1
|
Ma X, Aminov R, Franco OL, de la Fuente-Nunez C, Wang G, Wang J. Editorial: Antimicrobial peptides and their druggability, bio-safety, stability, and resistance. Front Microbiol 2024; 15:1425952. [PMID: 38846567 PMCID: PMC11154904 DOI: 10.3389/fmicb.2024.1425952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Affiliation(s)
- Xuanxuan Ma
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Octavio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Guangshun Wang
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
2
|
Trirattanaporn N, Rattanajak R, Dokladda K, Kamchonwongpaisan S, Thongyoo P. Design, synthesis and Anti-Plasmodial activity of Mortiamide-Lugdunin conjugates. Bioorg Chem 2024; 146:107307. [PMID: 38537337 DOI: 10.1016/j.bioorg.2024.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
In this study, two linear and corresponding cyclic heptapeptide versions of mortiamide A-lugdunin hybrids were designed and synthesized by integrating an anti-malarial peptide epitope derived from Mortiamide A, combined with four residues known for their membrane interactions. Using this synthetic strategy, the sequence of mortiamide A was partly re-engineered with an epitope sequence of lugdunin along with an amino acid replacement using all-L and D/L configurations. Importantly, the re-engineered cyclic mortiamides with all-L (3) and D/L (4) configurations exhibited promising anti-malarial activities against the P. falciparum drug-sensitive TM4/8 strain with half-maximal inhibitory concentration (IC50) values of 6.2 ± 0.5 and 4.8 ± 0.1 μM, respectively. Additionally, they exhibited anti-malarial activities against the P. falciparum multidrug-resistant V1/S strain with IC50 values of 5.0 ± 2.6 and 3.7 ± 0.7 μM, respectively. Interestingly, a linear re-engineered mortiamide with D/L configuration (2) exhibited promising anti-malarial activities, surpassing those of the re-engineered cyclic mortiamides (3 and 4), against both the P. falciparum sensitive TM4/8 and multidrug-resistant V1/S strains with IC50 values of 3.6 ± 0.5 and 2.8 ± 0.7 μM (IC50 of Mortiamide A = 7.85 ± 0.97, 5.31 ± 0.24 μM against 3D7 and Dd2 strains) without any cytotoxicity at >100 µM. The presence of D/L forms in a linear structure significantly impacted the anti-malarial activity against both the P. falciparum sensitive TM4/8 strain and the multidrug-resistant V1/S strain.
Collapse
Affiliation(s)
- Nattamon Trirattanaporn
- Medicinal Chemistry Research Unit, Chemistry Department, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Roonglawan Rattanajak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Kanchana Dokladda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Panumart Thongyoo
- Medicinal Chemistry Research Unit, Chemistry Department, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand.
| |
Collapse
|
3
|
Chen G, Zheng Y, Wu N, Yang X, Qu S. Human beta defensin 3 knockdown inhibits the proliferation and migration of airway smooth muscle cells through regulating the PI3K/AKT signaling pathway. Mol Immunol 2024; 168:38-46. [PMID: 38422885 DOI: 10.1016/j.molimm.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Asthma, a common pediatric pulmonary disease, significantly affects children's healthy development. This study aimed to investigate the functions of human β defensin-3 (HBD-3) in asthma progression. For this purpose, blood samples from asthmatic and healthy children were collected. Moreover, the airway smooth muscle cells (ASMCs) were treated with platelet-derived growth factor BB (PDGF-BB) to develop an in vitro asthma model, then evaluated cell viability and migration via CCK-8 and transwell assays. The mRNA levels of interferon γ (INF-γ), interleukin 4 (IL-4), interleukin 10 (IL-10), alpha-smooth muscle actin (α-SMA), HBD-3, and the protein levels of phosphatidylinositol 3-kinase (PI3K) along with protein kinase B (AKT) were detected. Similarly, the N6-methyladenosine (m6A) content in the ASMCs and m6A levels of HBD-3 were also measured. Results indicated an upregulated HBD-3 in the asthmatic children. The ASMCs were found to be stimulated by PDGF-BB, in addition to the promotion of cell viability and migration. The INF-γ, IL-4, and α-SMA levels were reduced, while IL-10 was elevated in PDGF-BB-stimulated ASMCs. Silencing HBD-3 in PDGF-BB stimulated ASMCs was found to exert the opposite effect by inhibiting cell viability and migration, enhancing the levels of INF-γ, IL-4, and α-SMA, while the IL-10 levels were found to decline. PDGF-BB stimulation of ASMCs resulted in activation of the PI3K/AKT signaling pathway, which was blocked post HBD-3 silencing, while the role of si-hBD in PDGF-BB stimulated ASMCs was neutralized post-treatment with IGF-1. Finally, it was found that METTL3 overexpression prominently upregulated the m6A levels of HBD-3 and decreased the mRNA expression and stability of HBD-3 in the PDGF-BB-stimulated ASMCs. The study concluded that METTL3-mediated HBD-3 participates in the progression of asthma through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Guiying Chen
- Department of Pediatrics, Second Affiliated Hospital of Harbin Medical University, China; Department of Emergency, Sixth Affiliated Hospital of Harbin Medical University(Jiangnan Courtyard), China
| | - Yuling Zheng
- Department of Pediatrics, Second Affiliated Hospital of Harbin Medical University, China
| | - Nan Wu
- Department of Emergency, Sixth Affiliated Hospital of Harbin Medical University(Jiangnan Courtyard), China
| | - Xia Yang
- Department of Respiratory, Sixth Affiliated Hospital of Harbin Medical University (Jiangnan Courtyard), China
| | - Shuqiang Qu
- Department of Pediatrics, Second Affiliated Hospital of Harbin Medical University, China.
| |
Collapse
|
4
|
Gao X, Feng J, Wei L, Dong P, Chen J, Zhang L, Yang Y, Xu L, Wang H, Luo J, Qin M. Defensins: A novel weapon against Mycobacterium tuberculosis? Int Immunopharmacol 2024; 127:111383. [PMID: 38118315 DOI: 10.1016/j.intimp.2023.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.
Collapse
Affiliation(s)
- Xuehan Gao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jihong Feng
- Department of Oncology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Linna Wei
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Pinzhi Dong
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jin Chen
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Langlang Zhang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuhan Yang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiyan Wang
- Department of Epidemiology and Health Statistics, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Junmin Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Ming Qin
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
5
|
El-Mowafi SA, Konshina AG, Mohammed EHM, Krylov NA, Efremov RG, Parang K. Structural Analysis and Activity Correlation of Amphiphilic Cyclic Antimicrobial Peptides Derived from the [W 4R 4] Scaffold. Molecules 2023; 28:8049. [PMID: 38138539 PMCID: PMC10745345 DOI: 10.3390/molecules28248049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
In our ongoing quest to design effective antimicrobial peptides (AMPs), this study aimed to elucidate the mechanisms governing cyclic amphiphilic AMPs and their interactions with membranes. The objective was to discern the nature of these interactions and understand how peptide sequence and structure influence antimicrobial activity. We introduced modifications into the established cyclic AMP peptide, [W4R4], incorporating an extra aromatic hydrophobic residue (W), a positively charged residue (R), or the unique 2,5-diketopiperazine (DKP). This study systematically explored the structure-activity relationships (SARs) of a series of cyclic peptides derived from the [W4R4] scaffold, including the first synthesis and evaluation of [W4R4(DKP)]. Structural, dynamic, hydrophobic, and membrane-binding properties of four cyclic peptides ([W4R4], [W5R4], [W4R5], [W4R4(DKP)]) were explored using molecular dynamics simulations within a DOPC/DOPG lipid bilayer that mimics the bacterial membrane. The results revealed distinct SARs linking antimicrobial activity to parameters such as conformational plasticity, immersion depth in the bilayer, and population of the membrane binding mode. Notably, [W4R5] exhibited an optimal "activity/binding to the bacterial membrane" pattern. This multidisciplinary approach efficiently decoded finely regulated SAR profiles, laying a foundation for the rational design of novel antimicrobial peptides.
Collapse
Affiliation(s)
- Shaima A. El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (S.A.E.-M.); (E.H.M.M.)
- Peptide Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Anastasia G. Konshina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia; (A.G.K.); (N.A.K.)
| | - Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (S.A.E.-M.); (E.H.M.M.)
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koam 51132, Egypt
| | - Nikolay A. Krylov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia; (A.G.K.); (N.A.K.)
| | - Roman G. Efremov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia; (A.G.K.); (N.A.K.)
- Department of Applied Mathematics, National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (S.A.E.-M.); (E.H.M.M.)
| |
Collapse
|
6
|
Karami Y, Murail S, Giribaldi J, Lefranc B, Defontaine F, Lesouhaitier O, Leprince J, de Vries S, Tufféry P. Exploring a Structural Data Mining Approach to Design Linkers for Head-to-Tail Peptide Cyclization. J Chem Inf Model 2023; 63:6436-6450. [PMID: 37827517 PMCID: PMC10599322 DOI: 10.1021/acs.jcim.3c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 10/14/2023]
Abstract
Peptides have recently regained interest as therapeutic candidates, but their development remains confronted with several limitations including low bioavailability. Backbone head-to-tail cyclization, i.e., setting a covalent peptide bond linking the last amino acid with the first one, is one effective strategy of peptide-based drug design to stabilize the conformation of bioactive peptides while preserving peptide properties in terms of low toxicity, binding affinity, target selectivity, and preventing enzymatic degradation. Starting from an active peptide, it usually requires the design of a linker of a few amino acids to make it possible to cyclize the peptide, possibly preserving the conformation of the initial peptide and not affecting its activity. However, very little is known about the sequence-structure relationship requirements of designing linkers for peptide cyclization in a rational manner. Recently, we have shown that large-scale data-mining of available protein structures can lead to the precise identification of protein loop conformations, even from remote structural classes. Here, we transpose this approach to linkers, allowing head-to-tail peptide cyclization. First we show that given a linker sequence and the conformation of the linear peptide, it is possible to accurately predict the cyclized peptide conformation. Second, and more importantly, we show that it seems possible to elaborate on the information inferred from protein structures to propose effective candidate linker sequences constrained by length and amino acid composition, providing the first framework for the rational design of head-to-tail cyclization linkers. Finally, we illustrate this for two peptides using a limited set of amino-acids likely not to interfere with peptide function. For a linear peptide derived from Nrf2, the peptide cyclized starting from the experimental structure showed a 26-fold increase in the binding affinity. For urotensin II, a peptide already cyclized by a disulfide bond that exerts a broad array of biological activities, we were able, starting from models of the structure, to design a head-to-tail cyclized peptide, the first synthesized bicyclic 14-residue long urotensin II analogue, showing a retention of in vitro activity. Although preliminary, our results strongly suggest that such an approach has strong potential for cyclic peptide-based drug design.
