1
|
Pais JP, Antoniuk O, Pires D, Delgado T, Fortuna A, Costa PJ, Anes E, Constantino L. Synthesis, Activity, Toxicity, and In Silico Studies of New Antimycobacterial N-Alkyl Nitrobenzamides. Pharmaceuticals (Basel) 2024; 17:608. [PMID: 38794178 PMCID: PMC11124399 DOI: 10.3390/ph17050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB) is a disease that plagues the frailest members of society. We have developed a family of N-alkyl nitrobenzamides that exhibit promising antitubercular activities and can be considered a structural simplification of known inhibitors of decaprenylphosphoryl-β-D-ribofuranose 2'-oxidase (DprE1), an essential Mycobacterium tuberculosis (Mtb) enzyme and an emergent antitubercular target. Hereby, we report the development of these compounds via a simple synthetic methodology as well as their stability, cytotoxicity, and antitubercular activity. Studying their in vitro activity revealed that the 3,5-dinitro and the 3-nitro-5-trifluoromethyl derivatives were the most active, and within these, the derivatives with intermediate lipophilicities presented the best activities (MIC of 16 ng/mL). Additionally, in an ex vivo macrophage model of infection, the derivatives with chain lengths of six and twelve carbon atoms presented the best results, exhibiting activity profiles comparable to isoniazid. Although the proof is not definite, the assessment of susceptibility over multiple mycobacterial species, together with the structure similarities with known inhibitors of this enzyme, support DprE1 as a likely target of action for the compounds. This idea is also reinforced by the docking studies, where the fit of our more active compounds to the DprE1 binding pocket is very similar to what was observed for known inhibitors like DNB1.
Collapse
Affiliation(s)
- João P. Pais
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal (T.D.); (E.A.)
| | - Olha Antoniuk
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal (T.D.); (E.A.)
| | - David Pires
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal (T.D.); (E.A.)
- Faculdade de Fármácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Centro de Investigação Interdisciplinar em Saúde (CIIS), Faculdade de Medicina, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Tiago Delgado
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal (T.D.); (E.A.)
| | - Andreia Fortuna
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal (T.D.); (E.A.)
- Instituto de Biosistemas e Ciências Integrativas (BioISI) and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Paulo J. Costa
- Instituto de Biosistemas e Ciências Integrativas (BioISI) and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Elsa Anes
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal (T.D.); (E.A.)
- Faculdade de Fármácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Luis Constantino
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal (T.D.); (E.A.)
- Faculdade de Fármácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
2
|
Kolb B, Silva dos Santos D, Krause S, Zens A, Laschat S. Sequential hydrozirconation/Pd-catalyzed cross coupling of acyl chlorides towards conjugated (2 E,4 E)-dienones. Beilstein J Org Chem 2023; 19:176-185. [PMID: 36814450 PMCID: PMC9940601 DOI: 10.3762/bjoc.19.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Dienones are challenging building blocks in natural product synthesis due to their high reactivity and complex synthesis. Based on previous work and own initial results, a new stereospecific sequential hydrozirconation/Pd-catalyzed acylation of enynes with acyl chlorides towards conjugated (2E,4E)-dienones is reported. We investigated a number of substrates with different alkyl and aryl substituents in the one-pot reaction and showed that regardless of the substitution pattern, the reactions lead to the stereoselective formation (≥95% (2E,4E)) of the respective dienones under mild conditions. It was found that enynes with alkyl chains gave higher yields than the corresponding aryl-substituted analogues, whereas the variation of the acyl chlorides did not affect the reaction significantly. The synthetic application is demonstrated by formation of non-natural and natural dienone-containing terpenes such as β-ionone which was available in 4 steps and 6% overall yield.
