1
|
Nazeam JA, Boshra SA, Mohammed EZ, El Gizawy HA. Bio-Guided Assay of Ephedra foeminea Forssk Extracts and Anticancer Activities: In Vivo, In Vitro, and In Silico Evaluations. Molecules 2023; 29:199. [PMID: 38202783 PMCID: PMC10780881 DOI: 10.3390/molecules29010199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Ephedra is one of the oldest known medicinal plants and the largest genera of the Ephedraceae family. In vivo antitumor evaluation of Ephedra foeminea revealed that ethyl acetate (EtOAc) was the most bioactive fraction. Bio-guided fractionation of EtOAc fraction afforded nine compounds isolated for the first time from the plant species. Macrocyclic spermine alkaloids (1,9), proanthocyanidins (2,4,5), quinoline alkaloids (7,8), phenolic (3), and nucleoside (6) were identified and elucidated by spectroscopic analyses including 1D and 2D NMR, ESI-MS-MS spectrometry. The tested compounds exhibited moderate anticancer activity, except for the kynurenic acid derivative (6-mKYNA) which showed significant cytotoxicity and remarkable inhibition of CA-19.9 and CA-125 tumor biomarkers. In-silico study was conducted to determine the anti-proliferative mechanism of 6-mKYNA by using the CK2 enzyme active site. Moreover, the ADME computational study suggested that 6-mKYNA is an effective candidate with a promising pharmacokinetic profile and therapeutic potential against various types of cancer.
Collapse
Affiliation(s)
- Jilan A. Nazeam
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, 6th of October City 12585, Egypt;
| | - Sylvia A. Boshra
- Biochemistry Department, Faculty of Pharmacy, October 6 University, 6th of October City 12585, Egypt;
| | - Esraa Z. Mohammed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October 6 University, 6th of October City 12585, Egypt;
| | - Heba A. El Gizawy
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, 6th of October City 12585, Egypt;
| |
Collapse
|
2
|
Nguyen TH, Amen Y, Wang D, Othman A, Matsumoto M, Nagata M, Shimizu K. Oligomeric Proanthocyanidin Complex from Avocado Seed as A Promising α-glucosidase Inhibitor: Characteristics and Mechanisms. PLANTA MEDICA 2023; 89:316-323. [PMID: 35714650 DOI: 10.1055/a-1878-3916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although considered an abundant source of agricultural by-products, avocado (Persea americana Mill.) seed, with several biological activities and bioactive components, might become a promising resource for phytopharmaceutical development. In this study, through bioassay-guided isolation of the main α-glucosidase inhibitors in avocado seed, we discovered the major α-glucosidase inhibitor to be avocado seed oligomeric proanthocyanidin complex (ASOPC). Thiolysis and UPLC-DAD-HRESIMS showed the presence of A- and B-type procyanidins, and B-type propelargonidin with (epi)afzelechin as extension unit. Mean degree of polymerization (mDP) of ASOPC was calculated as 7.3 ± 1. Furthermore, ASOPC appeared to be a strong, reversible, competitive inhibitor of α-glucosidase, with IC50 value of 0.1 µg/mL, which was significantly lower than Acarbose (IC50 = 75.6 µg/mL), indicated that ASOPC is a potential natural α-glucosidase inhibitor. These findings would contribute to the direction of utilizing avocado seed bioactive components with the possibility to be used as natural anti-diabetic agents.
Collapse
Affiliation(s)
- Thien Huu Nguyen
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
- Faculty of Chemical Engineering and Food Technology, Nong Lam University - Ho Chi Minh city, Vietnam
| | - Yhiya Amen
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dongmei Wang
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
| | - Ahmed Othman
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Masako Matsumoto
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
| | - Maki Nagata
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
| | - Kuniyoshi Shimizu
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University
| |
Collapse
|
3
|
Maffei ME, Salata C, Gribaudo G. Tackling the Future Pandemics: Broad-Spectrum Antiviral Agents (BSAAs) Based on A-Type Proanthocyanidins. Molecules 2022; 27:8353. [PMID: 36500445 PMCID: PMC9736452 DOI: 10.3390/molecules27238353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (-)-epicatechin, connected through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits of many plants, and are thought to exert protective natural roles against microbial pathogens, insects, and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects, through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been observed in fact to inhibit replication of many different human viruses, and both enveloped and non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins essential for viral attachment and entry. As viral infections and new virus outbreaks are a major public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that can be rapidly deployable even against future emerging viruses is an urgent priority. This review summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be deployed as BSAAs against present and future viral infections.