Collapse
Affiliation(s)
- Yasaman Karami
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Samuel Murail
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Julien Giribaldi
- Institut
des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier-CNRS, 34293 Montpellier, France
| | - Benjamin Lefranc
- Université
de Rouen Normandie, INSERM U1239 NorDiC, Neuroendocrine, Endocrine and Germinal Differentiation and Communication,
INSERM US51 HeRacLeS, F-76000 Rouen, France
| | - Florian Defontaine
- Université
de Rouen Normandie, UR CBSA, Research Unit
Bacterial Communication and Anti-infectious Strategies, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Université
de Rouen Normandie, UR CBSA, Research Unit
Bacterial Communication and Anti-infectious Strategies, 27000 Evreux, France
| | - Jérôme Leprince
- Université
de Rouen Normandie, INSERM U1239 NorDiC, Neuroendocrine, Endocrine and Germinal Differentiation and Communication,
INSERM US51 HeRacLeS, F-76000 Rouen, France
| | - Sjoerd de Vries
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Pierre Tufféry
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| |
Collapse
|
7
|
Mourenza A, Ganesan R, Camarero JA. Resistance is futile: targeting multidrug-resistant bacteria with de novo Cys-rich cyclic polypeptides. RSC Chem Biol 2023; 4:722-735. [PMID: 37799576 PMCID: PMC10549238 DOI: 10.1039/d3cb00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 10/07/2023] Open
Abstract
The search for novel antimicrobial agents to combat microbial pathogens is intensifying in response to rapid drug resistance development to current antibiotic therapeutics. The use of disulfide-rich head-to-tail cyclized polypeptides as molecular frameworks for designing a new type of peptide antibiotics is gaining increasing attention among the scientific community and the pharmaceutical industry. The use of macrocyclic peptides, further constrained by the presence of several disulfide bonds, makes these peptide frameworks remarkably more stable to thermal, biological, and chemical degradation showing better activities when compared to their linear analogs. Many of these novel peptide scaffolds have been shown to have a high tolerance to sequence variability in those residues not involved in disulfide bonds, able to cross biological membranes, and efficiently target complex biomolecular interactions. Hence, these unique properties make the use of these scaffolds ideal for many biotechnological applications, including the design of novel peptide antibiotics. This article provides an overview of the new developments in the use of several disulfide-rich cyclic polypeptides, including cyclotides, θ-defensins, and sunflower trypsin inhibitor peptides, among others, in the development of novel antimicrobial peptides against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alvaro Mourenza
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Rajasekaran Ganesan
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California Los Angeles CA90033 USA
| |
Collapse
|
8
|
Tetorya M, Li H, Djami‐Tchatchou AT, Buchko GW, Czymmek KJ, Shah DM. Plant defensin MtDef4-derived antifungal peptide with multiple modes of action and potential as a bio-inspired fungicide. MOLECULAR PLANT PATHOLOGY 2023; 24:896-913. [PMID: 37036170 PMCID: PMC10346373 DOI: 10.1111/mpp.13336] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Chemical fungicides have been instrumental in protecting crops from fungal diseases. However, increasing fungal resistance to many of the single-site chemical fungicides calls for the development of new antifungal agents with novel modes of action (MoA). The sequence-divergent cysteine-rich antifungal defensins with multisite MoA are promising starting templates for design of novel peptide-based fungicides. Here, we experimentally tested such a set of 17-amino-acid peptides containing the γ-core motif of the antifungal plant defensin MtDef4. These designed peptides exhibited antifungal properties different from those of MtDef4. Focused analysis of a lead peptide, GMA4CG_V6, showed that it was a random coil in solution with little or no secondary structure elements. Additionally, it exhibited potent cation-tolerant antifungal activity against the plant fungal pathogen Botrytis cinerea, the causal agent of grey mould disease in fruits and vegetables. Its multisite MoA involved localization predominantly to the plasma membrane, permeabilization of the plasma membrane, rapid internalization into the vacuole and cytoplasm, and affinity for the bioactive phosphoinositides phosphatidylinositol 3-phosphate (PI3P), PI4P, and PI5P. The sequence motif RRRW was identified as a major determinant of the antifungal activity of this peptide. While topical spray application of GMA4CG_V6 on Nicotiana benthamiana and tomato plants provided preventive and curative suppression of grey mould disease symptoms, the peptide was not internalized into plant cells. Our findings open the possibility that truncated and modified defensin-derived peptides containing the γ-core sequence could serve as promising candidates for further development of bio-inspired fungicides.
Collapse
Affiliation(s)
| | - Hui Li
- Donald Danforth Plant Science CenterSt LouisMissouriUSA
| | | | - Garry W. Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National LaboratoryRichlandWashingtonUSA
- School of Molecular BiosciencesWashington State UniversityPullmanWashingtonUSA
| | - Kirk J. Czymmek
- Donald Danforth Plant Science CenterSt LouisMissouriUSA
- Advanced Bioimaging LaboratoryDonald Danforth Plant Science CenterSt LouisMissouriUSA
| | - Dilip M. Shah
- Donald Danforth Plant Science CenterSt LouisMissouriUSA
| |
Collapse
|
9
|
Bello-Madruga R, Valle J, Jiménez MÁ, Torrent M, Montero-Alejo V, Andreu D. The C-Terminus of Panusin, a Lobster β-Defensin, Is Crucial for Optimal Antimicrobial Activity and Serum Stability. Pharmaceutics 2023; 15:1777. [PMID: 37376223 DOI: 10.3390/pharmaceutics15061777] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
β-defensins are one of the most abundant and studied families of antimicrobial peptides (AMPs). Because of their selective toxicity to bacterial membranes and a broad spectrum of microbicidal action, β-defensins are regarded as potential therapeutic agents. This work focuses on a β-defensin-like AMP from the spiny lobster Panulirus argus (hereafter referred to as panusin or PaD). This AMP is structurally related to mammalian defensins via the presence of an αβ domain stabilized by disulfide bonds. Previous studies of PaD suggest that its C-terminus (Ct_PaD) contains the main structural determinants of antibacterial activity. To confirm this hypothesis, we made synthetic versions of PaD and Ct_PaD to determine the influence of the C-terminus on antimicrobial activity, cytotoxicity, proteolytic stability, and 3D structure. After successful solid-phase synthesis and folding, antibacterial assays of both peptides showed truncated Ct_PaD to be more active than native PaD, confirming the role of the C-terminus in activity and suggesting that cationic residues in that region enhance binding to negatively charged membranes. On the other hand, neither PaD nor Ct_PaD were hemolytic or cytotoxic in human cells. Proteolysis in human serum was also studied, showing high (>24 h) t1/2 values for PaD and lower but still considerable for Ct_PaD, indicating that the missing native disulfide bond in Ct_PaD alters protease resistance, albeit not decisively. NMR-2D experiments in water agree with the results obtained by circular dichroism (CD), where in SDS micelles, CD showed both peptides adopting an increasingly ordered structure in a hydrophobic environment, in tune with their ability to perturb bacterial membrane systems. In conclusion, while the β-defensin features of PaD are confirmed as advantageous in terms of antimicrobial activity, toxicity, and protease stability, the results of the present work suggest that these same features are preserved, even enhanced, in the structurally simpler Ct_PaD, which must therefore be viewed as a valuable lead for the development of novel anti-infectives.
Collapse
Affiliation(s)
- Roberto Bello-Madruga
- Barcelona Biomedical Research Park, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Department of Biochemistry and Molecular Biology, Center for Pharmaceutical Research and Development, (CIDEM), La Habana 10400, Cuba
| | - Javier Valle
- Barcelona Biomedical Research Park, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física Blas Cabrera-CSIC, Serrano 119, 28006 Madrid, Spain
| | - Marc Torrent
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Vivian Montero-Alejo
- Department of Biochemistry and Molecular Biology, Center for Pharmaceutical Research and Development, (CIDEM), La Habana 10400, Cuba
| | - David Andreu
- Barcelona Biomedical Research Park, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
10
|
Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides. Microb Biotechnol 2023; 16:757-777. [PMID: 36705032 PMCID: PMC10034643 DOI: 10.1111/1751-7915.14213] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure-activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
11
|
Lai S, Zhang Q, Jin L. Natural and Man-Made Cyclic Peptide-Based Antibiotics. Antibiotics (Basel) 2022; 12:antibiotics12010042. [PMID: 36671244 PMCID: PMC9855121 DOI: 10.3390/antibiotics12010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
In recent years, an increasing number of drug-resistant bacterial strains have been identified due to the abuse of antibiotics, which seriously threatens human and animal health. Antimicrobial peptides (AMPs) have become one of the most effective weapons to solve this problem. AMPs have little tendency to induce drug resistance and have outstanding antimicrobial effects. The study of AMPs, especially cyclic peptides, has become a hot topic. Among them, macrocyclic AMPs have received extensive attention. This mini-review discusses the structures and functions of the dominant cyclic natural and synthetic AMPs and provides a little outlook on the future direction of cyclic AMPs.