Collapse
Affiliation(s)
- Benedikt Kolb
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Daniela Silva dos Santos
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Sanja Krause
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
3
|
Silva BR, Queiroz PA, Amaral PHRD, Freitas BCD, Stocco AF, Sampiron EG, Vandresen F, Tognim MCB, Caleffi-Ferracioli KR, Scodro RBDL, Cardoso RF, La Porta FDA, Siqueira VLD. Polymyxin B Activity Rescue by (−)-Camphene-Based Thiosemicarbazide Against Carbapenem-Resistant Enterobacterales. Microb Drug Resist 2022; 28:962-971. [PMID: 36256860 DOI: 10.1089/mdr.2021.0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Due to the significant shortage of therapeutic options for carbapenem-resistant Enterobacterales (CRE) infections, new drugs or therapeutic combinations are urgently required. We show in this study that (-)-camphene-based thiosemicarbazide (TSC) may act synergistically with polymyxin B (PMB) against CRE, rescuing the activity of this antimicrobial. With the specific aim of a better molecular understanding of this effect caused by the presence of TSC, theoretical calculations were also performed in this study. Based on these findings, it is concluded that the presence of TSC moieties contributes to significant changes in the hydrogen atom charge of PMB structure, which trend more positives for the PMB/TSC system studied. This could lead to the formation of stronger hydrogen bonds in the Enterobacterales active site and, thus contribute to a molecular understanding of the PMB rescue of activity promoted by the presence of TSC moiety. As such, the clinical potential of these drug combinations requires further evaluation.
Collapse
Affiliation(s)
- Bruna Renata Silva
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringa, Maringa, Parana, Brazil
| | - Paula Assis Queiroz
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringa, Maringa, Parana, Brazil
| | - Pedro Henrique Rodrigues do Amaral
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | - Beatriz Cardoso de Freitas
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringa, Maringa, Parana, Brazil
| | - Alison Fernando Stocco
- Department of Chemistry, Federal Technological University of Parana, Londrina, Parana, Brazil
| | - Eloisa Gibin Sampiron
- Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Parana, Brazil
| | - Fábio Vandresen
- Department of Chemistry, Federal Technological University of Parana, Londrina, Parana, Brazil
| | | | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringa, Maringa, Parana, Brazil
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | - Regiane Bertin de Lima Scodro
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
- Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Parana, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringa, Maringa, Parana, Brazil
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | | | - Vera Lucia Dias Siqueira
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringa, Maringa, Parana, Brazil
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| |
Collapse
|
4
|
Zhang J, Huang X. The crystal structure of (2 E,4 E)-1-ferrocenyl-5-phenylpenta-2,4-dien-1-one, C 21H 18FeO. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
C21H18FeO, monoclinic, P21/c (no. 14), a = 5.8577(3) Å, b = 11.2160(5) Å, c = 24.1507(11) Å, β = 92.803(2)°, V = 1584.80(13) Å3, Z = 4, R
gt
(F) = 0.0383, wRref
(F
2) = 0.0755, T = 170 K.
Collapse
Affiliation(s)
- Jingxiao Zhang
- College of Food and Medicine, Luoyang Normal University , Luoyang , China
| | - Xuezhen Huang
- College of Food and Medicine, Luoyang Normal University , Luoyang , China
| |
Collapse
|
5
|
Valverde TL, Sampiron EG, Montaholi DC, Baldin VP, Insaurralde DD, Alves-Olher VG, Siqueira VL, Caleffi-Ferracioli KR, Cardoso RF, Vandresen F, Scodro RB. 3,5-dinitrobenzoylhydrazone derivatives as a scaffold for antituberculosis drug development. Future Microbiol 2022; 17:267-280. [PMID: 35164529 DOI: 10.2217/fmb-2021-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The development of drugs is essential to eradicate tuberculosis. Materials & methods: Sixteen 3,5-dinitrobenzoylhydrazone (2-17) derivatives and their synthetic precursors 3,5-dinitrobenzoylhydrazide (1) and methyl ester (18) were screened for their anti-Mycobacterium tuberculosis (Mtb) potential. Results: Twelve compounds had minimum inhibitory concentration (MIC) ranging from 0.24 to 7.8 μg/ml against the Mtb strain. The activity was maintained in multidrug-resistant Mtb clinical isolates. Only compound (17) showed activity against nontuberculous mycobacteria. The compounds exhibited a limited spectrum of activity, with an MIC >500 μg/ml against Gram-positive and -negative bacteria. Compounds (2), (5) and (11) showed a synergistic effect with rifampicin. An excellent selectivity index value was found, with values reaching 583.33. Conclusion: 3,5-dinitrobenzoylhydrazone derivatives could be considered as a scaffold for the development of antituberculosis drugs.
