1
|
Genaev AM, Salnikov GE, Koltunov KY. Triflic Acid-Mediated Condensation of Phthalimide with Diaryl Ethers as a Route to Spiro-Isoindolinones: Mechanistic Insights and Related Reactions. J Org Chem 2024; 89:15931-15940. [PMID: 39404170 DOI: 10.1021/acs.joc.4c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Phthalimide and N-phenylphthalimide smoothly condense with di-p-tolyl ether in triflic acid (CF3SO3H, TfOH) to obtain the corresponding spiro[isoindoline-1,9'-xanthen]-3-ones. Structural analogs of phthalimide, such as phthalic anhydride and 1,3-indandione (but not saccharin), show similar reactivity. In contrast, N-(tetrafluoropyridin-4-yl)phthalimide reacts with DTE by an alternative pathway, yielding isobenzofuran dispiro derivative. The mechanistic aspects of these reactions are discussed on the basis of in situ NMR and theoretical (DFT) studies, providing insights on the key intermediacy of O,O-diprotonated forms of the starting compounds.
Collapse
Affiliation(s)
- Alexander M Genaev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Pr. Akademika Lavrentieva 9, Novosibirsk 630090, Russia
| | - George E Salnikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Pr. Akademika Lavrentieva 9, Novosibirsk 630090, Russia
| | - Konstantin Yu Koltunov
- Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Wang X, Yang C, Yue D, Xu M, Duan S, Shen X. Iodine-Catalyzed Cascade Annulation of 4-Hydroxycoumarins with Aurones: Access to Spirocyclic Benzofuran-Furocoumarins. Molecules 2024; 29:1701. [PMID: 38675521 PMCID: PMC11052457 DOI: 10.3390/molecules29081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
An attractive approach for the preparation of spirocyclic benzofuran-furocoumarins has been developed through iodine-catalyzed cascade annulation of 4-hydroxycoumarins with aurones. The reaction involves Michael addition, iodination, and intramolecular nucleophilic substitution in a one-step process, and offers an efficient method for easy access to a series of valuable spirocyclic benzofuran-furocoumarins in good yields (up to 99%) with excellent stereoselectivity. Moreover, this unprecedented protocol provides several advantages, including readily available materials, an environmentally benign catalyst, a broad substrate scope, and a simple procedure.
Collapse
Affiliation(s)
- Xuequan Wang
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Changhui Yang
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Dan Yue
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Mingde Xu
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Suyue Duan
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
3
|
Javahershenas R, Makarem A, Klika KD. Recent advances in microwave-assisted multicomponent synthesis of spiro heterocycles. RSC Adv 2024; 14:5547-5565. [PMID: 38357035 PMCID: PMC10866134 DOI: 10.1039/d4ra00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Spiro heterocycle frameworks are a class of organic compounds that possesses unique structural features making them highly sought-after targets in drug discovery due to their diverse biological and pharmacological activities. Microwave-assisted organic synthesis has emerged as a powerful tool for assembling complex molecular architectures. The use of microwave irradiation in synthetic chemistry is a promising method for accelerating reaction rates and improving yields. This review provides insights into the current state of the art and highlights the potential of microwave-assisted multicomponent reactions in the synthesis of novel spiro heterocyclic compounds that were reported between 2017 and 2023.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Ata Makarem
- Institute of Pharmacy, University of Hamburg 20146 Hamburg Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ) 69120 Heidelberg Germany
| |
Collapse
|
4
|
Javahershenas R, Nikzat S. Recent developments using malononitrile in ultrasound-assisted multicomponent synthesis of heterocycles. ULTRASONICS SONOCHEMISTRY 2024; 102:106741. [PMID: 38176128 PMCID: PMC10793181 DOI: 10.1016/j.ultsonch.2023.106741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Ultrasonic irradiation serves as a vigorous and environmentally sustainable approach for augmenting multicomponent reactions (MCRs), offering benefits such as thermal enhancement, agitation, and activation, among others. Malononitrile emerges as a versatile reagent in this context, participating in a myriad of MCRs to produce structurally diverse heterocyclic frameworks. This review encapsulates the critical role of malononitrile in the sonochemical multicomponent synthesis of these heterocyclic structures. The paper further delves into the biochemical and pharmacological implications of these heterocycles, elucidating their reaction mechanisms as well as delineating the method's scope and limitations. We furnish an overview of the merits and challenges inherent to this synthetic approach and offer insights for potential avenues in future research.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | - Sahand Nikzat