Collapse
Affiliation(s)
- Shian Lai
- Small Molecule Drugs Sichuan Key Laboratory, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0394, Japan
| | - Quan Zhang
- Small Molecule Drugs Sichuan Key Laboratory, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Lin Jin
- Small Molecule Drugs Sichuan Key Laboratory, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence:
| |
Collapse
|
12
|
Thum MD, Lu Q, Stockmaster KT, Haridas D, Fears KP, Balow RB, Lundin JG. 3D‐printable cyclic peptide loaded microporous polymers for antimicrobial wound dressing materials. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew D. Thum
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | - Qin Lu
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | | | - Dhanya Haridas
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | - Kenan P. Fears
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | - Robert B. Balow
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | - Jeffrey G. Lundin
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| |
Collapse
|
13
|
Luo J, Liu S, Lu H, Chen Q, Shi Y. A comprehensive review of microorganism-derived cyclic peptides: Bioactive functions and food safety applications. Compr Rev Food Sci Food Saf 2022; 21:5272-5290. [PMID: 36161470 DOI: 10.1111/1541-4337.13038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Cyclic peptides possess advanced structural characteristics of stability and play a vital role in medical treatment and agriculture. However, the biological functions of microorganism-derived cyclic peptides (MDCPs) and their applications in food industry were relatively absent. MDCPs are derived from extensive fermented food or soil. In this review, the synthesis approaches and structural characteristics are overviewed, while the interrelationship between bioactivities and functions is emphasized. This review summarizes the bioactivities of MDCPs from in vitro to in vivo, including antimicrobial activities, immune regulation, and antiviral cell activation. Their multiple functions as well as applications during food product processing, packaging, and storage are also comprehensively reviewed. Remarkably, some potential risks and cytotoxicity of MDCPs are also critically discussed. Moreover, future applications of MDCPs in the development of novel food additives and bioengineering materials are organized. Based on this review of native MDCPs, it is noteworthy that expected improvements of synthetic cyclic peptides in bioactive properties present potential valuable applications in future food, including artificial meat.
Collapse
Affiliation(s)
- Jiaqi Luo
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Yan J, Cai J, Zhang B, Wang Y, Wong DF, Siu SWI. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning. Antibiotics (Basel) 2022; 11:1451. [PMID: 36290108 PMCID: PMC9598685 DOI: 10.3390/antibiotics11101451] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance has become a critical global health problem due to the abuse of conventional antibiotics and the rise of multi-drug-resistant microbes. Antimicrobial peptides (AMPs) are a group of natural peptides that show promise as next-generation antibiotics due to their low toxicity to the host, broad spectrum of biological activity, including antibacterial, antifungal, antiviral, and anti-parasitic activities, and great therapeutic potential, such as anticancer, anti-inflammatory, etc. Most importantly, AMPs kill bacteria by damaging cell membranes using multiple mechanisms of action rather than targeting a single molecule or pathway, making it difficult for bacterial drug resistance to develop. However, experimental approaches used to discover and design new AMPs are very expensive and time-consuming. In recent years, there has been considerable interest in using in silico methods, including traditional machine learning (ML) and deep learning (DL) approaches, to drug discovery. While there are a few papers summarizing computational AMP prediction methods, none of them focused on DL methods. In this review, we aim to survey the latest AMP prediction methods achieved by DL approaches. First, the biology background of AMP is introduced, then various feature encoding methods used to represent the features of peptide sequences are presented. We explain the most popular DL techniques and highlight the recent works based on them to classify AMPs and design novel peptide sequences. Finally, we discuss the limitations and challenges of AMP prediction.
Collapse
Affiliation(s)
- Jielu Yan
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Jianxiu Cai
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
- Institute of Science and Environment, University of Saint Joseph, Estr. Marginal da Ilha Verde, Macau, China
| | - Bob Zhang
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Yapeng Wang
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Derek F. Wong
- NLP2CT Lab, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Shirley W. I. Siu
- Institute of Science and Environment, University of Saint Joseph, Estr. Marginal da Ilha Verde, Macau, China
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| |
Collapse
|
15
|
S100 Proteins as Novel Therapeutic Targets in Psoriasis and Other Autoimmune Diseases. Molecules 2022; 27:molecules27196640. [PMID: 36235175 PMCID: PMC9572071 DOI: 10.3390/molecules27196640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 01/07/2023] Open
Abstract
Psoriasis is one of the most common inflammatory skin diseases affecting about 1-3% of the population. One of the characteristic abnormalities in psoriasis is the excessive production of antimicrobial peptides and proteins, which play an essential role in the pathogenesis of the disease. Antimicrobial peptides and proteins can be expressed differently in normal and diseased skin, reflecting their usefulness as diagnostic biomarkers. Moreover, due to their very important functions in innate immunity, members of host defense peptides and proteins are currently considered to be promising new therapeutic targets for many inflammatory diseases. Koebnerisin (S100A15) belongs to an S100 family of antimicrobial proteins, which constitute the multigenetic group of calcium-binding proteins involved in ion-dependent cellular functions and regulation of immune mechanisms. S100A15 was first discovered to be overexpressed in 'koebnerized' psoriatic skin, indicating its involvement in the disease phenotype and the same promising potential as a new therapeutic target. This review describes the involvement of antimicrobial peptides and proteins in inflammatory diseases' development and therapy. The discussion focuses on S100 proteins, especially koebnerisin, which may be involved in the underlying mechanism of the Köebner phenomenon in psoriasis, as well as other immune-mediated inflammatory diseases described in the last decade.
Collapse
|
16
|
An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081110. [PMID: 35892912 PMCID: PMC9394423 DOI: 10.3390/life12081110] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.
Collapse
|
17
|
In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022; 218:135-156. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) attracted attention as potential source of novel antimicrobials. Multi-drug resistant (MDR) infections have emerged as a global threat to public health in recent years. Furthermore, due to rapid emergence of new diseases, there is pressing need for development of efficient antimicrobials. AMPs are essential part of the innate immunity in most living organisms, acting as the primary line of defense against foreign invasions. AMPs kill a wide range of microorganisms by primarily targeting cell membranes or intracellular components through a variety of ways. AMPs can be broadly categorized based on their physico-chemical properties, structure, function, target and source of origin. The synthetic analogues produced either with suitable chemical modifications or with the use of suitable delivery systems are projected to eliminate the constraints of toxicity and poor stability commonly linked with natural AMPs. The concept of peptidomimetics is gaining ground around the world nowadays. Among the delivery systems, nanoparticles are emerging as potential delivery tools for AMPs, amplifying their utility against a variety of pathogens. In the present review, the broad classification of various AMPs, their mechanism of action (MOA), challenges associated with AMPs, current applications, and novel strategies to overcome the limitations have been discussed.
Collapse
|
18
|
Fathi F, Ghobeh M, Tabarzad M. Anti-Microbial Peptides: Strategies of Design and Development and Their Promising Wound-Healing Activities. Mol Biol Rep 2022; 49:9001-9012. [DOI: 10.1007/s11033-022-07405-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
|
19
|
Leannec-Rialland V, Atanasova V, Chereau S, Tonk-Rügen M, Cabezas-Cruz A, Richard-Forget F. Use of Defensins to Develop Eco-Friendly Alternatives to Synthetic Fungicides to Control Phytopathogenic Fungi and Their Mycotoxins. J Fungi (Basel) 2022; 8:229. [PMID: 35330231 PMCID: PMC8950385 DOI: 10.3390/jof8030229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022] Open
Abstract
Crops are threatened by numerous fungal diseases that can adversely affect the availability and quality of agricultural commodities. In addition, some of these fungal phytopathogens have the capacity to produce mycotoxins that pose a serious health threat to humans and livestock. To facilitate the transition towards sustainable environmentally friendly agriculture, there is an urgent need to develop innovative methods allowing a reduced use of synthetic fungicides while guaranteeing optimal yields and the safety of the harvests. Several defensins have been reported to display antifungal and even-despite being under-studied-antimycotoxin activities and could be promising natural molecules for the development of control strategies. This review analyses pioneering and recent work addressing the bioactivity of defensins towards fungal phytopathogens; the details of approximately 100 active defensins and defensin-like peptides occurring in plants, mammals, fungi and invertebrates are listed. Moreover, the multi-faceted mechanism of action employed by defensins, the opportunity to optimize large-scale production procedures such as their solubility, stability and toxicity to plants and mammals are discussed. Overall, the knowledge gathered within the present review strongly supports the bright future held by defensin-based plant protection solutions while pointing out the obstacles that still need to be overcome to translate defensin-based in vitro research findings into commercial products.