Collapse
Affiliation(s)
- Tamires L Valverde
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Eloísa G Sampiron
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Débora C Montaholi
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Vanessa P Baldin
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Diego Dr Insaurralde
- Department of Chemistry, Federal Technological University of Paraná, Londrina, Paraná, 86036-370, Brazil
| | - Vanessa G Alves-Olher
- Department of Chemistry, Federal Institute of Paraná, Paranavaí, Paraná, 87703-536, Brazil
| | - Vera Ld Siqueira
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Katiany R Caleffi-Ferracioli
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosilene F Cardoso
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil.,Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Fábio Vandresen
- Department of Chemistry, Federal Technological University of Paraná, Londrina, Paraná, 86036-370, Brazil
| | - Regiane Bl Scodro
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
6
|
Anselmo DB, Polaquini CR, Marques BC, Ayusso GM, Assis LR, Torrezan GS, Rahal P, Fachin AL, Calmon MF, Marins MA, Regasini LO. Curcumin-cinnamaldehyde hybrids as antiproliferative agents against women’s cancer cells. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Dos Santos VR, Caiaffa KS, Oliveira WCD, Pereira JA, Abuna GF, Polaquini CR, Regasini LO, Guiotti AM, Duque C. Cytotoxicity and effects of curcumin and cinnamaldehyde hybrids on biofilms of oral pathogens. BIOFOULING 2021; 37:591-605. [PMID: 34210215 DOI: 10.1080/08927014.2021.1942859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The objective of the study was to evaluate the cytotoxicity and effect of curcumin-cinnamaldehyde hybrids (CCHs) on the biofilm of oral pathogens. Of the 18 hybrids tested, nine had an inhibitory effect on at least one of the bacterial species tested, with minimal inhibitory and bactericidal concentrations ranging from 9 to 625 μg ml-1. CCH 7 promoted a potent inhibitory effect against all the bacterial species tested and better compatibility than chlorhexidine (CHX). CCH 7 also presented a similar or improved effect over that of CHX, causing a reduction in bacterial metabolism and viability in single and dual-species biofilms. CCH 7 reduced by 86% and 34% the viability of multispecies biofilms formed by collection and clinical strains. It can be concluded that CCH 7 was cytocompatible at the minimal inhibitory concentration, presented anti-biofilm action against oral pathogens, and could act as an antimicrobial agent for application in endodontics.
Collapse
Affiliation(s)
- Vanessa Rodrigues Dos Santos
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Karina Sampaio Caiaffa
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Warlley Campos de Oliveira
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Jesse Augusto Pereira
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Gabriel Flores Abuna
- Department of Restorative Dentistry, Faculty of Dentistry of Piracicaba, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Carlos Roberto Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Luís Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Aimée Maria Guiotti
- Department of Dental Materials and Prosthodontics, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Cristiane Duque
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
8
|
Ramalakshmi N, Chitra SR, Manimegalai P, Arunkumar S. Design, Synthesis, Docking and Biological Evaluation of Novel 4-hydroxy Coumarin Derivatives. Curr Comput Aided Drug Des 2021; 17:201-213. [PMID: 32003699 DOI: 10.2174/1573409916666200131142619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hospital-acquired (HA) infections are caused due to E. coli, which is resistant to multiple drugs particularly to fluoroquinolone class of drugs. Urinary tract infections (UTI) affects people in the community and hospitals. 150 million people per annum are suffering from UTI worldwide. METHODS In this present study, we designed 36 novel coumarin derivatives, also we predicted pharmacokinetic and toxicity parameters. Docking studies were also carried out and all the compounds were evaluated for antibacterial activity against resistant quinolone E. coli strain ATCC 25922. It was interesting to note that the introduction of electron-withdrawing group on the aromatic ring resulted in compounds with an increased antibacterial activity, which is observed in compound 6 (with 4-nitro substitution), compound 23 (chloro) and compound 30 (chloro, nitro). RESULTS From the MIC results, it was observed that compounds 6, 23 and 30 showed higher activity with 0.5μg/ml, 0. 12 μg/ml, 0.5 μg/ml respectively. Docking studies were performed with the active site of DNA gyrase (PDB ID: 4CKK). The maximum binding energy was found to be -10.7 Kcal/mol. CONCLUSION From the study, it was found that 3 compounds were potentially active against quinolone- resistant E. coli strains. This study can further be extended for in vivo evaluation.