Collapse
Affiliation(s)
- Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| |
Collapse
|
4
|
Sequential Extraction of Proanthocyanidin Fractions from Ficus Species and Their Effects on Rumen Enzyme Activities In Vitro. Molecules 2022; 27:molecules27165153. [PMID: 36014391 PMCID: PMC9415173 DOI: 10.3390/molecules27165153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Three proanthocyanidin fractions per species were sequentially extracted by 50% (v/v) methanol−water, 70% (v/v) acetone−water, and distilled water from leaves of Ficus racemosa (fractions FR) and F. religiosa (fractions FRL) to yield fractions FR-50, FR-70, FR-DW, FRL-50, FRL-70, and FRL-DW. Fractions were examined for their molecular structure, effect on ruminal enzyme activities, and principal leaf protein (Rubisco) solubilization in vitro. All fractions except FRL-70 contained flavonoids including (+) catechin, (−) epicatechin, (+) gallocatechin, (−) epigallocatechin, and their -4-phloroglucinol adducts. The fractions FRL-50 and FRL-DW significantly (p < 0.05) inhibited the activity of ruminal glutamic oxaloacetic transaminase and glutamic pyruvic transaminase. All fractions inhibited glutamate dehydrogenase activity (p < 0.05) with increasing concentration, while protease activity decreased 15−18% with increasing concentrations. Fractions FRL-50 and FRL-DW completely inhibited the activity of cellulase enzymes. Solubilization of Rubisco was higher in F. religiosa (22.36 ± 1.24%) and F. racemosa (17.26 ± 0.61%) than that of wheat straw (WS) (8.95 ± 0.95%) and berseem hay (BH) (3.04 ± 0.08%). A significant (p < 0.05) increase in protein solubilization was observed when WS and BH were supplemented with FR and FRL leaves at different proportions. The efficiency of microbial protein was significantly (p < 0.05) greater in diets consisting of WS and BH with supplementation of F. racemosa leaves in comparison to those supplemented with F. religiosa leaves. The overall conclusion is that the fractions extracted from F. religiosa showed greater inhibitory effects on rumen enzymes and recorded higher protein solubilization in comparison to the F. racemosa. Thus, PAs from F. religiosa are potential candidates to manipulate rumen enzymes activities for efficient utilization of protein and fiber in ruminants.
Collapse
|
5
|
Yoshida S, Zhang H, Takahashi R, Yoshida S, Abiko Y, Toriba A. Identification and removal of aflatoxin coprecipitates derived from plant samples on immunoaffinity chromatographic purification. J Chromatogr A 2022; 1678:463382. [DOI: 10.1016/j.chroma.2022.463382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
6
|
Giribaldi J, Besson M, Suc L, Fulcrand H, Mouls L. The use of extracted-ion chromatograms to quantify the composition of condensed tannin subunits. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8619. [PMID: 31658393 DOI: 10.1002/rcm.8619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Julien Giribaldi
- INRA, UMR1083, F-34060, Montpellier, France
- Montpellier SupAgro, UMR1083, F-34060, Montpellier, France
- Université de Montpellier, UMR1083, F-34060, Montpellier, France
| | - Martin Besson
- INRA, UMR1083, F-34060, Montpellier, France
- Montpellier SupAgro, UMR1083, F-34060, Montpellier, France
- Université de Montpellier, UMR1083, F-34060, Montpellier, France
| | - Lucas Suc
- INRA, UMR1083, F-34060, Montpellier, France
- Montpellier SupAgro, UMR1083, F-34060, Montpellier, France
- Université de Montpellier, UMR1083, F-34060, Montpellier, France
| | - Hélène Fulcrand
- INRA, UMR1083, F-34060, Montpellier, France
- Montpellier SupAgro, UMR1083, F-34060, Montpellier, France
- Université de Montpellier, UMR1083, F-34060, Montpellier, France
| | - Laetitia Mouls
- INRA, UMR1083, F-34060, Montpellier, France
- Montpellier SupAgro, UMR1083, F-34060, Montpellier, France
- Université de Montpellier, UMR1083, F-34060, Montpellier, France
| |
Collapse
|
7
|
Billerach G, Rouméas L, Dubreucq E, Fulcrand H. Furanolysis with Menthofuran: A New Depolymerization Method for Analyzing Condensed Tannins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2917-2926. [PMID: 31013083 DOI: 10.1021/acs.jafc.9b00497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An improved analytical depolymerization method for characterizing condensed tannins was developed with menthofuran (3,6-dimethyl-4,5,6,7-tetrahydro-1-benzofuran) as the nucleophilic trapping reagent. Herein, menthofuran was compared with routinely used nucleophiles, phloroglucinol and 2-mercaptoethanol. At 30 °C and in the presence of 0.1 M HCl, menthofuran displayed the outstanding ability to enable the fast and full depolymerization of procyanidin B2 using only a 1:1 molar ratio of both reactants. Under the same conditions, phloroglucinol and 2-mercaptoethanol led to a reaction equilibrium with significantly lower conversion yields. Application to commercial tannin extracts showed that a menthofuran-to-extract weight ratio of 1 gave the same yields of procyanidin constitutive units as 10-fold higher molecular equivalent phloroglucinol and 100-fold 2-mercaptoethanol. Finally, guidelines for implementing the menthofuran depolymerization method are proposed to assess the tannin content and composition of extracts as well as of plant materials without prior extraction.