Collapse
Affiliation(s)
- Valentin Leannec-Rialland
- Université de Bordeaux, UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France;
| | - Vessela Atanasova
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | - Sylvain Chereau
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | - Miray Tonk-Rügen
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- Institute of Nutritional Sciences, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| | - Alejandro Cabezas-Cruz
- Anses, Ecole Nationale Vétérinaire d’Alfort, UMR Parasitic Molecular Biology and Immunology (BIPAR), Laboratoire de Santé Animale, INRAE, 94700 Maison-Alfort, France
| | - Florence Richard-Forget
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| |
Collapse
|
20
|
Negahdaripour M, Rahbar MR, Mosalanejad Z, Gholami A. Theta-Defensins to Counter COVID-19 as Furin Inhibitors: In Silico Efficiency Prediction and Novel Compound Design. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9735626. [PMID: 35154362 PMCID: PMC8829439 DOI: 10.1155/2022/9735626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/28/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was characterized as a pandemic by the World Health Organization (WHO) in Dec. 2019. SARS-CoV-2 binds to the cell membrane through spike proteins on its surface and infects the cell. Furin, a host-cell enzyme, possesses a binding site for the spike protein. Thus, molecules that block furin could potentially be a therapeutic solution. Defensins are antimicrobial peptides that can hypothetically inhibit furin because of their arginine-rich structure. Theta-defensins, a subclass of defensins, have attracted attention as drug candidates due to their small size, unique structure, and involvement in several defense mechanisms. Theta-defensins could be a potential treatment for COVID-19 through furin inhibition and an anti-inflammatory mechanism. Note that inflammatory events are a significant and deadly condition that could happen at the later stages of COVID-19 infection. Here, the potential of theta-defensins against SARS-CoV-2 infection was investigated through in silico approaches. Based on docking analysis results, theta-defensins can function as furin inhibitors. Additionally, a novel candidate peptide against COVID-19 with optimal properties regarding antigenicity, stability, electrostatic potential, and binding strength was proposed. Further in vitro/in vivo investigations could verify the efficiency of the designed novel peptide.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mosalanejad
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
An overview on the two recent decades’ study of peptides synthesis and biological activities in Iran. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02312-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Zhang H, Chen S. Cyclic peptide drugs approved in the last two decades (2001-2021). RSC Chem Biol 2022; 3:18-31. [PMID: 35128405 PMCID: PMC8729179 DOI: 10.1039/d1cb00154j] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/05/2021] [Indexed: 01/01/2023] Open
Abstract
In contrast to the major families of small molecules and antibodies, cyclic peptides, as a family of synthesizable macromolecules, have distinct biochemical and therapeutic properties for pharmaceutical applications. Cyclic peptide-based drugs have increasingly been developed in the past two decades, confirming the common perception that cyclic peptides have high binding affinities and low metabolic toxicity as antibodies, good stability and ease of manufacture as small molecules. Natural peptides were the major source of cyclic peptide drugs in the last century, and cyclic peptides derived from novel screening and cyclization strategies are the new source. In this review, we will discuss and summarize 18 cyclic peptides approved for clinical use in the past two decades to provide a better understanding of cyclic peptide development and to inspire new perspectives. The purpose of the present review is to promote efforts to resolve the challenges in the development of cyclic peptide drugs that are more effective.
Collapse
Affiliation(s)
- Huiya Zhang
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Shiyu Chen
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| |
Collapse
|
23
|
Han Y, Zhang M, Lai R, Zhang Z. Chemical modifications to increase the therapeutic potential of antimicrobial peptides. Peptides 2021; 146:170666. [PMID: 34600037 DOI: 10.1016/j.peptides.2021.170666] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
The continued use of antibiotics has been accompanied by the rapid emergence and spread of antibiotic-resistant strains of bacteria. Antimicrobial peptides (AMPs), also known as host defense peptides, show multiple features as an ideal antimicrobial agent, including potent, rapid, and broad-spectrum antimicrobial activity, low promotion of antimicrobial resistance, potent anti-biofilm activity, and lethality against metabolically inactive microorganisms. However, several crucial drawbacks constrain the use of AMPs as clinical drugs, e.g., liability in vivo, toxicity when used systemically, and high production costs. Based on recent findings and our own experiences, here we summarize some chemical modifications and key design strategies to increase the therapeutic potential of AMPs, including 1) enhancing antimicrobial activities, 2) improving in vivo effectiveness, and 3) reduction in toxicity, which may facilitate the design and optimization of AMPs for the development of drug candidates. We also discuss the present challenges in the optimization of AMPs and future concerns about the resistance and cross-resistance to AMPs in the development of AMPs as therapeutic drugs.
Collapse
Affiliation(s)
- Yajun Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223 Yunnan, China
| | - Manli Zhang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223 Yunnan, China
| | - Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223 Yunnan, China.
| |
Collapse
|
24
|
Colicchio R, Nigro E, Colavita I, Pagliuca C, Di Maro S, Tomassi S, Scaglione E, Carbone F, Carriero MV, Matarese G, Daniele A, Cosconati S, Pessi A, Salvatore F, Salvatore P. A novel smaller β-defensin-derived peptide is active against multidrug-resistant bacterial strains. FASEB J 2021; 35:e22026. [PMID: 34818435 DOI: 10.1096/fj.202002330rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance is becoming a severe obstacle in the fight against acute and chronic infectious diseases that accompany most degenerative illnesses from neoplasia to osteo-arthritis and obesity. Currently, the race is on to identify pharmaceutical molecules or combinations of molecules able to prevent or reduce the insurgence and/or progression of infectivity. Attempts to substitute antibiotics with antimicrobial peptides have, thus far, met with little success against multidrug-resistant (MDR) bacterial strains. During the last decade, we designed and studied the activity and features of human β-defensin analogs, which are salt-resistant, and hence active also under high salt concentrations as, for instance, in cystic fibrosis. Herein, we describe the design, synthesis, and major features of a new 21 aa long molecule, peptide γ2. The latter derives from the γ-core of the β-defensin natural molecules, a small fragment of these molecules still bearing high antibacterial activity. We found that peptide γ2, which contains only one disulphide bond, recapitulates most of the biological properties of natural human β-defensins and can also counteract both Gram-positive and Gram-negative MDR bacterial strains and biofilm formation. Moreover, it has great stability in human serum thereby enhancing its antibacterial presence and activity without cytotoxicity in human cells. In conclusion, peptide γ2 is a promising new weapon also in the battle against intractable infectious diseases.
Collapse
Affiliation(s)
- Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Ersilia Nigro
- CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy.,Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy
| | | | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy.,Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Maria Vincenza Carriero
- Tumor Progression Unit, Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale" IRCCS, Naples, Italy
| | - Giuseppe Matarese
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Aurora Daniele
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Sandro Cosconati
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy
| | | | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
25
|
Krishnan M, Choi J, Jang A, Yoon YK, Kim Y. Antiseptic 9-Meric Peptide with Potency against Carbapenem-Resistant Acinetobacter baumannii Infection. Int J Mol Sci 2021; 22:12520. [PMID: 34830401 PMCID: PMC8621208 DOI: 10.3390/ijms222212520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Carbapenem-resistant A. baumannii (CRAB) infection can cause acute host reactions that lead to high-fatality sepsis, making it important to develop new therapeutic options. Previously, we developed a short 9-meric peptide, Pro9-3D, with significant antibacterial and cytotoxic effects. In this study, we attempted to produce safer peptide antibiotics against CRAB by reversing the parent sequence to generate R-Pro9-3 and R-Pro9-3D. Among the tested peptides, R-Pro9-3D had the most rapid and effective antibacterial activity against Gram-negative bacteria, particularly clinical CRAB isolates. Analyses of antimicrobial mechanisms based on lipopolysaccharide (LPS)-neutralization, LPS binding, and membrane depolarization, as well as SEM ultrastructural investigations, revealed that R-Pro9-3D binds strongly to LPS and impairs the membrane integrity of CRAB by effectively permeabilizing its outer membrane. R-Pro9-3D was also less cytotoxic and had better proteolytic stability than Pro9-3D and killed biofilm forming CRAB. As an LPS-neutralizing peptide, R-Pro9-3D effectively reduced LPS-induced pro-inflammatory cytokine levels in RAW 264.7 cells. The antiseptic abilities of R-Pro9-3D were also investigated using a mouse model of CRAB-induced sepsis, which revealed that R-Pro9-3D reduced multiple organ damage and attenuated systemic infection by acting as an antibacterial and immunosuppressive agent. Thus, R-Pro9-3D displays potential as a novel antiseptic peptide for treating Gram-negative CRAB infections.
Collapse
Affiliation(s)
- Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Young Kyung Yoon
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, Korea University Anam Hospital, Korea University, Seoul 02841, Korea;
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| |
Collapse
|
26
|
Nazeer N, Simmons JR, Rainey JK, Rodriguez-Lecompte JC, Ahmed M. Antibacterial activities of physiologically stable, self-assembled peptide nanoparticles. J Mater Chem B 2021; 9:9041-9054. [PMID: 34664611 DOI: 10.1039/d1tb01864g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we report that host defense protein-derived ten amino acid long disulfide-linked peptides self-assemble in the form of β-sheets and β-turns, and exhibit concentration-dependent self-assembly in the form of nanospheres, termed as disulfide linked nanospheres (DSNs). As expected, bare DSNs are prone to aggregation in ionic solutions and in the presence of serum proteins. To yield physiologically stable self-assembled peptide-based materials, DSNs are stabilized in the form of supramolecular assemblies using β-cyclodextrins (β-CD) and fucoidan, as delivery carriers. The inclusion complexes of DSNs with β-CD (β-CD-DSN) and electrostatic complexation of fucoidan with DSNs (FC-DSN) stabilizes the secondary structure of DSNs. Comparison of β-CD-DSNs with FC-DSNs reveals that inclusion complexes of DSNs formed in the presence of β-CD are highly stable under physiological conditions, show high cellular uptake, exhibit bacterial flocculation, and enhance antibacterial efficacies of DSNs in a range of Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Nauman Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada.
| | - Jeffrey R Simmons
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.,School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada. .,Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| |
Collapse
|
27
|
Choi J, Jang A, Yoon YK, Kim Y. Development of Novel Peptides for the Antimicrobial Combination Therapy against Carbapenem-Resistant Acinetobacter baumannii Infection. Pharmaceutics 2021; 13:pharmaceutics13111800. [PMID: 34834215 PMCID: PMC8619914 DOI: 10.3390/pharmaceutics13111800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) infection has a high mortality rate, making the development of novel effective antibiotic therapeutic strategies highly critical. Antimicrobial peptides can outperform conventional antibiotics regarding drug resistance and broad-spectrum activity. PapMA, an 18-residue hybrid peptide, containing N-terminal residues of papiliocin and magainin 2, has previously demonstrated potent antibacterial activity. In this study, PapMA analogs were designed by substituting Ala15 or Phe18 with Ala, Phe, and Trp. PapMA-3 with Trp18 showed the highest bacterial selectivity against CRAB, alongside low cytotoxicity. Biophysical studies revealed that PapMA-3 permeabilizes CRAB membrane via strong binding to LPS. To reduce toxicity via reduced antibiotic doses, while preventing the emergence of multi-drug resistant bacteria, the efficacy of PapMA-3 in combination with six selected antibiotics was evaluated against clinical CRAB isolates (C1–C5). At 25% of the minimum inhibition concentration, PapMA-3 partially depolarized the CRAB membrane and caused sufficient morphological changes, facilitating the entry of antibiotics into the bacterial cell. Combining PapMA-3 with rifampin significantly and synergistically inhibited CRAB C4 (FICI = 0.13). Meanwhile, combining PapMA-3 with vancomycin or erythromycin, both potent against Gram-positive bacteria, demonstrated remarkable synergistic antibiofilm activity against Gram-negative CRAB. This study could aid in the development of combination therapeutic approaches against CRAB.
