1
|
Zhu W, Liu L, Lao Y, He Y. Preparation of porous silica materials using a eucalyptus template method and its efficient adsorption of methylene blue. ENVIRONMENTAL TECHNOLOGY 2024; 45:4737-4749. [PMID: 37947794 DOI: 10.1080/09593330.2023.2283082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/05/2023] [Indexed: 11/12/2023]
Abstract
Methylene blue (MB) is a prevalent pollutant in organic wastewater. For this research, eucalyptus wood was used as a template, into which quartz powder dissolved in NaOH was grown, resulting in a low-cost and efficient porous silica adsorbent material (PSAM). This PSAM successfully replaces expensive materials for MB removal from water. Through the application of Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, it became evident that PSAM displays a porous slit pore structure characterized by numerous active sites, leading to an impressive maximum specific surface area of 88.05 m²/g. The central objective of this research was to investigate the impact of experimental temperature, initial dye concentration, and pH on the adsorption process. The adsorption kinetics were analyzed using the pseudo-first-order and pseudo-second-order models, as well as the Langmuir model. Remarkably, PSAM exhibited a substantial maximum adsorption capacity of 90.01 mg/g at 293 K, achieving an adsorption rate of over 85% within a mere 10-minute timeframe. The thermodynamic analysis revealed that the adsorption of MB onto PSAM was characterized by spontaneity and accompanied by heat absorption. Fourier Transform Infrared (FTIR) and SEM comparisons of PSAM before and after adsorption indicated that MB adsorption primarily occurred through electrostatic gravitational binding. In comparison to other adsorbents, PSAM exhibited exceptional efficacy in removing MB from water.
Collapse
Affiliation(s)
- Wenxin Zhu
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, People's Republic of China
| | - Leping Liu
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, People's Republic of China
| | - YuanXia Lao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, People's Republic of China
| | - Yan He
- School of Chemistry and Chemical Engineering and Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
2
|
Hajareh Haghighi F, Binaymotlagh R, Pintilei PS, Chronopoulou L, Palocci C. Preparation of Peptide-Based Magnetogels for Removing Organic Dyes from Water. Gels 2024; 10:287. [PMID: 38786204 PMCID: PMC11120949 DOI: 10.3390/gels10050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Water pollution by organic dyes represents a major health and environmental issue. Despite the fact that peptide-based hydrogels are considered to be optimal absorbents for removing such contaminants, hydrogel systems often suffer from a lack of mechanical stability and complex recovery. Recently, we developed an enzymatic approach for the preparation of a new peptide-based magnetogel containing polyacrylic acid-modified γ-Fe2O3 nanoparticles (γ-Fe2O3NPs) that showed the promising ability to remove cationic metal ions from aqueous phases. In the present work, we tested the ability of the magnetogel formulation to remove three model organic dyes: methyl orange, methylene blue, and rhodamine 6G. Three different hydrogel-based systems were studied, including: (1) Fmoc-Phe3 hydrogel; (2) γ-Fe2O3NPs dispersed in the peptide-based gel (Fe2O3NPs@gel); and (3) Fe2O3NPs@gel with the application of a magnetic field. The removal efficiencies of such adsorbents were evaluated using two different experimental set-ups, by placing the hydrogel sample inside cuvettes or, alternatively, by placing them inside syringes. The obtained peptide magnetogel formulation could represent a valuable and environmentally friendly alternative to currently employed adsorbents.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paula Stefana Pintilei
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Rana H, Anamika, Sareen D, Goswami S. Nanocellulose-Based Ecofriendly Nanocomposite for Effective Wastewater Remediation: A Study on Its Process Optimization, Improved Swelling, Adsorption, and Thermal and Mechanical Behavior. ACS OMEGA 2024; 9:8904-8922. [PMID: 38434840 PMCID: PMC10905691 DOI: 10.1021/acsomega.3c06924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 03/05/2024]
Abstract
A nanocellulose (NC)-based cross-linked adsorbent has been employed herein for the removal of dye pollutants (e.g., methylene blue) from the textile industry. The synthesized hydrogel was optimized to achieve the best concentrations of the adsorbent constituents, i.e., 1.55% guar gum, 1.46% NC, and 0.84% borax for achieving the maximum swelling index (SI, 3741.42%) and higher adsorption capacity (qe, 24.05 mg g-1). 98.8% of dye qe was achieved at optimal conditions of pH 8 within 30 min at 30 °C. Adsorption isotherms and kinetics investigations showed good correlation with the Freundlich adsorption isotherm model (R2 > 0.9889; ΔG° = -4.71; ΔH° = -12.30; ΔS° = -0.025) as well as the pseudo-second-order kinetics model, indicating multilayered and intricate adsorption mechanisms for dye removal. The study of thermodynamic parameters confirmed the exothermic nature of the adsorption process. The adsorption-desorption study of the resulting hydrogel exhibited 64.58% dye removal efficiency even after 4 consecutive cycles of reuse. Further, scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction analysis revealed the surface morphology, functional moieties, thermal behavior, and crystallinity pattern of the hydrogel. Rheological analysis demonstrated pseudoplastic flow and improved mechanical behavior for the hydrogel. The current study found that the synthesized adsorbent with a higher SI and qe has a noticeable potential for the removal of dye pollutants from wastewater.