Collapse
Affiliation(s)
- N Ramalakshmi
- Department of Pharmaceutical Chemistry, C.L. BaidMetha College of Pharmacy, Thoraipakkam, Chennai-97, Tamil Nadu, India
| | - S R Chitra
- Department of Pharmaceutical Chemistry, C.L. BaidMetha College of Pharmacy, Thoraipakkam, Chennai-97, Tamil Nadu, India
| | - P Manimegalai
- Department of Pharmaceutical Chemistry, C.L. BaidMetha College of Pharmacy, Thoraipakkam, Chennai-97, Tamil Nadu, India
| | - S Arunkumar
- College of Pharmaceutical Sciences, Gulf Medical University, Ajmaan, United Arab Emirates
| |
Collapse
|
9
|
Polaquini CR, Marques BC, Ayusso GM, Morão LG, Sardi JCO, Campos DL, Silva IC, Cavalca LB, Scheffers DJ, Rosalen PL, Pavan FR, Ferreira H, Regasini LO. Antibacterial activity of a new monocarbonyl analog of curcumin MAC 4 is associated with divisome disruption. Bioorg Chem 2021; 109:104668. [PMID: 33601139 DOI: 10.1016/j.bioorg.2021.104668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Curcumin (CUR) is a symmetrical dicarbonyl compound with antibacterial activity. On the other hand, pharmacokinetic and chemical stability limitations hinder its therapeutic application. Monocarbonyl analogs of curcumin (MACs) have been shown to overcome these barriers. We synthesized and investigated the antibacterial activity of a series of unsymmetrical MACs derived from acetone against Mycobacterium tuberculosis and Gram-negative and Gram-positive species. Phenolic MACs 4, 6 and 8 showed a broad spectrum and potent activity, mainly against M. tuberculosis, Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA), with MIC (minimum inhibitory concentration) values ranging from 0.9 to 15.6 µg/mL. The investigation regarding toxicity on human lung cells (MRC-5 and A549 lines) revealed MAC 4 was more selective than MACs 6 and 8, with SI (selectivity index) values ranging from 5.4 to 15.6. In addition, MAC 4 did not demonstrate genotoxic effects on A549 cells and it was more stable than CUR in phosphate buffer (pH 7.4) for 24 h at 37 °C. Fluorescence and phase contrast microscopies indicated that MAC 4 has the ability to disrupt the divisome of Bacillus subtilis without damaging its cytoplasmic membrane. However, biochemical investigations demonstrated that MAC 4 did not affect the GTPase activity of B. subtilis FtsZ, which is the main constituent of the bacterial divisome. These results corroborated that MAC 4 is a promising antitubercular and antibacterial agent.
Collapse
Affiliation(s)
- Carlos R Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto, 15054-000, SP, Brazil
| | - Beatriz C Marques
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto, 15054-000, SP, Brazil
| | - Gabriela M Ayusso
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto, 15054-000, SP, Brazil
| | - Luana G Morão
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 130506-900, SP, Brazil
| | - Janaína C O Sardi
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (Unicamp), Campinas 13414-903, SP, Brazil; School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (Ufms), Campo Grande 79070-900, MS, Brazil
| | - Débora L Campos
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil
| | - Isabel C Silva
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil
| | - Lúcia B Cavalca
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 130506-900, SP, Brazil; Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (Unicamp), Campinas 13414-903, SP, Brazil; School of Dentistry, Federal University of Alfenas (Unifal), Alfenas 37130-000, MG, Brazil
| | - Fernando R Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil
| | - Henrique Ferreira
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 130506-900, SP, Brazil
| | - Luis O Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto, 15054-000, SP, Brazil.
| |
Collapse
|
10
|
Kulkarni P, Gawade S. Potassium Carbonate Assisted Synthesis Of α, β, γ, δ-Unsaturated Ketones. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2020. [DOI: 10.17721/fujcv8i2p17-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Cinnamylideneacetophenones derivative is shows important medicinal properties and intermediate in organic synthesis. Several substituted α, β, γ, δ-Unsaturated Ketones were prepared in high yield and purity by direct reaction of substituted cinnamaldehyde and ketones in the presence of potassium carbonate as a base in ethanol at 50ºC. The merit of the method is short reaction times, high yield, easy work-up and purification process, inexpensive and easily available catalyst.