Collapse
Affiliation(s)
- Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (J.C.); (A.J.)
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (J.C.); (A.J.)
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea;
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (J.C.); (A.J.)
- Correspondence: ; Tel.: +822-450-3421; Fax: +822-447-5987
| |
Collapse
|
28
|
Erdem Büyükkiraz M, Kesmen Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J Appl Microbiol 2021; 132:1573-1596. [PMID: 34606679 DOI: 10.1111/jam.15314] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs) are compounds, which have inhibitory activity against microorganisms. In the last decades, AMPs have become powerful alternative agents that have met the need for novel anti-infectives to overcome increasing antibiotic resistance problems. Moreover, recent epidemics and pandemics are increasing the popularity of AMPs, due to the urgent necessity for effective antimicrobial agents in combating the new emergence of microbial diseases. AMPs inhibit a wide range of microorganisms through diverse and special mechanisms by targeting mainly cell membranes or specific intracellular components. In addition to extraction from natural sources, AMPs are produced in various hosts using recombinant methods. More recently, the synthetic analogues of AMPs, designed with some modifications, are predicted to overcome the limitations of stability, toxicity and activity associated with natural AMPs. AMPs have potential applications as antimicrobial agents in food, agriculture, environment, animal husbandry and pharmaceutical industries. In this review, we have provided an overview of the structure, classification and mechanism of action of AMPs, as well as discussed opportunities for their current and potential applications.
Collapse
Affiliation(s)
- Mine Erdem Büyükkiraz
- School of Health Sciences, Department of Nutrition and Dietetics, Cappadocia University, Nevsehir, Turkey
| | - Zülal Kesmen
- Engineering Faculty, Department of Food Engineering, Erciyes University, Kayseri, Turkey
| |
Collapse
|
29
|
Bellavita R, Casciaro B, Di Maro S, Brancaccio D, Carotenuto A, Falanga A, Cappiello F, Buommino E, Galdiero S, Novellino E, Grossmann TN, Mangoni ML, Merlino F, Grieco P. First-in-Class Cyclic Temporin L Analogue: Design, Synthesis, and Antimicrobial Assessment. J Med Chem 2021; 64:11675-11694. [PMID: 34296619 PMCID: PMC8389922 DOI: 10.1021/acs.jmedchem.1c01033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The pharmacodynamic and pharmacokinetic properties of bioactive peptides can be modulated by introducing conformational constraints such as intramolecular macrocyclizations, which can involve either the backbone and/or side chains. Herein, we aimed at increasing the α-helicity content of temporin L, an isoform of an intriguing class of linear antimicrobial peptides (AMPs), endowed with a wide antimicrobial spectrum, by the employment of diverse side-chain tethering strategies, including lactam, 1,4-substituted [1,2,3]-triazole, hydrocarbon, and disulfide linkers. Our approach resulted in a library of cyclic temporin L analogues that were biologically assessed for their antimicrobial, cytotoxic, and antibiofilm activities, leading to the development of the first-in-class cyclic peptide related to this AMP family. Our results allowed us to expand the knowledge regarding the relationship between the α-helical character of temporin derivatives and their biological activity, paving the way for the development of improved antibiotic cyclic AMP analogues.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Bruno Casciaro
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi
Vanvitelli”, Caserta 81100, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Annarita Falanga
- Department
of Agricultural Sciences, University of
Naples “Federico II”, Portici 80055, Italy
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | - Elisabetta Buommino
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Stefania Galdiero
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Tom N. Grossmann
- Department
of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| |
Collapse
|
30
|
Santo AAE, Feliciano GT. Genetic Algorithms Applied to Thermodynamic Rational Design of Mimetic Antibodies Based on the GB1 Domain of Streptococcal Protein G: An Atomistic Simulation Study. J Phys Chem B 2021; 125:7985-7996. [PMID: 34264671 DOI: 10.1021/acs.jpcb.1c03324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of mimetic antibodies (MA) capable of combining the high affinity and selectivity of antibodies with the small size of the peptides has enormous potential for applications in current biotechnology. In this work, we demonstrate that in silico MA design is possible through genetic algorithms (GA) developed from shell scripts capable of combining software commonly used for atomistic simulation. Our results demonstrate that, using the GB1 domain of the streptococcal G protein as a model, it is possible to optimize the molecular recognition capacity of a large MA population in a few generations. In the first case, GA was able to generate 10 MA with binding free energy (BFE) less than the vascular endothelial cell growth factor conjugated with the fms-type tyrosine kinase receptor. In the second case, it generated 13 MA with BFE less than that of the hepatitis C-E2 viral envelope conjugate with the antibody. Through the GA developed in this work, we demonstrate the use of a new protocol, capable of guiding experimental methods for the design of bioactive peptides that can assist in the development of new therapeutic molecules.
Collapse
Affiliation(s)
- Anderson A E Santo
- Institute of Chemistry, São Paulo State University, Araraquara, SP, Brazil
| | | |
Collapse
|
31
|
Comparison of a Short Linear Antimicrobial Peptide with Its Disulfide-Cyclized and Cyclotide-Grafted Variants against Clinically Relevant Pathogens. Microorganisms 2021; 9:microorganisms9061249. [PMID: 34201398 PMCID: PMC8228819 DOI: 10.3390/microorganisms9061249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
According to the World Health Organization (WHO) the development of resistance against antibiotics by microbes is one of the most pressing health concerns. The situation will intensify since only a few pharmacological companies are currently developing novel antimicrobial compounds. Discovery and development of novel antimicrobial compounds with new modes of action are urgently needed. Antimicrobial peptides (AMPs) are known to be able to kill multidrug-resistant bacteria and, therefore, of interest to be developed into antimicrobial drugs. Proteolytic stability and toxicities of these peptides are challenges to overcome, and one strategy frequently used to address stability is cyclization. Here we introduced a disulfide-bond to cyclize a potent and nontoxic 9mer peptide and, in addition, as a proof-of-concept study, grafted this peptide into loop 6 of the cyclotide MCoTI-II. This is the first time an antimicrobial peptide has been successfully grafted onto the cyclotide scaffold. The disulfide-cyclized and grafted cyclotide showed moderate activity in broth and strong activity in 1/5 broth against clinically relevant resistant pathogens. The linear peptide showed superior activity in both conditions. The half-life time in 100% human serum was determined, for the linear peptide, to be 13 min, for the simple disulfide-cyclized peptide, 9 min, and, for the grafted cyclotide 7 h 15 min. The addition of 10% human serum led to a loss of antimicrobial activity for the different organisms, ranging from 1 to >8-fold for the cyclotide. For the disulfide-cyclized version and the linear version, activity also dropped to different degrees, 2 to 18-fold, and 1 to 30-fold respectively. Despite the massive difference in stability, the linear peptide still showed superior antimicrobial activity. The cyclotide and the disulfide-cyclized version demonstrated a slower bactericidal effect than the linear version. All three peptides were stable at high and low pH, and had very low hemolytic and cytotoxic activity.
Collapse
|
32
|
Manniello MD, Moretta A, Salvia R, Scieuzo C, Lucchetti D, Vogel H, Sgambato A, Falabella P. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci 2021; 78:4259-4282. [PMID: 33595669 PMCID: PMC8164593 DOI: 10.1007/s00018-021-03784-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Misuse and overuse of antibiotics have contributed in the last decades to a phenomenon known as antibiotic resistance which is currently considered one of the principal threats to global public health by the World Health Organization. The aim to find alternative drugs has been demonstrated as a real challenge. Thanks to their biodiversity, insects represent the largest class of organisms in the animal kingdom. The humoral immune response includes the production of antimicrobial peptides (AMPs) that are released into the insect hemolymph after microbial infection. In this review, we have focused on insect immune responses, particularly on AMP characteristics, their mechanism of action and applications, especially in the biomedical field. Furthermore, we discuss the Toll, Imd, and JAK-STAT pathways that activate genes encoding for the expression of AMPs. Moreover, we focused on strategies to improve insect peptides stability against proteolytic susceptibility such as D-amino acid substitutions, N-terminus modification, cyclization and dimerization.
Collapse
Affiliation(s)
- M D Manniello
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - A Moretta
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - R Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - C Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - D Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - H Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - A Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Riferimento Oncologico Della Basilicata (IRCCS-CROB), Rionero in Vulture (PZ), Italy
| | - P Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
- Spinoff XFlies S.R.L, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
33
|
Maharani R, Napitupulu OI, Dirgantara JM, Hidayat AT, Sumiarsa D, Harneti D, Supratman U, Fukase K. Synthesis of cyclotetrapeptide analogues of c-PLAI and evaluation of their antimicrobial properties. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201822. [PMID: 33959342 PMCID: PMC8074941 DOI: 10.1098/rsos.201822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides (AMPs) are interesting compounds owing to their ability to kill several pathogens. In order to identify new AMPs, c-PLAI analogues were synthesized and evaluated together with their linear precursors for their antimicrobial properties against two Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus), two Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae), and two fungal strains (Candida albicans and Trichophyton mentagrophytes). The new c-PLAI analogues were prepared through a combination of solid- and solution-phase syntheses, as previously employed for the synthesis of c-PLAI. The antimicrobial activity tests showed that the synthetic parent peptide c-PLAI was inactive or weakly active towards the bioindicators employed in the assay. The tests also indicated that cyclic c-PLAI analogues possessed enhanced antimicrobial properties against most of the bacteria and fungi tested. Furthermore, this study revealed that analogues containing cationic lysine residues displayed the highest activity towards most bioindicators. A combination of lysine and aromatic residues yielded analogues with broad-spectrum antimicrobial properties.
