1
|
Zhang J, Chen S, Liu X, Yu X, Gu N, Li A. Discovery of 1,2,3-triazole-based pleuromutilin derivatives as potent gram-positive antibacterial agents. Bioorg Med Chem Lett 2024; 110:129878. [PMID: 38977107 DOI: 10.1016/j.bmcl.2024.129878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
A novel class of pleuromutilin derivatives possessing 1,2,3-triazole as the linker connected to phenyl analogues were designed. The antibacterial properties of the prepared compounds were assessed in vitro against five strains (E. coli, S. aureus, S. epidermidis, and E. faecalis). Most of the tested compounds displayed potent antibacterial activities against gram-positive bacteria and 14-O-[2-(4-((2,4-dinitrophenoxy)-methyl-1H-1,2,3-triazol-1-yl) acetamide)-2-methylpropan-2-yl) thioacetyl]mutilin (7c) exerted antibacterial activities against S. aureus, MRSA and S. epidermidis with MIC values 0.0625 μg/mL, representing 64-fold, 4-fold and 8-fold higher than tiamulin respectively. Compound 6e, 7c and 8c were chosen to carry out killing kinetics, which exhibited concentration-dependent effect. Subsequently, molecular modeling was conducted to further explore the binding of compound 6e, 7a, 7c, 8c and tiamulin with 50S ribosomal subunit from deinococcus radiodurans. The investigation revealed that the main interactions between compound 7c and the ribosomal residues were three hydrogen bonds, π-π, and p-π conjugate effects. Additionally, the free binding energy and docking score of 7c with the ribosome demonstrated the lowest values of -11.90 kcal/mol and -7.97 kcal/mol, respectively, consistent with its superior antibacterial activities.
Collapse
Affiliation(s)
- Jiahua Zhang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Shaorui Chen
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Xiaoya Liu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Na Gu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Aijun Li
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| |
Collapse
|
2
|
Ralhan K, Iyer KA, Diaz LL, Bird R, Maind A, Zhou QA. Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies. ACS Infect Dis 2024; 10:1483-1519. [PMID: 38691668 PMCID: PMC11091902 DOI: 10.1021/acsinfecdis.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The development of effective antibacterial solutions has become paramount in maintaining global health in this era of increasing bacterial threats and rampant antibiotic resistance. Traditional antibiotics have played a significant role in combating bacterial infections throughout history. However, the emergence of novel resistant strains necessitates constant innovation in antibacterial research. We have analyzed the data on antibacterials from the CAS Content Collection, the largest human-curated collection of published scientific knowledge, which has proven valuable for quantitative analysis of global scientific knowledge. Our analysis focuses on mining the CAS Content Collection data for recent publications (since 2012). This article aims to explore the intricate landscape of antibacterial research while reviewing the advancement from traditional antibiotics to novel and emerging antibacterial strategies. By delving into the resistance mechanisms, this paper highlights the need to find alternate strategies to address the growing concern.
Collapse
Affiliation(s)
| | | | - Leilani Lotti Diaz
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
3
|
Zhang J, Liu Q, Zhao H, Li G, Yi Y, Shang R. Design and Synthesis of Pleuromutilin Derivatives as Antibacterial Agents Using Quantitative Structure-Activity Relationship Model. Int J Mol Sci 2024; 25:2256. [PMID: 38396934 PMCID: PMC10888563 DOI: 10.3390/ijms25042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The quantitative structure-activity relationship (QSAR) is one of the most popular methods for the virtual screening of new drug leads and optimization. Herein, we collected a dataset of 955 MIC values of pleuromutilin derivatives to construct a 2D-QSAR model with an accuracy of 80% and a 3D-QSAR model with a non-cross-validated correlation coefficient (r2) of 0.9836 and a cross-validated correlation coefficient (q2) of 0.7986. Based on the obtained QSAR models, we designed and synthesized pleuromutilin compounds 1 and 2 with thiol-functionalized side chains. Compound 1 displayed the highest antimicrobial activity against both Staphylococcus aureus ATCC 29213 (S. aureus) and Methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentrations (MICs) < 0.0625 μg/mL. These experimental results confirmed that the 2D and 3D-QSAR models displayed a high accuracy of the prediction function for the discovery of lead compounds from pleuromutilin derivatives.