Collapse
Affiliation(s)
- Guillaume Billerach
- INRA, Montpellier SupAgro, UMR 1083 SPO Sciences pour l'Œnologie, 2 Place Viala, 34060 Montpellier, France
- INRA, Montpellier SupAgro, UMR 1208 IATE Ingénierie des Agropolymères et Technologies Emergentes, 2 Place Viala, 34060 Montpellier, France
| | - Laurent Rouméas
- INRA, Montpellier SupAgro, UMR 1208 IATE Ingénierie des Agropolymères et Technologies Emergentes, 2 Place Viala, 34060 Montpellier, France
| | - Eric Dubreucq
- INRA, Montpellier SupAgro, UMR 1208 IATE Ingénierie des Agropolymères et Technologies Emergentes, 2 Place Viala, 34060 Montpellier, France
| | - Hélène Fulcrand
- INRA, Montpellier SupAgro, UMR 1083 SPO Sciences pour l'Œnologie, 2 Place Viala, 34060 Montpellier, France
- INRA, Montpellier SupAgro, UMR 1208 IATE Ingénierie des Agropolymères et Technologies Emergentes, 2 Place Viala, 34060 Montpellier, France
| |
Collapse
|
8
|
Yoshimura M, Amakura Y, Hyuga S, Hyuga M, Nakamori S, Maruyama T, Oshima N, Uchiyama N, Yang J, Oka H, Ito H, Kobayashi Y, Odaguchi H, Hakamatsuka T, Hanawa T, Goda Y. Quality Evaluation and Characterization of Fractions with Biological Activity from Ephedra Herb Extract and Ephedrine Alkaloids-Free Ephedra Herb Extract. Chem Pharm Bull (Tokyo) 2020; 68:140-149. [PMID: 32009081 DOI: 10.1248/cpb.c19-00761] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we reported that the c-Met inhibitory effect of Ephedra Herb extract (EHE) is derived from ingredients besides ephedrine alkaloids. Moreover, analgesic and anti-influenza activities of EHE and ephedrine alkaloids-free Ephedra Herb extract (EFE) have been reported recently. In this study, we examined the fractions containing c-Met kinase inhibitory activity from EHE and the fractions with analgesic and anti-influenza activities from EFE, and elucidated the structural characteristics of the active fractions. Significant c-Met kinase activity was observed in 30, 40, and 50% methanol (MeOH) eluate fractions obtained from water extract of EHE using Diaion HP-20 column chromatography. Similarly, 20 and 40% MeOH, and MeOH eluate fractions obtained from water extract of EFE were found to display analgesic and anti-influenza activities. Reversed phase-HPLC analysis of the active fractions commonly showed broad peaks characteristic of high-molecular mass condensed tannin. The active fractions were analyzed using 13C-NMR and decomposition reactions; the deduced structures of active components were high-molecular mass condensed tannins, which were mainly procyanidin B-type and partly procyanidin A-type, including pyrogallol- and catechol-type flavan 3-ols as extension and terminal units. HPLC and gel permeation chromatography (GPC) analyses estimated that the ratio of pyrogallol- and catechol-type was approximately 9 : 2, and the weight-average molecular weight based on the polystyrene standard was >45000. Furthermore, GPC-based analysis was proposed as the quality evaluation method for high-molecular mass condensed tannin in EHE and EFE.