Collapse
Affiliation(s)
- Pramod Kulkarni
- Post graduate center in Organic Chemistry and Department of Chemistry Hutatma Rajguru Mahavidyalaya
| | - Sammer Gawade
- Post graduate center in Organic Chemistry and Department of Chemistry Hutatma Rajguru Mahavidyalaya
| |
Collapse
|
11
|
He Z, Huang Z, Jiang W, Zhou W. Antimicrobial Activity of Cinnamaldehyde on Streptococcus mutans Biofilms. Front Microbiol 2019; 10:2241. [PMID: 31608045 PMCID: PMC6773874 DOI: 10.3389/fmicb.2019.02241] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Streptococcus mutans is considered the most relevant bacteria in the transition of non-pathogenic commensal oral microbiota to biofilms which contribute to the dental caries process. The present study aimed to evaluate the antimicrobial activity of a natural plant product, cinnamaldehyde against S. mutans biofilms. Minimum inhibitory concentrations (MIC), minimal bactericidal concentration (MBC), and growth curves were determined to assess its antimicrobial effect against planktonic S. mutans. The biofilm biomass and metabolism with different concentrations of cinnamaldehyde and different incubation time points were assessed using the crystal violet and MTT assays. The biofilms were visualized using confocal laser scanning microscopy (CLSM). Bacterial cell surface hydrophobicity, aggregation, acid production, and acid tolerance were evaluated after cinnamaldehyde treatment. The gene expression of virulence-related factors (gtfB, gtfC, gtfD, gbpB, comDE, vicR, ciaH, ldh and relA) was investigated by real-time PCR. The MIC and MBC of cinnamaldehyde against planktonic S. mutans were 1000 and 2000 μg/mL, respectively. The results showed that cinnamaldehyde can decrease biofilm biomass and metabolism at sub-MIC concentrations. CLSM images revealed that the biofilm-covered surface areas decreased with increasing concentrations of cinnamaldehyde. Cinnamaldehyde increased cell surface hydrophobicity, reduced S. mutans aggregation, inhibited acid production, and acid tolerance. Genes expressions in the biofilms were down-regulated in the presence of cinnamaldehyde. Therefore, our data demonstrated that cinnamaldehyde at sub-MIC level suppressed the microbial activity on S. mutans biofilm by modulating hydrophobicity, aggregation, acid production, acid tolerance, and virulence gene expression.
Collapse
Affiliation(s)
- Zhiyan He
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhengwei Huang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Jiang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
12
|
Sampiron EG, Costacurta GF, Baldin VP, Almeida AL, Ieque AL, Santos NCS, Alves-Olher VG, Vandresen F, Gimenes ACR, Siqueira VLD, Caleffi-Ferracioli KR, Cardoso RF, Scodro RBL. Hydrazone, benzohydrazones and isoniazid-acylhydrazones as potential antituberculosis agents. Future Microbiol 2019; 14:981-994. [DOI: 10.2217/fmb-2019-0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To evaluate the potential of three benzohydrazones (1–3), four acylhydrazones derived from isoniazid (INH-acylhydrazones) (4–7) and one hydrazone (8) as antituberculosis agents. Materials & methods: Inhibitory and bactericidal activities were determined for the reference Mycobacterium tuberculosis ( Mtb) strain and clinical isolates. Cytotoxicity, drug combinations and ethidium bromide accumulation assays were also performed. Results: The tested compounds (1–8) presented excellent antituberculosis activity with surprisingly inhibitory (0.12–250 μg/ml) and bactericidal values, even against multidrug-resistant Mtb clinical isolates. Compounds showed high selectivity index, with values reaching 1833.33, and a limited spectrum of activity. Some of the compounds (2 & 8) are also great inhibitors of bacillus efflux pumps. Conclusion: Benzohydrazones and INH-acylhydrazones may be considered scaffolds for the development of new anti- Mtb drugs.