Collapse
Affiliation(s)
- Jiaming Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Qinqin Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Haoxia Zhao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Guiyu Li
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| |
Collapse
|
4
|
Nazli A, Tao W, You H, He X, He Y. Treatment of MRSA Infection: Where are We? Curr Med Chem 2024; 31:4425-4460. [PMID: 38310393 DOI: 10.2174/0109298673249381231130111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 02/05/2024]
Abstract
Staphylococcus aureus is a leading cause of septicemia, endocarditis, pneumonia, skin and soft tissue infections, bone and joint infections, and hospital-acquired infections. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality, and continues to be a major public health problem. The emergence of multidrug-resistant MRSA strains along with the wide consumption of antibiotics has made anti-MRSA treatment a huge challenge. Novel treatment strategies (e.g., novel antimicrobials and new administrations) against MRSA are urgently needed. In the past decade, pharmaceutical companies have invested more in the research and development (R&D) of new antimicrobials and strategies, spurred by favorable policies. All research articles were collected from authentic online databases, including Google Scholar, PubMed, Scopus, and Web of Science, by using different combinations of keywords, including 'anti-MRSA', 'antibiotic', 'antimicrobial', 'clinical trial', 'clinical phase', clinical studies', and 'pipeline'. The information extracted from articles was compared to information provided on the drug manufacturer's website and Clinical Trials.gov (https://clinicaltrials.gov/) to confirm the latest development phase of anti-MRSA agents. The present review focuses on the current development status of new anti-MRSA strategies concerning chemistry, pharmacological target(s), indications, route of administration, efficacy and safety, pharmacokinetics, and pharmacodynamics, and aims to discuss the challenges and opportunities in developing drugs for anti-MRSA infections.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wenlan Tao
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Hengyao You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoli He
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
5
|
Ding R, Wang X, Fu J, Chang Y, Li Y, Liu Y, Liu Y, Ma J, Hu J. Design, synthesis and antibacterial activity of novel pleuromutilin derivatives with thieno[2,3-d]pyrimidine substitution. Eur J Med Chem 2022; 237:114398. [PMID: 35468515 DOI: 10.1016/j.ejmech.2022.114398] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
A series of novel pleuromutilin derivatives with substituted thienopyrimidines were designed, synthesized, and evaluated for antibacterial act ivity. In this study, the activities of these compounds were investigated using the inhibition circle test, the minimum inhibitory concentration (MIC) test, real-time growth curves, time-kill kinetic assays, cytotoxicity assays, and molecular docking. Most of the tested compounds exhibited moderate antibacterial activity against Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli. Compound A11 was the most active and displayed bacteriostatic activities against methicillin-resistant S. aureus, with MIC values as low as 0.00191 μg/mL, which is 162 and 32 times lower than that of the marketed antibiotics tiamulin and retapamulin, respectively. Furthermore, the mechanism of action of A11 was confirmed by molecular docking studies.
Collapse
Affiliation(s)
- Rongcai Ding
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Xiaoxia Wang
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Jianfang Fu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yaoyao Chang
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yingxue Li
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yue Liu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Jinlong Ma
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| | - Jinxing Hu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| |
Collapse
|
6
|
Koteva K, Sychantha D, Rotondo CM, Hobson C, Britten JF, Wright GD. Three-Dimensional Structure and Optimization of the Metallo-β-Lactamase Inhibitor Aspergillomarasmine A. ACS OMEGA 2022; 7:4170-4184. [PMID: 35155911 PMCID: PMC8829947 DOI: 10.1021/acsomega.1c05757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The aminopolycarboxylic acid aspergillomarasmine A (AMA) is a natural Zn2+ metallophore and inhibitor of metallo-β-lactamases (MBLs) which reverses β-lactam resistance. The first crystal structure of an AMA coordination complex is reported and reveals a pentadentate ligand with distorted octahedral geometry. We report the solid-phase synthesis of 23 novel analogs of AMA involving structural diversification of each subunit (l-Asp, l-APA1, and l-APA2). Inhibitory activity was evaluated in vitro using five strains of Escherichia coli producing globally prevalent MBLs. Further in vitro assessment was performed with purified recombinant enzymes and intracellular accumulation studies. Highly constrained structure-activity relationships were demonstrated, but three analogs revealed favorable characteristics where either Zn2+ affinity or the binding mode to MBLs were improved. This study identifies compounds that can further be developed to produce more potent and broader-spectrum MBL inhibitors with improved pharmacodynamic/pharmacokinetic properties.
