & Samson
- Talaromyces resinae (Z.T. Qi & H.Z. Kong) Houbraken & X.C. Wang
- Talaromyces striatoconidius Houbraken, Frisvad & Samson
- Taxonomic novelties: New family
- Thermoascus verrucosus (Samson & Tansey) Houbraken, Frisvad & Samson
- Thermoascus yaguchii Houbraken, Frisvad & Samson
- in Aspergillus: sect. Bispori S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- in Aspergillus: ser. Acidohumorum Houbraken & Frisvad
- in Aspergillus: ser. Inflati (Stolk & Samson) Houbraken & Frisvad
- in Penicillium: sect. Alfrediorum Houbraken & Frisvad
- in Penicillium: ser. Adametziorum Houbraken & Frisvad
- in Penicillium: ser. Alutacea (Pitt) Houbraken & Frisvad
- sect. Crypta Houbraken & Frisvad
- sect. Eremophila Houbraken & Frisvad
- sect. Formosana Houbraken & Frisvad
- sect. Griseola Houbraken & Frisvad
- sect. Inusitata Houbraken & Frisvad
- sect. Lasseniorum Houbraken & Frisvad
- sect. Polypaecilum Houbraken & Frisvad
- sect. Raperorum S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Silvatici S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Vargarum Houbraken & Frisvad
- ser. Alliacei Houbraken & Frisvad
- ser. Ambigui Houbraken & Frisvad
- ser. Angustiporcata Houbraken & Frisvad
- ser. Arxiorum Houbraken & Frisvad
- ser. Atramentosa Houbraken & Frisvad
- ser. Aurantiobrunnei Houbraken & Frisvad
- ser. Avenacei Houbraken & Frisvad
- ser. Bertholletiarum Houbraken & Frisvad
- ser. Biplani Houbraken & Frisvad
- ser. Brevicompacta Houbraken & Frisvad
- ser. Brevipedes Houbraken & Frisvad
- ser. Brunneouniseriati Houbraken & Frisvad
- ser. Buchwaldiorum Houbraken & Frisvad
- ser. Calidousti Houbraken & Frisvad
- ser. Canini Houbraken & Frisvad
- ser. Carbonarii Houbraken & Frisvad
- ser. Cavernicolarum Houbraken & Frisvad
- ser. Cervini Houbraken & Frisvad
- ser. Chevalierorum Houbraken & Frisvad
- ser. Cinnamopurpurea Houbraken & Frisvad
- ser. Circumdati Houbraken & Frisvad
- ser. Clavigera Houbraken & Frisvad
- ser. Conjuncti Houbraken & Frisvad
- ser. Copticolarum Houbraken & Frisvad
- ser. Coremiiformes Houbraken & Frisvad
- ser. Corylophila Houbraken & Frisvad
- ser. Costaricensia Houbraken & Frisvad
- ser. Cremei Houbraken & Frisvad
- ser. Crustacea (Pitt) Houbraken & Frisvad
- ser. Dalearum Houbraken & Frisvad
- ser. Deflecti Houbraken & Frisvad
- ser. Egyptiaci Houbraken & Frisvad
- ser. Erubescentia (Pitt) Houbraken & Frisvad
- ser. Estinogena Houbraken & Frisvad
- ser. Euglauca Houbraken & Frisvad
- ser. Fennelliarum Houbraken & Frisvad
- ser. Flavi Houbraken & Frisvad
- ser. Flavipedes Houbraken & Frisvad
- ser. Fortuita Houbraken & Frisvad
- ser. Fumigati Houbraken & Frisvad
- ser. Funiculosi Houbraken & Frisvad
- ser. Gallaica Houbraken & Frisvad
- ser. Georgiensia Houbraken & Frisvad
- ser. Goetziorum Houbraken & Frisvad
- ser. Gracilenta Houbraken & Frisvad
- ser. Halophilici Houbraken & Frisvad
- ser. Herqueorum Houbraken & Frisvad
- ser. Heteromorphi Houbraken & Frisvad
- ser. Hoeksiorum Houbraken & Frisvad
- ser. Homomorphi Houbraken & Frisvad
- ser. Idahoensia Houbraken & Frisvad
- ser. Implicati Houbraken & Frisvad
- ser. Improvisa Houbraken & Frisvad
- ser. Indica Houbraken & Frisvad
- ser. Japonici Houbraken & Frisvad
- ser. Jiangxiensia Houbraken & Frisvad
- ser. Kalimarum Houbraken & Frisvad