Collapse
Affiliation(s)
- Eloísa G Sampiron
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Giovana F Costacurta
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Vanessa P Baldin
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Aryadne L Almeida
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Andressa L Ieque
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Nathally CS Santos
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Vanessa G Alves-Olher
- Department of Chemistry, Federal Institute of Paraná, Paranavaí, Paraná, 87703-536, Brazil
| | - Fábio Vandresen
- Department of Chemistry, Federal Technological University of Paraná, Londrina, Paraná, 86057-970, Brazil
| | - Ana CR Gimenes
- Department of Chemistry, Federal Institute of Paraná, Paranavaí, Paraná, 87703-536, Brazil
| | - Vera LD Siqueira
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Katiany R Caleffi-Ferracioli
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosilene F Cardoso
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Regiane BL Scodro
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
13
|
Polaquini CR, Morão LG, Nazaré AC, Torrezan GS, Dilarri G, Cavalca LB, Campos DL, Silva IC, Pereira JA, Scheffers DJ, Duque C, Pavan FR, Ferreira H, Regasini LO. Antibacterial activity of 3,3'-dihydroxycurcumin (DHC) is associated with membrane perturbation. Bioorg Chem 2019; 90:103031. [PMID: 31238181 DOI: 10.1016/j.bioorg.2019.103031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
Curcumin is a plant diphenylheptanoid and has been investigated for its antibacterial activity. However, the therapeutic uses of this compound are limited due to its chemical instability. In this work, we evaluated the antimicrobial activity of diphenylheptanoids derived from curcumin against Gram-positive and Gram-negative bacteria, and also against Mycobacterium tuberculosis in terms of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values. 3,3'-Dihydroxycurcumin (DHC) displayed activity against Enterococcus faecalis, Staphylococcus aureus and M. tuberculosis, demonstrating MIC values of 78 and 156 µg/mL. In addition, DHC was more stable than curcumin in acetate buffer (pH 5.0) and phosphate buffer (pH 7.4) for 24 h at 37 °C. We proposed that membrane and the cell division protein FtsZ could be the targets for DHC due to that fact that curcumin exhibits this mode of antibacterial action. Fluorescence microscopy of Bacillus subtilis stained with SYTO9 and propidium iodide fluorophores indicated that DHC has the ability to perturb the bacterial membrane. On the other hand, DHC showed a weak inhibition of the GTPase activity of B. subtilis FtsZ. Toxicity assay using human cells indicated that DHC has moderate capacity to reduce viability of liver cells (HepG2 line) and lung cells (MRC-5 and A549 lines) when compared with doxorubicin. Alkaline comet assay indicated that DHC was not able to induce DNA damage in A549 cell line. These results indicated that DHC is promising compound with antibacterial and antitubercular activities.
Collapse
Affiliation(s)
- Carlos R Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Luana G Morão
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil
| | - Ana C Nazaré
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Guilherme S Torrezan
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Guilherme Dilarri
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil
| | - Lúcia B Cavalca
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747, the Netherlands
| | - Débora L Campos
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, Brazil
| | - Isabel C Silva
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, Brazil
| | - Jessé A Pereira
- Department of Pediatric Dentistry and Public Health, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, Brazil
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747, the Netherlands
| | - Cristiane Duque
- Department of Pediatric Dentistry and Public Health, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, Brazil
| | - Fernando R Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, Brazil
| | - Henrique Ferreira
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil.
| | - Luis O Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil.