Collapse
Affiliation(s)
- Kalinka Koteva
- David
Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - David Sychantha
- David
Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Caitlyn M. Rotondo
- David
Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Christian Hobson
- David
Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Willow
Biosciences, 2250 Boundary
Rd, Burnaby, BC V5M 3Z3, Canada
| | - James F. Britten
- McMaster
Analytical X-ray Diffraction Facility (MAX), McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Gerard D. Wright
- David
Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for
Infectious Disease Research, Department of Biochemistry and Biomedical
Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
7
|
Kaur R, Rani P, Atanasov AG, Alzahrani Q, Gupta R, Kapoor B, Gulati M, Chawla P. Discovery and Development of Antibacterial Agents: Fortuitous and Designed. Mini Rev Med Chem 2021; 22:984-1029. [PMID: 34939541 DOI: 10.2174/1570193x19666211221150119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
Today, antibacterial drug resistance has turned into a significant public health issue. Repeated intake, suboptimal and/or unnecessary use of antibiotics, and, additionally, the transfer of resistance genes are the critical elements that make microorganisms resistant to conventional antibiotics. A substantial number of antibacterials that were successfully utilized earlier for prophylaxis and therapeutic purposes have been rendered inadequate due to this phenomenon. Therefore, the exploration of new molecules has become a continuous endeavour. Many such molecules are at various stages of investigation. A surprisingly high number of new molecules are currently in the stage of phase 3 clinical trials. A few new agents have been commercialized in the last decade. These include solithromycin, plazomicin, lefamulin, omadacycline, eravacycline, delafloxacin, zabofloxacin, finafloxacin, nemonoxacin, gepotidacin, zoliflodacin, cefiderocol, BAL30072, avycaz, zerbaxa, vabomere, relebactam, tedizolid, cadazolid, sutezolid, triclosan and afabiacin. This article aims to review the investigational and recently approved antibacterials with a focus on their structure, mechanisms of action/resistance, and spectrum of activity. Delving deep, their success or otherwise in various phases of clinical trials is also discussed while attributing the same to various causal factors.
Collapse
Affiliation(s)
- Ravleen Kaur
- Department of Health Sciences, Cape Breton University, Sydney, Nova Scotia. Canada
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara. India
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute of Digital Health and Patient Safety, Medical University of Vienna, Vienna. Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville. Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan Moga, Punjab 142001. India
| |
Collapse
|
8
|
Liang Y, He D, Zhou D, Li J, Tang L, Wang Z. Synthesis, Antibacterial and Pharmacokinetic Evaluation of Novel Derivatives of Harmine N 9-Cinnamic Acid. Molecules 2021; 26:4842. [PMID: 34443429 PMCID: PMC8400480 DOI: 10.3390/molecules26164842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
A series of 16 new derivatives of harmine N9-Cinnamic acid were synthesized and fully characterized using NMR and MS. The in vitro antibacterial evaluation revealed that most of the synthesized harmine derivatives displayed better antibacterial activities against Gram-positive strains (S. aureus, S. albus and MRSA) than Gram-negative strains (E. coli and PA). In particular, compound 3c showed the strongest bactericidal activity with a minimum inhibitory concentration of 13.67 μg/mL. MTT assay showed that compound 3c displayed weaker cytotoxicity than harmine with IC50 of 340.30, 94.86 and 161.67 μmol/L against WI-38, MCF-7 and HepG2 cell lines, respectively. The pharmacokinetic study revealed that the distribution and elimination of 3c in vivo were rapid in rats with an oral bioavailability of 6.9%.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China; (Y.L.); (D.H.)
| | - Dian He
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China; (Y.L.); (D.H.)
| | - Deshun Zhou
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Qilihe District, Lanzhou 730050, China; (D.Z.); (J.L.); (L.T.)
| | - Junshuai Li
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Qilihe District, Lanzhou 730050, China; (D.Z.); (J.L.); (L.T.)
| | - Lei Tang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Qilihe District, Lanzhou 730050, China; (D.Z.); (J.L.); (L.T.)