Collapse
Affiliation(s)
- Rani Maharani
- Laboratorium Sentral, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Kabupaten Sumedang, 45363 West Java, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Kabupaten Sumedang, 45363 West Java, Indonesia
| | - Orin Inggriani Napitupulu
- Laboratorium Sentral, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Kabupaten Sumedang, 45363 West Java, Indonesia
| | - Jelang M. Dirgantara
- Laboratorium Sentral, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Kabupaten Sumedang, 45363 West Java, Indonesia
| | - Ace Tatang Hidayat
- Laboratorium Sentral, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Kabupaten Sumedang, 45363 West Java, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Kabupaten Sumedang, 45363 West Java, Indonesia
| | - Dadan Sumiarsa
- Laboratorium Sentral, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Kabupaten Sumedang, 45363 West Java, Indonesia
| | - Desi Harneti
- Laboratorium Sentral, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Kabupaten Sumedang, 45363 West Java, Indonesia
| | - Unang Supratman
- Laboratorium Sentral, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Kabupaten Sumedang, 45363 West Java, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Kabupaten Sumedang, 45363 West Java, Indonesia
| | - Koichi Fukase
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
34
|
Spirescu VA, Chircov C, Grumezescu AM, Andronescu E. Polymeric Nanoparticles for Antimicrobial Therapies: An Up-To-Date Overview. Polymers (Basel) 2021; 13:724. [PMID: 33673451 PMCID: PMC7956825 DOI: 10.3390/polym13050724] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the many advancements in the pharmaceutical and medical fields and the development of numerous antimicrobial drugs aimed to suppress and destroy pathogenic microorganisms, infectious diseases still represent a major health threat affecting millions of lives daily. In addition to the limitations of antimicrobial drugs associated with low transportation rate, water solubility, oral bioavailability and stability, inefficient drug targeting, considerable toxicity, and limited patient compliance, the major cause for their inefficiency is the antimicrobial resistance of microorganisms. In this context, the risk of a pre-antibiotic era is a real possibility. For this reason, the research focus has shifted toward the discovery and development of novel and alternative antimicrobial agents that could overcome the challenges associated with conventional drugs. Nanotechnology is a possible alternative, as there is significant evidence of the broad-spectrum antimicrobial activity of nanomaterials and nanoparticles in particular. Moreover, owing to their considerable advantages regarding their efficient cargo dissolving, entrapment, encapsulation, or surface attachment, the possibility of forming antimicrobial groups for specific targeting and destruction, biocompatibility and biodegradability, low toxicity, and synergistic therapy, polymeric nanoparticles have received considerable attention as potential antimicrobial drug delivery agents. In this context, the aim of this paper is to provide an up-to-date overview of the most recent studies investigating polymeric nanoparticles designed for antimicrobial therapies, describing both their targeting strategies and their effects.
Collapse
Affiliation(s)
- Vera Alexandra Spirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
| |
Collapse
|
35
|
Wątły J, Miller A, Kozłowski H, Rowińska-Żyrek M. Peptidomimetics - An infinite reservoir of metal binding motifs in metabolically stable and biologically active molecules. J Inorg Biochem 2021; 217:111386. [PMID: 33610030 DOI: 10.1016/j.jinorgbio.2021.111386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
The involvement of metal ions in interactions with therapeutic peptides is inevitable. They are one of the factors able to fine-tune the biological properties of antimicrobial peptides, a promising group of drugs with one large drawback - a problematic metabolic stability. Appropriately chosen, proteolytically stable peptidomimetics seem to be a reasonable solution of the problem, and the use of D-, β-, γ-amino acids, unnatural amino acids, azapeptides, peptoids, cyclopeptides and dehydropeptides is an infinite reservoir of metal binding motifs in metabolically stable, well-designed, biologically active molecules. Below, their specific structural features, metal-chelating abilities and antimicrobial potential are discussed.
Collapse
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland.
| | - Adriana Miller
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland; Department of Health Sciences, University of Opole, Katowicka 68, Opole 45-060, Poland
| | | |
Collapse
|
36
|
Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, Valery C. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 2021; 13:35-69. [PMID: 33495702 PMCID: PMC7817352 DOI: 10.1007/s12551-021-00784-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-based and peptide-carrier nanobiomaterials that we also review.
Collapse
Affiliation(s)
- Priscila Cardoso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- School of Science, RMIT University, Melbourne, Australia
| | - Hugh Glossop
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Celine Valery
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
37
|
Converting peptides into drugs targeting intracellular protein-protein interactions. Drug Discov Today 2021; 26:1521-1531. [PMID: 33524603 DOI: 10.1016/j.drudis.2021.01.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/15/2020] [Accepted: 01/22/2021] [Indexed: 12/31/2022]
Abstract
Peptides are gaining increasing attention as therapeutics to target intracellular protein-protein interactions that are involved in disease progression. In this review, we discuss how peptides that are able to bind and inhibit a therapeutic target can be translated into drug leads. We discuss the advantages of using peptides as therapeutics to target intracellular protein-protein interactions, chemical strategies to generate macrocyclic peptides that are resistant to proteolytic enzymes, high-throughput screening approaches to identify peptides that have high affinity for therapeutic targets, strategies that permit these peptides to cross cell membranes and so reach intracellular targets, and the importance of investigating their mode-of-action in guiding the development of novel therapeutics.
Collapse
|
38
|
Scudiero O, Lombardo B, Brancaccio M, Mennitti C, Cesaro A, Fimiani F, Gentile L, Moscarella E, Amodio F, Ranieri A, Gragnano F, Laneri S, Mazzaccara C, Di Micco P, Caiazza M, D’Alicandro G, Limongelli G, Calabrò P, Pero R, Frisso G. Exercise, Immune System, Nutrition, Respiratory and Cardiovascular Diseases during COVID-19: A Complex Combination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:904. [PMID: 33494244 PMCID: PMC7908487 DOI: 10.3390/ijerph18030904] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Coronaviruses (CoVs) represent a large family of RNA viruses that can infect different living species, posing a global threat to human health. CoVs can evade the immune response, replicate within the host, and cause a rapid immune compromise culminating in severe acute respiratory syndrome. In humans, the immune system functions are influenced by physical activity, nutrition, and the absence of respiratory or cardiovascular diseases. This review provides an in-depth study between the interactions of the immune system and coronaviruses in the host to defend against CoVs disease.
Collapse
Affiliation(s)
- Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (O.S.); (B.L.); (C.M.); (C.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy; (L.G.); (A.R.)
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (O.S.); (B.L.); (C.M.); (C.M.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy; (L.G.); (A.R.)
| | - Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (O.S.); (B.L.); (C.M.); (C.M.)
| | - Arturo Cesaro
- Department of Translational Medical Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.C.); (E.M.); (F.A.); (F.G.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Fabio Fimiani
- Unit of Inherited and Rare Cardiovascular Diseases, Azienda Ospedaliera di Rilievo Nazionale AORN Dei Colli, “V.Monaldi”, 80122 Naples, Italy;
| | - Luca Gentile
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy; (L.G.); (A.R.)
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.C.); (E.M.); (F.A.); (F.G.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Federica Amodio
- Department of Translational Medical Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.C.); (E.M.); (F.A.); (F.G.)
| | - Annaluisa Ranieri
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy; (L.G.); (A.R.)
| | - Felice Gragnano
- Department of Translational Medical Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.C.); (E.M.); (F.A.); (F.G.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II Via Montesano, 80131 Naples, Italy;
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (O.S.); (B.L.); (C.M.); (C.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Pierpaolo Di Micco
- Department of Internal Medicine and Emergency Room, Ospedale Buon Consiglio Fatebenefratelli, 80123 Naples, Italy;
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy;
| | - Giovanni D’Alicandro
- Department of Neuroscience and Rehabilitation, Center of Sports Medicine and Disability, AORN, Santobono-Pausillipon, 80122 Naples, Italy;
| | - Giuseppe Limongelli
- Department of Cardio-Thoracic and Respiratory Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy;
| | - Paolo Calabrò
- Department of Translational Medical Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.C.); (E.M.); (F.A.); (F.G.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (O.S.); (B.L.); (C.M.); (C.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (O.S.); (B.L.); (C.M.); (C.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| |
Collapse
|
39
|
Falanga A, Del Genio V, Galdiero S. Peptides and Dendrimers: How to Combat Viral and Bacterial Infections. Pharmaceutics 2021; 13:101. [PMID: 33466852 PMCID: PMC7830367 DOI: 10.3390/pharmaceutics13010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The alarming growth of antimicrobial resistance and recent viral pandemic events have enhanced the need for novel approaches through innovative agents that are mainly able to attach to the external layers of bacteria and viruses, causing permanent damage. Antimicrobial molecules are potent broad-spectrum agents with a high potential as novel therapeutics. In this context, antimicrobial peptides, cell penetrating peptides, and antiviral peptides play a major role, and have been suggested as promising solutions. Furthermore, dendrimers are to be considered as suitable macromolecules for the development of advanced nanosystems that are able to complement the typical properties of dendrimers with those of peptides. This review focuses on the description of nanoplatforms constructed with peptides and dendrimers, and their applications.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via dell’Università 100, 80100 Portici, Italy
| | - Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
40
|
Lin CY, Chakraborty S, Wong CW, Tai DF. Controversy of Peptide Cyclization from Tripeptide. Molecules 2021; 26:molecules26020389. [PMID: 33451079 PMCID: PMC7828492 DOI: 10.3390/molecules26020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/18/2022] Open
Abstract
The present investigation reports an attempt to synthesize naturally occurring α-cyclic tripeptide cyclo(Gly-l-Pro-l-Glu) 1, [cyclo(GPE)], previously isolated from the Ruegeria strain of bacteria with marine sponge Suberites domuncula. Three linear precursors, Boc-GPE(OBn)2, Boc-PE(OBn)G and Boc-E(OBn)GP, were synthesized using a solution phase peptide coupling protocol. Although cyclo(GPE) 1 was our original target, all precursors were dimerized and cyclized at 0 °C with high dilution to form corresponding α-cyclic hexapeptide, cyclo(GPE(OBn))27, which was then converted to cyclic hexapeptide cyclo(GPE)22. Cyclization at higher temperature induced racemization and gave cyclic tripeptide cyclo(GPDE(OBn)) 9. Structure characteristics of the newly synthesized cyclopeptides were determined using 1H-NMR, 13C-NMR and high-resolution mass spectrometry. The chemical shift values of carbonyls of 2 and 7 are larger than 170 ppm, indicating the formation of a cyclic hexapeptide.