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
5
|
Sedenkova KN, Sazonov AS, Vasilenko DA, Andriasov KS, Eremenko MG, Grishin YK, Khvatov EV, Goryashchenko AS, Uvarova VI, Osolodkin DI, Ishmukhametov AA, Averina EB. 3-[ N,N-Bis(sulfonyl)amino]isoxazolines with Spiro-Annulated or 1,2-Annulated Cyclooctane Rings Inhibit Reproduction of Tick-Borne Encephalitis, Yellow Fever, and West Nile Viruses. Int J Mol Sci 2023; 24:10758. [PMID: 37445937 DOI: 10.3390/ijms241310758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Spirocyclic compounds containing heterocyclic moieties represent promising 3D scaffolds for modern drug design. In the search for novel anti-flaviviral agents, we have obtained a series of 3-[N,N-bis(sulfonyl)amino]isoxazolines containing spiro-annulated cyclooctane rings and assessed their antiviral activity against tick-borne encephalitis (TBEV), yellow fever (YFV), and West Nile (WNV) viruses. The structural analogs of spirocyclic compounds with a single sulfonyl group or 1,2-annulated cyclooctane ring were also investigated. Almost all the studied 3-[N,N-bis(sulfonyl)amino]isoxazolines revealed antiviral activity against TBEV and WNV. The most active against TBEV was spiro-isoxazoline derivative containing p-nitrophenyl groups in the sulfonyl part (EC50 2.0 ± 0.5 μM), while the highest potency against WNV was found for the compounds with lipophilic substituents in sulfonyl moiety, naphtyl being the most favorable one (EC50 1.3 ± 0.5 μM). In summary, two novel scaffolds of anti-flaviviral agents based on N,N-bis(sulfonyl)amino]isoxazoline were proposed, and the compounds of this type demonstrated activity against TBEV and WNV.
Collapse
Affiliation(s)
- Kseniya N Sedenkova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Artem S Sazonov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry A Vasilenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Kristian S Andriasov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Marina G Eremenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuri K Grishin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny V Khvatov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
| | | | - Victoria I Uvarova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow 119991, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow 108819, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow 119991, Russia
| | - Elena B Averina
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
Zeng R, Xie C, Xing JD, Dai HY, He MH, Xu PS, Yang QC, Han B, Li JL. Construction of alkenyl-isoquinolinones through NHC-catalyzed remote C(sp3)–H acylation and cascade cyclization of benzamides and enals. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Musabirov IZ, Gataullin RR. New Synthetic Approaches to Benzo-Fused Spiro Heterocycles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Erande RD, Shivam S, Chavan KA, Chauhan ANS. Recent Advances in [3+2]-Cycloaddition-Enabled
Cascade Reactions: Application to
Synthesize Complex Organic Frameworks. Synlett 2022. [DOI: 10.1055/s-0042-1751369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractMany natural products and biologically important complex organic scaffolds have convoluted structures around their core skeleton. Interestingly, with just changing the outskirts, the core reflects new and unique degrees of various physical and chemical properties. A very common but intriguing core is a five-membered ring horning heaps of organic molecules crafts. The power of [3+2] cycloaddition reactions to generate five-membered ring systems allocate chemists to envision synthetic procedures of wonder molecules and if it is facilitating a cascade sequence, then the end product will imbibe significant level of complexity having applications in medicinal and pharmaceutical fields. This Account highlights the broad interest in assembling recent advances in cascade reactions involving [3+2] cycloaddition as the power tool in order to conceive breakthrough organic architectures reported in the last ten years. We foresee that our comprehensive collection of astonishing [3+2] cycloaddition enabled cascades will provide valuable insights to polycyclic molecular construction and perseverant approach towards nonconventional synthetic procedures to the organic community.1 Introduction2 Synthesis of Oxindoles Skeleton3 Synthesis of Oxazoles Skeleton4 Synthesis of Oxadiazoles Skeleton5 Synthesis of Nitrogen-Containing Heterocycles6 Synthesis via Formal [3+2] Cycloaddition7 Synthesis of Miscellaneous Scaffolds8 Conclusion
Collapse
|
9
|
Begum AF, Balasubramanian KK, Bhagavathy S. 3‐Arylidene‐4‐Chromanones and 3‐arylidene‐4‐thiochromanones: Versatile Synthons towards the Synthesis of Complex Heterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayisha F Begum
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry 600048 Chennai INDIA
| | | | - Shanmugasundaram Bhagavathy