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China; (Y.L.); (D.H.)
| |
Collapse
|
9
|
Lefamulin: A Novel Oral and Intravenous Pleuromutilin for the Treatment of Community-Acquired Bacterial Pneumonia. Drugs 2020; 81:233-256. [PMID: 33247830 DOI: 10.1007/s40265-020-01443-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lefamulin is a novel oral and intravenous (IV) pleuromutilin developed as a twice-daily treatment for community-acquired bacterial pneumonia (CABP). It is a semi-synthetic pleuromutilin with a chemical structure that contains a tricyclic core of five-, six-, and eight-membered rings and a 2-(4-amino-2-hydroxycyclohexyl)sulfanylacetate side chain extending from C14 of the tricyclic core. Lefamulin inhibits bacterial protein synthesis by binding to the 50S bacterial ribosomal subunit in the peptidyl transferase center (PTC). The pleuromutilin tricyclic core binds to a pocket close to the A site, while the C14 side chain extends to the P site causing a tightening of the rotational movement in the binding pocket referred to as an induced-fit mechanism. Lefamulin displays broad-spectrum antibacterial activity against Gram-positive and Gram-negative aerobic and anaerobic bacteria as well as against atypical bacteria that commonly cause CABP. Pleuromutilin antibiotics exhibit low rates of resistance development and lack cross-resistance to other antimicrobial classes due to their unique mechanism of action. However, pleuromutilin activity is affected by mutations in 23S rRNA, 50S ribosomal subunit proteins rplC and rplD, ATP-binding cassette (ABC)-F transporter proteins such as vga(A), and the methyltransferase cfr. The pharmacokinetic properties of lefamulin include: volume of distribution (Vd) ranging from 82.9 to 202.8 L, total clearance (CLT) of 19.5 to 21.4 L/h, and terminal elimination half-life (t1/2) of 6.9-13.2 h; protein binding of lefamulin is high and non-linear. The oral bioavailability of lefamulin has been estimated as 24% in fasted subjects and 19% in fed subjects. A single oral dose of lefamulin 600 mg administered in fasted patients achieved a maximum plasma concentration (Cmax) of 1.2-1.5 mg/L with a time of maximum concentration (Tmax) ranging from 0.8 to 1.8 h, and an area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of 8.5-8.8 mg h/L. The pharmacodynamic parameter predictive of lefamulin efficacy is the free plasma area under the concentration-time curve divided by the minimum inhibitory concentration (fAUC24h/MIC). Lefamulin efficacy has been demonstrated using various animal models including neutropenic murine thigh infection, pneumonia, lung infection, and bacteremia. Lefamulin clinical safety and efficacy was investigated through a Phase II clinical trial of acute bacterial skin and skin structure infection (ABSSSI), as well as two Phase III clinical trials of CABP. The Phase III trials, LEAP 1 and LEAP 2 established non-inferiority of lefamulin to moxifloxacin in both oral and IV formulations in the treatment of CABP. The United States Food and Drug Administration (FDA), European Medicines Agency (EMA), and Health Canada have each approved lefamulin for the treatment of CABP. A Phase II clinical trial has been completed for the treatment of ABSSSI, while the pediatric program is in Phase I. The most common adverse effects of lefamulin include mild-to-moderate gastrointestinal-related events such as nausea and diarrhea. Lefamulin represents a safe and effective option for treating CABP in cases of antimicrobial resistance to first-line therapies, clinical failure, or intolerance/adverse effects to currently used agents. Clinical experience and ongoing clinical investigation will allow clinicians and antimicrobial stewardship programs to optimally use lefamulin in the treatment of CABP.
Collapse
|
10
|
Falcó V, Burgos J, Almirante B. An overview of lefamulin for the treatment of community acquired bacterial pneumonia. Expert Opin Pharmacother 2020; 21:629-636. [PMID: 31958020 DOI: 10.1080/14656566.2020.1714592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Lefamulin is a novel antibiotic that belongs to the pleuromutilin class with excellent activity against all microorganisms, including atypical pathogens, that cause community-acquired pneumonia (CAP). AREAS COVERED This article reviews the spectrum of activity, the main pharmacokinetic and pharmacodynamic characteristics of lefamulin as well as its clinical efficacy and safety in the treatment of CAP in adult patients. EXPERT OPINION The clinical efficacy of lefamulin in patients with non severe CAP has been demonstrated in 2 randomized clinical trials. Precisely one of the limitations of the phase 3 trials is that the proportion of severe CAP cases is very low. Its particular mechanism of action, affecting ribosomal protein synthesis, provides a low probability of cross-resistance to other commonly used antibiotics in CAP. These findings, together with the antimicrobial activity of lefamulin, its pharmacokinetic parameters and safety profile make it a good alternative for outpatient treatment of CAP. In patients hospitalized with CAP, lefamulin can be used as a potential oral step-down agent after an intravenous regimen with beta-lactams, or as a therapeutic alternative in patients with β-lactam allergies.