Collapse
Affiliation(s)
- Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333423, Taiwan
- Department of Nephrology and Clinical Poison Center, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Correspondence: (C.-Y.L.); (D.-F.T.); Tel.: +886-3-211-8800 (ext.3865) (C.-Y.L.)
| | - Subrata Chakraborty
- Department of Chemistry, National Dong Hwa University, Hualien 974003, Taiwan; (S.C.); (C.-W.W.)
| | - Chia-Wei Wong
- Department of Chemistry, National Dong Hwa University, Hualien 974003, Taiwan; (S.C.); (C.-W.W.)
| | - Dar-Fu Tai
- Department of Life Science, National Dong Hwa University, Hualien 974003, Taiwan
- Correspondence: (C.-Y.L.); (D.-F.T.); Tel.: +886-3-211-8800 (ext.3865) (C.-Y.L.)
| |
Collapse
|
41
|
Limón D, Vilà S, Herrera-Olivas A, Vera R, Badia J, Baldomà L, Planas M, Feliu L, Pérez-García L. Enhanced cytotoxicity of highly water-soluble gold nanoparticle-cyclopeptide conjugates in cancer cells. Colloids Surf B Biointerfaces 2020; 197:111384. [PMID: 33113488 DOI: 10.1016/j.colsurfb.2020.111384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/04/2020] [Accepted: 09/27/2020] [Indexed: 11/26/2022]
Abstract
Conjugation of cytostatic drugs to nanomaterials seeks to improve their low bioavailability and selectivity to overcome the important associated side effects. In this work, we aimed to synthesize water-soluble gold nanoparticles as transporters for synthetic cyclic peptides with a potential anticancer activity but with a limited bioavailability. The highly water-soluble nanoparticles (2.5 nm diameter gold core) are coated with a mixture of polyethylene glycol linkers, one bearing a terminal hydroxyl group for increasing dispersibility in water, and the second bearing a carboxylic acid group for peptide conjugation through amide bond formation. Peptide-functionalized particles have a 9.7 ± 1.8 nm hydrodynamic diameter and are highly water-soluble and stable in solution for at least one year. The morphology of the gold cores as well as their organic coating was studied using Transmission Electron Microscopy, showing that the attachment of a limited number of peptides per nanoparticle leads to a uneven organic coating of two different thicknesses, one of 2.0 ± 0.6 nm formed by polyethylene glycol linkers, and a second of 3.6 ± 0.5 nm which includes the peptide. GNP significantly enhance the internalization of the cyclic peptide BPC734 in cells as compared to peptide in solution, with improved uptake in cancerous HT29 cells. Cytotoxicity studies show that peptide BPC734 in solution is toxic in the micromolar range, whereas peptide-functionalized particles are toxic at nanomolar peptide concentrations and with a significantly higher toxicity for cancerous cells. All these results, besides the stability and expected passive tumor targeting, make these particles a promising option for improving the bioavailability, efficacy, and selectivity in cancer therapy.
Collapse
Affiliation(s)
- David Limón
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia UB (IN2UB), Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Sílvia Vilà
- LIPPSO, Department of Chemistry, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Anahí Herrera-Olivas
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Rodrigo Vera
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Josefa Badia
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Laura Baldomà
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia UB (IN2UB), Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
42
|
Kumar S, Mandal D, El-Mowafi SA, Mozaffari S, Tiwari RK, Parang K. Click-Free Synthesis of a Multivalent Tricyclic Peptide as a Molecular Transporter. Pharmaceutics 2020; 12:pharmaceutics12090842. [PMID: 32899170 PMCID: PMC7558522 DOI: 10.3390/pharmaceutics12090842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023] Open
Abstract
The cellular delivery of cell-impermeable and water-insoluble molecules remains an ongoing challenge to overcome. Previously, we reported amphipathic cyclic peptides c[WR]4 and c[WR]5 consisting of alternate arginine and tryptophan residues as nuclear-targeting molecular transporters. These peptides contain an optimal balance of positive charge and hydrophobicity, which is required for interactions with the phospholipid bilayer to facilitate their application as a drug delivery system. To further optimize them, we synthesized and evaluated a multivalent tricyclic peptide as an efficient molecular transporter. The monomeric cyclic peptide building blocks were synthesized using Fmoc/tBu solid-phase chemistry and cyclization in the solution and conjugated with each other through an amide bond to afford the tricyclic peptide, which demonstrated modest antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli (E. coli) with a minimum inhibitory concentration (MIC) of 64–128 µg/mL. The tricyclic peptide was found to be nontoxic up to 30 µM in the breast cancer cell lines (MDA-MB-231). The presence of tricyclic peptide enhanced cellular uptakes of fluorescently-labeled phosphopeptide (F’-GpYEEI, 18-fold), anti-HIV drugs (lamivudine (F’-3TC), emtricitabine (F’-FTC), and stavudine (F’-d4T), 1.7–12-fold), and siRNA (3.3-fold) in the MDA-MB-231 cell lines.
Collapse
Affiliation(s)
- Sumit Kumar
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana 131039, India
| | - Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Shaima Ahmed El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- Peptide Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- Correspondence: (R.K.T.); (K.P.); Tel.: +1-714-516-5483 (R.K.T.); +1-714-516-5489 (K.P.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- Correspondence: (R.K.T.); (K.P.); Tel.: +1-714-516-5483 (R.K.T.); +1-714-516-5489 (K.P.)
| |
Collapse
|
43
|
Casciaro B, Mangiardi L, Cappiello F, Romeo I, Loffredo MR, Iazzetti A, Calcaterra A, Goggiamani A, Ghirga F, Mangoni ML, Botta B, Quaglio D. Naturally-Occurring Alkaloids of Plant Origin as Potential Antimicrobials against Antibiotic-Resistant Infections. Molecules 2020; 25:molecules25163619. [PMID: 32784887 PMCID: PMC7466045 DOI: 10.3390/molecules25163619] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is now considered a worldwide problem that puts public health at risk. The onset of bacterial strains resistant to conventional antibiotics and the scarcity of new drugs have prompted scientific research to re-evaluate natural products as molecules with high biological and chemical potential. A class of natural compounds of significant importance is represented by alkaloids derived from higher plants. In this review, we have collected data obtained from various research groups on the antimicrobial activities of these alkaloids against conventional antibiotic-resistant strains. In addition, the structure–function relationship was described and commented on, highlighting the high potential of alkaloids as antimicrobials.
Collapse
Affiliation(s)
- Bruno Casciaro
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (B.C.); (L.M.); (I.R.)
| | - Laura Mangiardi
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (B.C.); (L.M.); (I.R.)
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.)
| | - Isabella Romeo
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (B.C.); (L.M.); (I.R.)
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.)
| | - Antonia Iazzetti
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Antonella Goggiamani
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Francesca Ghirga
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (B.C.); (L.M.); (I.R.)
- Correspondence: (F.G.); (M.L.M.); (B.B.)
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.)
- Correspondence: (F.G.); (M.L.M.); (B.B.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
- Correspondence: (F.G.); (M.L.M.); (B.B.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| |
Collapse
|
44
|
Kotynia A, Marciniak A, Brasuń J. The formation of di-copper (II) complexes with a hetero-site cyclopeptide–spectroscopic and potentiometric studies. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Pero R, Brancaccio M, Mennitti C, Gentile L, Franco A, Laneri S, De Biasi MG, Pagliuca C, Colicchio R, Salvatore P, D’Alicandro G, Terracciano D, Cennamo M, La Civita E, Liotti A, Mazzaccara C, Frisso G, Lombardo B, Scudiero O. HNP-1 and HBD-1 as Biomarkers for the Immune Systems of Elite Basketball Athletes. Antibiotics (Basel) 2020; 9:antibiotics9060306. [PMID: 32517339 PMCID: PMC7345027 DOI: 10.3390/antibiotics9060306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Acute or strenuous exercise is sometimes related to upper respiratory tract infections in athletes. Practicing intense and regular exercise can lead to incorrect activation of the immune system, causing athletes to be excluded from training programs and competitions. Defensins are small antimicrobial peptides that are part of the innate immune system and dynamically involved in several biological activities. In this study, we highlight the role of human defensins in competitive basketball athletes. In particular, we consider the behavior of alpha- and beta-defensins together with white blood cells in a cohort of players. Moreover, we focus our attention on cortisol, a physiological indicator of stress, and testosterone, both of which are human hormones involved in muscle metabolism. The free-testosterone/cortisol ratio is considered to be an indicator of overtraining among athletes. This paper provides an up-to-date information of the role of human defensins as self-defense molecules during a continuous stressor such as long-term exercise, and it recognizes them as potential markers of infection.
Collapse
Affiliation(s)
- Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (C.P.); (R.C.); (P.S.); (C.M.); (G.F.); (B.L.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
- Correspondence: (R.P.); (O.S.); Tel.: +39-339-459-6163 (R.P.); +39-339-613-9908 (O.S.)
| | - Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (C.P.); (R.C.); (P.S.); (C.M.); (G.F.); (B.L.)
| | - Luca Gentile
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Adelaide Franco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.F.); (S.L.); (M.G.D.B.)
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.F.); (S.L.); (M.G.D.B.)
| | - Margherita G. De Biasi
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.F.); (S.L.); (M.G.D.B.)
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (C.P.); (R.C.); (P.S.); (C.M.); (G.F.); (B.L.)
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (C.P.); (R.C.); (P.S.); (C.M.); (G.F.); (B.L.)