| |
Collapse
|
14
|
Nazaré AC, Polaquini CR, Cavalca LB, Anselmo DB, Saiki MDFC, Monteiro DA, Zielinska A, Rahal P, Gomes E, Scheffers DJ, Ferreira H, Regasini LO. Design of Antibacterial Agents: Alkyl Dihydroxybenzoates against Xanthomonas citri subsp. citri. Int J Mol Sci 2018; 19:E3050. [PMID: 30301234 PMCID: PMC6213047 DOI: 10.3390/ijms19103050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/27/2023] Open
Abstract
Xanthomonas citri subsp. citri (Xcc) causes citrus canker, affecting sweet orange-producing areas around the world. The current chemical treatment available for this disease is based on cupric compounds. For this reason, the objective of this study was to design antibacterial agents. In order to do this, we analyzed the anti-Xcc activity of 36 alkyl dihydroxybenzoates and we found 14 active compounds. Among them, three esters with the lowest minimum inhibitory concentration values were selected; compounds 4 (52 μM), 16 (80 μM) and 28 (88 μM). Our study demonstrated that alkyl dihydroxybenzoates cause a delay in the exponential phase. The permeability capacity of alkyl dihydroxybenzoates in a quarter of MIC was compared to nisin (positive control). Compound 28 was the most effective (93.8), compared to compound 16 (41.3) and compound 4 (13.9) by percentage values. Finally, all three compounds showed inhibition of FtsZ GTPase activity, and promoted changes in protofilaments, leading to depolymerization, which prevents bacterial cell division. In conclusion, heptyl dihydroxybenzoates (compounds 4, 16 and 28) are promising anti-Xcc agents which may serve as an alternative for the control of citrus canker.
Collapse
Affiliation(s)
- Ana Carolina Nazaré
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil.
| | - Carlos Roberto Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil.
| | - Lúcia Bonci Cavalca
- Department of Biochemistry and Microbiology, Biosciences Institute, São Paulo State University, Rio Claro, SP 13506-900, Brazil.
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.
| | - Daiane Bertholin Anselmo
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil.
| | - Marilia de Freitas Calmon Saiki
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, IBILCE, São José do Rio Preto, SP 15054-000, Brazil.
| | - Diego Alves Monteiro
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, IBILCE, São José do Rio Preto, SP 15054-000, Brazil.
| | - Aleksandra Zielinska
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.
| | - Paula Rahal
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, IBILCE, São José do Rio Preto, SP 15054-000, Brazil.
| | - Eleni Gomes
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, IBILCE, São José do Rio Preto, SP 15054-000, Brazil.
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.
| | - Henrique Ferreira
- Department of Biochemistry and Microbiology, Biosciences Institute, São Paulo State University, Rio Claro, SP 13506-900, Brazil.
| | - Luis Octavio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil.
| |
Collapse
|
15
|
Sawicki R, Golus J, Przekora A, Ludwiczuk A, Sieniawska E, Ginalska G. Antimycobacterial Activity of Cinnamaldehyde in a Mycobacterium tuberculosis(H37Ra) Model. Molecules 2018; 23:molecules23092381. [PMID: 30231479 PMCID: PMC6225461 DOI: 10.3390/molecules23092381] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 01/30/2023] Open
Abstract
The purpose of the study was to evaluate the antimycobacterial activity and the possible action mode of cinnamon bark essential oil and its main constituent-cinnamaldehyde-against the Mycobacterium tuberculosis ATCC 25177 strain. Cinnamaldehyde was proved to be the main bioactive compound responsible for mycobacterial growth inhibition and bactericidal effects. The antimycobacterial activity of cinnamaldehyde was found to be comparable with that of ethambutol, one of the first-line anti-TB antibiotics. The selectivity index determined using cell culture studies in vitro showed a high biological potential of cinnamaldehyde. In M. tuberculosis cells exposed to cinnamaldehyde the cell membrane stress sensing and envelope preserving system are activated. Overexpression of clgR gene indicates a threat to the stability of the cell membrane and suggests a possible mechanism of action. No synergism was detected with the basic set of antibiotics used in tuberculosis treatment: ethambutol, isoniazid, streptomycin, rifampicin, and ciprofloxacin.
Collapse
Affiliation(s)
- Rafal Sawicki
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, PL-20093 Lublin, Poland.
| | - Joanna Golus
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, PL-20093 Lublin, Poland.
| | - Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, PL-20093 Lublin, Poland.
| | - Agnieszka Ludwiczuk
- Medical Plant Unit, Chair and Department of Pharmacognosy, Medical University of Lublin, Chodzki 1, PL-20093 Lublin, Poland.
| | - Elwira Sieniawska
- Medical Plant Unit, Chair and Department of Pharmacognosy, Medical University of Lublin, Chodzki 1, PL-20093 Lublin, Poland.
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, PL-20093 Lublin, Poland.
| |
Collapse
|