Collapse
Affiliation(s)
- Vicenç Falcó
- Infectious Diseases Department, University Hospital Vall d'Hebron, Autonomous University of Barcelona , Barcelona, Spain
| | - Joaquin Burgos
- Infectious Diseases Department, University Hospital Vall d'Hebron, Autonomous University of Barcelona , Barcelona, Spain
| | - Benito Almirante
- Infectious Diseases Department, University Hospital Vall d'Hebron, Autonomous University of Barcelona , Barcelona, Spain
| |
Collapse
|
11
|
Rodvold KA. Introduction: lefamulin and pharmacokinetic/pharmacodynamic rationale to support the dose selection of lefamulin. J Antimicrob Chemother 2019; 74:iii2-iii4. [PMID: 30949709 PMCID: PMC6449571 DOI: 10.1093/jac/dkz084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lefamulin is the first semisynthetic pleuromutilin being developed for oral and intravenous administration. The drug selectively inhibits prokaryotic ribosomal protein synthesis by binding to the peptidyl transferase centre via four H-bonds and other interactions, resulting in an 'induced fit' that tightens the binding pocket around lefamulin. This unique mechanism of action has been associated with a low probability of cross-resistance to other antimicrobial classes commonly used to treat community-acquired bacterial pneumonia (CABP). This Supplement, entitled 'Pharmacokinetic and pharmacodynamic analyses and dose rationale for lefamulin, a novel pleuromutilin antibiotic, for the treatment of community-acquired bacterial pneumonia', is intended to be a valuable resource for both clinicians and researchers. It provides the essential pharmacokinetic and pharmacodynamic data on lefamulin that were used to support the optimal dose selection of lefamulin for the safe and effective treatment of CABP in adults.
Collapse
Affiliation(s)
- Keith A Rodvold
- University of Illinois at Chicago, Colleges of Pharmacy and Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Goethe O, Heuer A, Ma X, Wang Z, Herzon SB. Antibacterial properties and clinical potential of pleuromutilins. Nat Prod Rep 2019; 36:220-247. [PMID: 29979463 DOI: 10.1039/c8np00042e] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: up to 2018Pleuromutilins are a clinically validated class of antibiotics derived from the fungal diterpene (+)-pleuromutilin (1). Pleuromutilins inhibit bacterial protein synthesis by binding to the peptidyl transferase center (PTC) of the ribosome. In this review we summarize the biosynthesis and recent total syntheses of (+)-pleuromutilin (1). We review the mode of interaction of pleuromutilins with the bacterial ribosome, which involves binding of the C14 extension and the tricyclic core to the P and A sites of the PTC, respectively. We provide an overview of existing clinical agents, and discuss the three primary modes of bacterial resistance (mutations in ribosomal protein L3, Cfr methylation, and efflux). Finally we collect structure-activity relationships from publicly available reports, and close with some forward looking statements regarding future development.
Collapse
Affiliation(s)
- Olivia Goethe
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Abigail Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Xiaoshen Ma
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Zhixun Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA. and Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
13
|
Yi Y, Fu Y, Wang K, Shui Y, Cai J, Jia Z, Niu B, Liang J, Shang R. Synthesis and antibacterial activities of novel pleuromutilin derivatives. Arch Pharm (Weinheim) 2018; 351:e1800155. [PMID: 30058185 DOI: 10.1002/ardp.201800155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 11/05/2022]
Abstract
Pleuromutilin derivatives 4a-h, 5a-g, and 6a-d were synthesized and characterized by IR, 1 H NMR, and 13 C NMR. All synthetic compounds were screened for their in vitro antibacterial activity against Staphylococcus aureus (ATCC 25923), methicillin-resistant S. aureus (MRSA, ATCC 43300), Pasteurella multocida (CVCC 408), Escherichia coli (ATCC 25922), and Salmonella typhimurium (ATCC 14028). Most compounds with quaternary amine showed higher antibacterial activities against both Gram-positive and Gram-negative bacteria strains. Among the screened compounds, compound 5a bearing an N,N,N-trimethyl group at the C-14 side chain of pleuromutilin was found to be the most active agent. Furthermore, preliminary molecular docking was performed to predict the binding interaction of the compounds in the binding pocket.