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (C.P.); (R.C.); (P.S.); (C.M.); (G.F.); (B.L.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Giovanni D’Alicandro
- Department of Neuroscience and Rehabilitation, Center of Sports Medicine and Disability, AORN, Santobono-Pausillipon, 80122 Naples, Italy;
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (D.T.); (M.C.); (E.L.C.); (A.L.)
| | - Michele Cennamo
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (D.T.); (M.C.); (E.L.C.); (A.L.)
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (D.T.); (M.C.); (E.L.C.); (A.L.)
| | - Antonietta Liotti
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (D.T.); (M.C.); (E.L.C.); (A.L.)
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (C.P.); (R.C.); (P.S.); (C.M.); (G.F.); (B.L.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (C.P.); (R.C.); (P.S.); (C.M.); (G.F.); (B.L.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (C.P.); (R.C.); (P.S.); (C.M.); (G.F.); (B.L.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (C.P.); (R.C.); (P.S.); (C.M.); (G.F.); (B.L.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
- Correspondence: (R.P.); (O.S.); Tel.: +39-339-459-6163 (R.P.); +39-339-613-9908 (O.S.)
| |
Collapse
|
46
|
Ting DSJ, Beuerman RW, Dua HS, Lakshminarayanan R, Mohammed I. Strategies in Translating the Therapeutic Potentials of Host Defense Peptides. Front Immunol 2020; 11:983. [PMID: 32528474 PMCID: PMC7256188 DOI: 10.3389/fimmu.2020.00983] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 01/13/2023] Open
Abstract
The golden era of antibiotics, heralded by the discovery of penicillin, has long been challenged by the emergence of antimicrobial resistance (AMR). Host defense peptides (HDPs), previously known as antimicrobial peptides, are emerging as a group of promising antimicrobial candidates for combatting AMR due to their rapid and unique antimicrobial action. Decades of research have advanced our understanding of the relationship between the physicochemical properties of HDPs and their underlying antimicrobial and non-antimicrobial functions, including immunomodulatory, anti-biofilm, and wound healing properties. However, the mission of translating novel HDP-derived molecules from bench to bedside has yet to be fully accomplished, primarily attributed to their intricate structure-activity relationship, toxicity, instability in host and microbial environment, lack of correlation between in vitro and in vivo efficacies, and dwindling interest from large pharmaceutical companies. Based on our previous experience and the expanding knowledge gleaned from the literature, this review aims to summarize the novel strategies that have been employed to enhance the antimicrobial efficacy, proteolytic stability, and cell selectivity, which are all crucial factors for bench-to-bedside translation of HDP-based treatment. Strategies such as residues substitution with natural and/or unnatural amino acids, hybridization, L-to-D heterochiral isomerization, C- and N-terminal modification, cyclization, incorporation with nanoparticles, and "smart design" using artificial intelligence technology, will be discussed. We also provide an overview of HDP-based treatment that are currently in the development pipeline.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Larry A. Donoso Laboratory for Eye Research, Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom.,Anti-infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore, Singapore
| | - Roger W Beuerman
- Anti-infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore, Singapore
| | - Harminder S Dua
- Larry A. Donoso Laboratory for Eye Research, Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
| | - Rajamani Lakshminarayanan
- Anti-infectives Research Group, Singapore Eye Research Institute, The Academia, Singapore, Singapore
| | - Imran Mohammed
- Larry A. Donoso Laboratory for Eye Research, Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
47
|
Human Defensins: A Novel Approach in the Fight against Skin Colonizing Staphylococcus a ureus. Antibiotics (Basel) 2020; 9:antibiotics9040198. [PMID: 32326312 PMCID: PMC7235756 DOI: 10.3390/antibiotics9040198] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is a microorganism capable of causing numerous diseases of the human skin. The incidence of S. aureus skin infections reflects the conflict between the host skin′s immune defenses and the S. aureus’ virulence elements. Antimicrobial peptides (AMPs) are small protein molecules involved in numerous biological activities, playing a very important role in the innate immunity. They constitute the defense of the host′s skin, which prevents harmful microorganisms from entering the epithelial barrier, including S. aureus. However, S. aureus uses ambiguous mechanisms against host defenses by promoting colonization and skin infections. Our review aims to provide a reference collection on host-pathogen interactions in skin disorders, including S. aureus infections and its resistance to methicillin (MRSA). In addition to these, we discuss the involvement of defensins and other innate immunity mediators (i.e., toll receptors, interleukin-1, and interleukin-17), involved in the defense of the host against the skin disorders caused by S. aureus, and then focus on the evasion mechanisms developed by the pathogenic microorganism under analysis. This review provides the “state of the art” on molecular mechanisms underlying S. aureus skin infection and the pharmacological potential of AMPs as a new therapeutic strategy, in order to define alternative directions in the fight against cutaneous disease.
Collapse
|
48
|
Yalcin D, Türk Katircioğlu H, Özer T, Pourhassan Shamchi M, Acikgoz Erkaya İ. Evaluation of phytotherapeutic activities and phytochemical content of Phormidium autumnale Gomont from natural freshwater sources. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:244. [PMID: 32198545 DOI: 10.1007/s10661-020-8207-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
The information available on microalgae-sourced compounds, especially antibiotics and other bioactive compounds, and their potential commercial applications is still insufficient. In this study, antibacterial activity, metabolites, and molecular characterization of Phormidium autumnale, which was isolated from samples collected from different natural freshwater sources in Ankara, Turkey, were investigated. Sequencing results of 16s rDNA confirmed the molecular identification of P. autumnale by 99%. It was determined that the peak values of some phenolic compounds and cyclic peptides were consistent with the 1653-1389 cm-1 band regions in the FTIR spectra of the species. The antibacterial activities of P. autumnale cyanobacteria (CBA) extracts that were obtained by using different solvents were tested on Escherichia coli, Staphylococcus epidermidis, methicillin-resistant (MR) Staphylococcus aureus, Streptococcus agalactiae, and Enterococcus faecalis by using a disc diffusion method. Also, the minimum inhibition concentration (MIC) and antimicrobial indexes of all extracts were determined. It was found that P. autumnale methanol extracts showed antibacterial activity on all test bacteria, whereas acetone extracts showed effects only on E. coli. For the inhibition of MR S. aureus, the control methanol extract was found to give very similar results to those exhibited by the control antibiotics, and the antimicrobial index results were determined to be 58.7-67.5%. According to the results of the analysis of methanol extract, gentisic acid, vanillic acid, 4-hydroxybenzoic acid, p-coumaric acid, and catechin (especially phenolic compounds) were determined to be the active compounds. It can be concluded that P. autumnale is an alternative to current commercial applications as an antibacterial agent in phytotherapy.
Collapse
Affiliation(s)
- Dilek Yalcin
- Faculty of Education, Secondary School Science and Mathematics Education, Biology Education, Gazi University, Ankara, Turkey.
| | - Hikmet Türk Katircioğlu
- Faculty of Education, Secondary School Science and Mathematics Education, Biology Education, Gazi University, Ankara, Turkey
| | - Tülay Özer
- Kaman High School of Applied Science, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Minoo Pourhassan Shamchi
- Faculty of Education, Secondary School Science and Mathematics Education, Biology Education, Gazi University, Ankara, Turkey
| | - İlkay Acikgoz Erkaya
- Faculty of Architecture and Engineering, Department of Environmental Engineering, Kırşehir Ahi Evran University, Kırşehir, Turkey
| |
Collapse
|
49
|
Dong N, Wang C, Li X, Guo Y, Li X. Simplified Head-to-Tail Cyclic Polypeptides as Biomaterial-Associated Antimicrobials with Endotoxin Neutralizing and Anti-Inflammatory Capabilities. Int J Mol Sci 2019; 20:ijms20235904. [PMID: 31775224 PMCID: PMC6928678 DOI: 10.3390/ijms20235904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
The therapeutic application of antimicrobial peptides (AMPs), a potential type of peptide-based biomaterial, is impeded by their poor antimicrobial activity and potential cytotoxicity as a lack of understanding of their structure–activity relationships. In order to comprehensively enhance the antibacterial and clinical application potency of AMPs, a rational approach was applied to design amphiphilic peptides, including head-to-tail cyclic, linear and D-proline antimicrobial peptides using the template (IR)nP(IR)nP (n = 1, 2 and 3). Results showed that these amphiphilic peptides demonstrated antimicrobial activity in a size-dependent manner and that cyclic peptide OIR3, which contained three repeating units (IR)3, had greater antimicrobial potency and cell selectivity than liner peptide IR3, DIR3 with D-Pro and gramicidin S (GS). Surface plasmon resonance and endotoxin neutralization assays indicated that OIR3 had significant endotoxin neutralization capabilities, which suggested that the effects of OIR3 were mediated by binding to lipopolysaccharides (LPS). Using fluorescence spectrometry and electron microscopy, we found that OIR3 strongly promoted membrane disruption and thereby induced cell lysis. In addition, an LPS-induced inflammation assay showed that OIR3 inhibited the pro-inflammatory factor TNF-α in RAW264.7 cells. OIR3 was able to reduce oxazolone-induced skin inflammation in allergic dermatitis mouse model via the inhibition of TNF-α, IL-1β and IL-6 mRNA expression. Collectively, the engineered head-to-tail cyclic peptide OIR3 was considerable potential candidate for use as a clinical therapeutic for the treatment of bacterial infections and skin inflammation.
Collapse
Affiliation(s)
- Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (N.D.); (C.W.); (X.L.)
| | - Chensi Wang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (N.D.); (C.W.); (X.L.)
| | - Xinran Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (N.D.); (C.W.); (X.L.)
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +(86-010)-6273-3900
| | - Xiaoli Li
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
50
|
Barreto-Santamaría A, Patarroyo ME, Curtidor H. Designing and optimizing new antimicrobial peptides: all targets are not the same. Crit Rev Clin Lab Sci 2019; 56:351-373. [DOI: 10.1080/10408363.2019.1631249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adriana Barreto-Santamaría
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad Nacional de Colombia - Bogotá, Faculty of Medicine, Bogotá D.C., Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| |
Collapse
|