Collapse
Affiliation(s)
- Harshdeep Rana
- Chemical
Engineering Division, Center of Innovative
and Applied Bioprocessing, Mohali, Punjab 140306, India
- Department
of Biochemistry, Panjab University, Hargobind Khorana Block, Sector-25, Chandigarh 160014, India
| | - Anamika
- Chemical
Engineering Division, Center of Innovative
and Applied Bioprocessing, Mohali, Punjab 140306, India
| | - Dipti Sareen
- Department
of Biochemistry, Panjab University, Hargobind Khorana Block, Sector-25, Chandigarh 160014, India
| | - Saswata Goswami
- Chemical
Engineering Division, Center of Innovative
and Applied Bioprocessing, Mohali, Punjab 140306, India
| |
Collapse
|
4
|
Tang Y, Lu XM, Yang G, Wang YY. Paddle-Wheel-Shaped Porous Cu(II)-Organic Framework with Two Different Channels as an Absorbent for Methylene Blue. Inorg Chem 2023; 62:1735-1743. [PMID: 36656916 DOI: 10.1021/acs.inorgchem.2c04350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The destruction of the ecological environment caused by human activity and modern industrial development is so severe that the water environment has become seriously polluted. Therefore, the exploration of high-efficiency absorbents has become one of the hot topics to solve this issue. Herein, a porous metal-organic framework [Cu(L)]·2.5H2O·0.5DMF (1, DMF = N,N-dimethylformamide) was successfully constructed using a rigid N-heterocyclic 5-(4-(1H,3,4-triazol-1-yl)phenyl)isophthalic acid (H2L) ligand. In particular, its structure includes the classical paddle-wheel-shaped secondary building units and two 1D channels with diameters of 7.2 and 3.2 Å, respectively. Complex 1 shows great sorption performance for methylene blue (MB) with a maximum capacity of 589 mg·g-1. The various influence factors, including the time, dye concentration, adsorbent dosage, and the pH of the solution, are investigated respectively. Also, the adsorption process is more in line with the first-order kinetics and the Langmuir isothermal adsorption model. The strong electrostatic force and intermolecular forces are primarily responsible for the remarkable adsorption ability of MB.
Collapse
Affiliation(s)
- Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Xiang-Mei Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| |
Collapse
|
5
|
Shao T, Zhen W, Chen J. Preparation and properties of poly(lactic acid)/g‐titanium dioxide electrospinning membranes based on thiol‐ene click chemistry. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tengfei Shao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology Xinjiang University Urumqi China
| | - Weijun Zhen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology Xinjiang University Urumqi China
| | - Junwu Chen
- Shanghai Junkai Environmental Engineering Co., Ltd. Shanghai China
| |
Collapse
|
6
|
Cao J, Zhu S, Shu Z, Shi L. Effects of residual resistance factor in the mobility control of the polymer flooding. J Appl Polym Sci 2022. [DOI: 10.1002/app.53217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Cao
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Shijie Zhu
- Institute of Petroleum and Natural Gas Engineering Chongqing University of Science and Technology Chongqing China
| | - Zheng Shu
- State Key Laboratory of Oil & Gas Reservoir and Exploitation Engineering Southwest Petroleum University Chengdu China
| | - Leiting Shi
- State Key Laboratory of Oil & Gas Reservoir and Exploitation Engineering Southwest Petroleum University Chengdu China
| |
Collapse
|
7
|
Highly performant nanocomposite cryogels for multicomponent oily wastewater filtration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Continuous Fermentation by Lactobacillus bulgaricus T15 Cells Immobilized in Cross-Linked F127 Hydrogels to Produce ᴅ-Lactic Acid. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lignocellulose biorefinery via continuous cell-recycle fermentation has long been recognized as a promising alternative technique for producing chemicals. ᴅ-lactic acid (D-LA) production by fermentation of corn stover by Lactobacillus bulgaricus was proven to be feasible by a previous study. However, the phenolic compounds and the high glucose content in this substrate may inhibit cell growth. The immobilization of cells in polymer hydrogels can protect them from toxic compounds in the medium and improve fermentation efficiency. Here, we studied the production of D-LA by L. bulgaricus cells immobilized in cross-linkable F127 bis-polyurethane methacrylate (F127-BUM/T15). The Hencky stress and Hencky strain of F127-BUM/T15 was 159.11 KPa and 0.646 respectively. When immobilized and free-living cells were cultured in media containing 5-hydroxymethylfurfural, vanillin, or high glucose concentrations, the immobilized cells were more tolerant, produced higher D-LA yields, and had higher sugar-to-acid conversion ratios. After 100 days of fermentation, the total D-LA production via immobilized cells was 1982.97 ± 1.81 g with a yield of 2.68 ± 0.48 g/L h, which was higher than that of free cells (0.625 ± 0.28 g/L h). This study demonstrated that F127-BUM/T15 has excellent potential for application in the biorefinery industry.
Collapse
|
9
|
Hao X, Chen R, Liu Q, Liu J, Zhang H, Yu J, Li Z, Wang J. A novel U(vi)-imprinted graphitic carbon nitride composite for the selective and efficient removal of U(vi) from simulated seawater. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00522b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A high selectivity U(vi)-imprinted g-C3N4/β-CD sorbent was synthesized and used for selective removal of U(vi). The interaction mechanism is mainly surface complexation and electrostatic attraction.
Collapse
Affiliation(s)
- Xuan Hao
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- P. R. China
| | - Rongrong Chen
- Institute of Advanced Marine Materials
- Harbin Engineering University
- Harbin 150001
- China
| | - Qi Liu
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- P. R. China
- Institute of Advanced Marine Materials
| | - Jingyuan Liu
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- P. R. China
- Institute of Advanced Marine Materials
| | - Hongsen Zhang
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- P. R. China
| | - Jing Yu
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- P. R. China
| | - Zhanshuang Li
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- P. R. China
| | - Jun Wang
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- P. R. China
- Institute of Advanced Marine Materials
| |
Collapse
|