Collapse
Affiliation(s)
| | | | - Sumiko Hyuga
- Oriental Medicine Research Center, Kitasato University
| | | | - Shunsuke Nakamori
- Department of Pharmacognosy, School of Pharmacy, Kitasato University
| | | | - Naohiro Oshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | | | - Hideki Oka
- Zeria Pharmaceutical Co., Ltd., Central Research Laboratories
| | - Hideyuki Ito
- Department of Nutritional Science, Faculty of Health and Welfare Sciences, Okayama Prefectural University
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The genus Ephedra of the Ephedraceae family contains more than 60 species of nonflowering seed plants distributed throughout Asia, America, Europe, and North Africa. These Ephedra species have medicinal, ecological, and economic value. This review aims to summarize the chemical constituents and pharmacological activities of the Ephedra species to unveil opportunities for future research. Comprehensive information on the Ephedra species was collected by electronic search (e.g., GoogleScholar, Pubmed, SciFinder, and Web of Science) and phytochemical books. The chemical compounds isolated from the Ephedra species include alkaloids, flavonoids, tannins, polysaccharides, and others. The in vitro and in vivo pharmacological studies on the crude extracts, fractions and few isolated compounds of Ephedra species showed anti-inflammatory, anticancer, antibacterial, antioxidant, hepatoprotective, anti-obesity, antiviral, and diuretic activities. After chemical and pharmacological profiling, current research is focused on the antibacterial and antifungal effects of the phenolic acid compounds, the immunosuppressive activity of the polysaccharides, and the antitumor activity of flavonoids.
Collapse
|
10
|
Bakhytkyzy I, Nuñez O, Saurina J. Size Exclusion Coupled to Reversed Phase Liquid Chromatography for the Characterization of Cranberry Products. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1390-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Oshima N, Yamashita T, Uchiyama N, Hyuga S, Hyuga M, Yang J, Hakamatsuka T, Hanawa T, Goda Y. Non-alkaloidal composition of Ephedra Herb is influenced by differences in habitats. J Nat Med 2018; 73:303-311. [PMID: 30406370 DOI: 10.1007/s11418-018-1265-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/26/2018] [Indexed: 11/24/2022]
Abstract
Ephedra Herb is a crude drug defined as the terrestrial stem of Ephedra sinica, E. intermedia, or E. equisetina. It is often used to treat headaches, bronchial asthma, nasal inflammation, and the common cold. In this study, we isolated characteristic non-alkaloidal constituents from the extracts and identified them in relation to the habitat of Ephedra Herb. Extracts were prepared from Ephedra Herb collected from Inner Mongolia and Gansu. High-performance liquid chromatography was performed to quantitatively analyse the amount of ephedrine alkaloids in each extract. We compared the chemical compositions of the extracts by thin layer chromatography (TLC) to find spot characteristics depending on the habitat. 1H-NMR, 13C-NMR, and 2D-NMR spectra of the samples were also examined. The ephedrine content of all extracts satisfied the quality standard stated in the Japanese Pharmacopoeia. Nonetheless, we found each notable constituent characteristic to the Ephedra Herbs from both habitats. In order to identify them, Ephedra Herb extracts were separated by column chromatography, resulting in the isolation of (±)-α-terpineol-β-D-O-glucopyranoside (1) and (E)-7-hydroxy-3,7-dimethyloct-2-en-1-yl-β-D-O-glucopyranoside (2) as the characteristic constituents in Ephedra Herb from Inner Mongolia. Epheganoside (3), a new eudesmane-type sesquiterpene glycoside, and scopoletin (4) were found to be the characteristic constituents in Ephedra Herb from Gansu. The results obtained from this study can be used to distinguish between the habitats of Ephedra Herb.
Collapse
Affiliation(s)
- Naohiro Oshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | | | - Nahoko Uchiyama
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Sumiko Hyuga
- Oriental Medicine Research Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Masashi Hyuga
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Jinwei Yang
- TOKIWA Phytochemical Co., Ltd, 158 Kinoko, Sakura, Chiba, 285-0801, Japan
| | - Takashi Hakamatsuka
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Toshihiko Hanawa
- Oriental Medicine Research Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Yukihiro Goda
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
12
|
Tanaka T, Matsuo Y, Saito Y. Solubility of Tannins and Preparation of Oil-Soluble Derivatives. J Oleo Sci 2018; 67:1179-1187. [DOI: 10.5650/jos.ess18164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Takashi Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Yosuke Matsuo
- Graduate School of Biomedical Sciences, Nagasaki University
| | | |
Collapse
|