- ser. Kiamaensia Houbraken & Frisvad
- ser. Kitamyces Houbraken & Frisvad
- ser. Lapidosa (Pitt) Houbraken & Frisvad
- ser. Leporum Houbraken & Frisvad
- ser. Leucocarpi Houbraken & Frisvad
- ser. Livida Houbraken & Frisvad
- ser. Longicatenata Houbraken & Frisvad
- ser. Macrosclerotiorum Houbraken & Frisvad
- ser. Monodiorum Houbraken & Frisvad
- ser. Multicolores Houbraken & Frisvad
- ser. Neoglabri Houbraken & Frisvad
- ser. Neonivei Houbraken & Frisvad
- ser. Nidulantes Houbraken & Frisvad
- ser. Nigri Houbraken & Frisvad
- ser. Nivei Houbraken & Frisvad
- ser. Nodula Houbraken & Frisvad
- ser. Nomiarum Houbraken & Frisvad
- ser. Noonimiarum Houbraken & Frisvad
- ser. Ochraceorosei Houbraken & Frisvad
- ser. Olivimuriarum Houbraken & Frisvad
- ser. Osmophila Houbraken & Frisvad
- ser. Paradoxa Houbraken & Frisvad
- ser. Paxillorum Houbraken & Frisvad
- ser. Penicillioides Houbraken & Frisvad
- ser. Phoenicea Houbraken & Frisvad
- ser. Pinetorum (Pitt) Houbraken & Frisvad
- ser. Polypaecilum Houbraken & Frisvad
- ser. Pulvini Houbraken & Frisvad
- ser. Quercetorum Houbraken & Frisvad
- ser. Raistrickiorum Houbraken & Frisvad
- ser. Ramigena Houbraken & Frisvad
- ser. Restricti Houbraken & Frisvad
- ser. Robsamsonia Houbraken & Frisvad
- ser. Rolfsiorum Houbraken & Frisvad
- ser. Roseopurpurea Houbraken & Frisvad
- ser. Rubri Houbraken & Frisvad
- ser. Salinarum Houbraken & Frisvad
- ser. Samsoniorum Houbraken & Frisvad
- ser. Saturniformia Houbraken & Frisvad
- ser. Scabrosa Houbraken & Frisvad
- ser. Sclerotigena Houbraken & Frisvad
- ser. Sclerotiorum Houbraken & Frisvad
- ser. Sheariorum Houbraken & Frisvad
- ser. Simplicissima Houbraken & Frisvad
- ser. Soppiorum Houbraken & Frisvad
- ser. Sparsi Houbraken & Frisvad
- ser. Spathulati Houbraken & Frisvad
- ser. Spelaei Houbraken & Frisvad
- ser. Speluncei Houbraken & Frisvad
- ser. Spinulosa Houbraken & Frisvad
- ser. Stellati Houbraken & Frisvad
- ser. Steyniorum Houbraken & Frisvad
- ser. Sublectatica Houbraken & Frisvad
- ser. Sumatraensia Houbraken & Frisvad
- ser. Tamarindosolorum Houbraken & Frisvad
- ser. Teporium Houbraken & Frisvad
- ser. Terrei Houbraken & Frisvad
- ser. Thermomutati Houbraken & Frisvad
- ser. Thiersiorum Houbraken & Frisvad
- ser. Thomiorum Houbraken & Frisvad
- ser. Unguium Houbraken & Frisvad
- ser. Unilaterales Houbraken & Frisvad
- ser. Usti Houbraken & Frisvad
- ser. Verhageniorum Houbraken & Frisvad
- ser. Versicolores Houbraken & Frisvad
- ser. Virgata Houbraken & Frisvad
- ser. Viridinutantes Houbraken & Frisvad
- ser. Vitricolarum Houbraken & Frisvad
- ser. Wentiorum Houbraken & Frisvad
- ser. Westlingiorum Houbraken & Frisvad
- ser. Whitfieldiorum Houbraken & Frisvad
- ser. Xerophili Houbraken & Frisvad
- series Tularensia (Pitt) Houbraken & Frisvad
Collapse
Affiliation(s)
- J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - X.-C. Wang
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - M. Meijer
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - B. Kraak
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine Technical University of Denmark, Søltofts Plads, B. 221, Kongens Lyngby, DK 2800, Denmark
| |
Collapse
|
14
|