Collapse
Affiliation(s)
- Yunpeng Yi
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Yunxing Fu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Keli Wang
- Shangdong Qilu King-Phar Pharmaceutical Co., Ltd., Jinan, China
| | | | - Jing Cai
- Lanzhou Pulmonary Hospital, Lanzhou, China
| | - Zhong Jia
- Lanzhou Pulmonary Hospital, Lanzhou, China
| | - Biao Niu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jianping Liang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
14
|
Lei X, Song S, Tao H, Liu L, Zheng Q, Xu C, Kuang H. Development of Indirect Competitive Enzyme-Linked Immunosorbent and Immunochromatographic Strip Assays for Tiamulin Detection in Chicken. ACS OMEGA 2018; 3:3581-3586. [PMID: 31458609 PMCID: PMC6641450 DOI: 10.1021/acsomega.8b00289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 06/10/2023]
Abstract
Tiamulin (TML) is a diterpenoid antibiotic used in animals. In this study, a gold nanoparticle immunochromatographic strip assay and an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) were developed to detect the residue of TML in chicken. TML aminobutyric was synthesized and conjugated to keyhole limpet hemocyanin by mixed anhydride method as immunogen, whereas TML was connected to ovalbumin with 1,1'-carbonyldiimidazole as coating antigen. Under optimized conditions, the ultrasensitive monoclonal antibody-based ic-ELISA exhibited a half-maximal inhibitory concentration (IC50) value of 0.36 ng/mL with a working range of 0.14-0.9 ng/mL for TML. A rapid and sensitive immunochromatographic strip assay was developed with a TML cutoff value of 2.5 ng/mL. On the basis of these results, both developed methods are useful for TML detection in chicken.
Collapse
Affiliation(s)
- Xianlu Lei
- State
Key Laboratory of Food Science and Technology, International Joint Research Laboratory
for Biointerface and Biodetection, and School of Food Science and
Technology, and Collaborative Innovation Center of Food Safety and Quality Control
in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic
of China
| | - Shanshan Song
- State
Key Laboratory of Food Science and Technology, International Joint Research Laboratory
for Biointerface and Biodetection, and School of Food Science and
Technology, and Collaborative Innovation Center of Food Safety and Quality Control
in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic
of China
| | - Hong Tao
- Delishi
Group, Weifang, Shandong 262216, People’s Republic of China
| | - Liqiang Liu
- State
Key Laboratory of Food Science and Technology, International Joint Research Laboratory
for Biointerface and Biodetection, and School of Food Science and
Technology, and Collaborative Innovation Center of Food Safety and Quality Control
in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic
of China
| | - Qiankun Zheng
- Delishi
Group, Weifang, Shandong 262216, People’s Republic of China
| | - Chuanlai Xu
- State
Key Laboratory of Food Science and Technology, International Joint Research Laboratory
for Biointerface and Biodetection, and School of Food Science and
Technology, and Collaborative Innovation Center of Food Safety and Quality Control
in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic
of China
| | - Hua Kuang
- State
Key Laboratory of Food Science and Technology, International Joint Research Laboratory
for Biointerface and Biodetection, and School of Food Science and
Technology, and Collaborative Innovation Center of Food Safety and Quality Control
in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People’s Republic
of China
| |
Collapse
|
15
|
Farahi M, Karami B, Keshavarz R, Khosravian F. Nano-Fe3O4@SiO2-supported boron sulfonic acid as a novel magnetically heterogeneous catalyst for the synthesis of pyrano coumarins. RSC Adv 2017. [DOI: 10.1039/c7ra08253c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel magnetically heterogeneous catalyst based on the immobilization of boron sulfonic acid onto Fe3O4@SiO2nanoparticles (Fe3O4@SiO2–BSA) is reported. It was characterizedviaFT-IR, XRD, SEM, EDS, and VSM analysis.
Collapse
|