Ko W, Quang TH, Sohn JH, Yim JH, Kang DG, Lee HS, Kim YC, Oh H. Anti-inflammatory effect of 3,7-dimethyl-1,8-hydroxy-6-methoxyisochroman via nuclear factor erythroid 2-like 2-mediated heme oxygenase-1 expression in lipopolysaccharide-stimulated RAW264.7 and BV2 cells. Immunopharmacol Immunotoxicol 2019; 41:337-348. [DOI: 10.1080/08923973.2019.1608559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wonmin Ko
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
| | - Tran Hong Quang
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Caugiay, Vietnam
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan, Republic of Korea
| | - Joung Han Yim
- Korea Polar Research Institute, KORDI, Yeonsu-gu, Republic of Korea
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
15
|
Zhang J, Wu Y, Yuan B, Liu D, Zhu K, Huang J, Proksch P, Lin W. DMOA-based meroterpenoids with diverse scaffolds from the sponge-associated fungus Penicillium brasilianum. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Conjugation of antifungal benzoic acid derivatives as a path for detoxification in Penicillium brasilianum, an endophyte from Melia azedarach. Bioorg Chem 2018; 81:367-372. [DOI: 10.1016/j.bioorg.2018.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 11/21/2022]
|
17
|
Zhang J, Yuan B, Liu D, Gao S, Proksch P, Lin W. Brasilianoids A-F, New Meroterpenoids From the Sponge-Associated Fungus Penicillium brasilianum. Front Chem 2018; 6:314. [PMID: 30101144 PMCID: PMC6072878 DOI: 10.3389/fchem.2018.00314] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/09/2018] [Indexed: 11/17/2022] Open
Abstract
3,5-Dimethylorsellinic acid (DMOA) derived meroterpenoids comprise an unique class of natural products with diverse scaffolds and with a broad spectrum of bioactivities. Bioinformatics analysis of the gene clusters in association with the qRT-PCR detection of the amplification of two key genes led to speculate that the sponge associated fungus Penicillium brasilianum WZXY-m122-9 is a potential producer of meroterpenoids. Chromatographic separation of the EtOAc extract of this fungal strain on a large-scale fermentation resulted in the isolation of six new DMOA-related meroterpenoids with trivial names of brasilianoids A–F (1-6), together with preaustinoid D and preaustinoid A2. The structures were determined by extensive analyses of spectroscopic data, including the X-ray diffraction and the ECD data for configurational assignment. Brasilianoids A and F showed an unprecedented skeleton with a γ-lactone in ring A, while brasilianoids B–C featured a 7/6/6/5/5 pentacyclic ring system finding in nature for the first time. The biosynthetic relationship among the isolated compounds was postulated. Compound 1 significantly stimulated the expression of filaggrin and caspase-14 in HaCaT cells in dose-dependent manner, while compounds 2 and 3 showed moderate inhibition against NO production in LPS-induced RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Jianping Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, China
| | - Bochuan Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, China
| | - Shuang Gao
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Peter Proksch
- Institute für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität üsseldorf, Düsseldorf, Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, China
| |
Collapse
|