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry Seethakathi EstateVandalur 600048 Chennai INDIA
| |
Collapse
|
10
|
Yadav J, Chaudhary RP. A review on advances in synthetic methodology and biological profile of spirothiazolidin‐4‐ones. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jyoti Yadav
- Department of Chemistry Sant Longowal Institute of Engineering & Technology Longowal (Sangrur) India
| | - Ram Pal Chaudhary
- Department of Chemistry Sant Longowal Institute of Engineering & Technology Longowal (Sangrur) India
| |
Collapse
|
11
|
Ganguly S, Bhakta S, Ghosh T. Gold‐Catalyzed Synthesis of Spirocycles: Recent Advances. ChemistrySelect 2022. [DOI: 10.1002/slct.202201407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Somnath Ganguly
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| | - Sayantika Bhakta
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| | - Tapas Ghosh
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| |
Collapse
|
12
|
Chitti S, Nandikolla A, Khetmalis YM, Van Calster K, Kumar BVS, Kumar BK, Murugesan S, Cappoen D, Kondapalli CSVG. Design, Synthesis and Biological Evaluation of Novel Spiro-[chroman-2,4'-piperidin]-4-one Analogues as Anti-Tubercular Agents. Chem Biodivers 2022; 19:e202200304. [PMID: 35821618 DOI: 10.1002/cbdv.202200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
A series of novel spiro-[chromane-2,4'-piperidine]-4(3 H )-one derivatives were designed, synthesized and structures were confirmed by analytical methods viz., 1 H NMR, 13 C NMR and Mass spectrometry. Synthesized derivatives were evaluated for their anti-mycobacterial activity against Mycobacterium tuberculosis ( Mtb ) H37Ra strain. Among all the evaluated compounds, PS08 exhibited significant inhibition with MIC value of 3.72 μM while MIC values of the remaining compounds ranged from 7.68 to 230.42 μM in comparison to the standard drug INH (MIC 0.09 μM). The two most active compounds however showed acute cytotoxicity towards the human MRC-5 lung fibroblast cell line. The in-silico ADMET profiles of the titled compounds were predicted and found within the prescribed limits of the Lipinski and Jorgenson rules. Molecular docking study of the significantly active compound ( PS08 ) was also carried out after performing validation in order to understand the putative binding position of the test ligand at the active site of selected target protein Mtb tyrosine phosphatase (PtpB).
Collapse
Affiliation(s)
- Surendar Chitti
- Birla Institute of Technology & Science Pilani - Hyderabad Campus, Department of chemistry, Alwal, hyderabad, INDIA
| | - Adinarayana Nandikolla
- Birla Institute of Technology & Science Pilani - Hyderabad Campus, Department of chemistry, VYAS Bhavan, V169, Jawaha, 500078, Hyderabad, INDIA
| | - Yogesh Mahadu Khetmalis
- Birla Institute of Technology & Science Pilani - Hyderabad Campus, Department of chemistry, jawahar nagar, hyderabad, INDIA
| | - Kevin Van Calster
- University of Antwerp - City campus: Universiteit Antwerpen, Department of Pharmaceutical Sciences, Wilrijk, Wilrijk, BELGIUM
| | - Boddupalli Venkata Siva Kumar
- Birla Institute of Technology & Science Pilani - Hyderabad Campus, Department of chemistry, nacharam, hyderabad, INDIA
| | - Banoth Karan Kumar
- Birla Institute of Technology and Science - Pilani Campus: Birla Institute of Technology & Science Pilani, Department of Pharmacy, nacharam, hyderabad, INDIA
| | - Sankaranarayanan Murugesan
- Birla Institute of Technology and Science - Pilani Campus: Birla Institute of Technology & Science Pilani, Department of Pharmacy, pilani, Pilani, INDIA
| | - Davie Cappoen
- University of Antwerp - City campus: Universiteit Antwerpen, Department of Pharmaceutical Sciences, Wilrijk, Wilrijk, BELGIUM
| | - Chandra Sekhar Venkata Gowri Kondapalli
- Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Chemistry Department, Jawahar Nagar, Shamirpet Mandal, Ranga Reddy District, 500 078, Hyderabad, INDIA
| |
Collapse
|
13
|
Breuers CBJ, Daniliuc CG, Studer A. Dearomatizing Cyclization of 2-Iodoindoles by Oxidative NHC Catalysis to Access Spirocyclic Indolenines and Oxindoles Bearing an All Carbon Quaternary Stereocenter. Org Lett 2022; 24:4960-4964. [PMID: 35787026 DOI: 10.1021/acs.orglett.2c01851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An intramolecular dearomatizing spirocyclization of indoles by oxidative N-heterocyclic carbene catalysis is reported. C2-iodinated indoles are used as substrates in combination with aroyl azolium ions as acceptors, which provides C2-iodinated indolenines containing an all carbon quaternary stereocenter. The products are readily further C2-functionalized and give access to valuable oxindoles by simple hydrolysis in very good overall yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Christian B J Breuers
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
14
|
Muniyappan N, Advaya GR, Sujitha E, Sabiah S. Picolyl and benzyl functionalized biphenyl NHC carbenes and their silver complexes: Sigma donating and antimicrobial properties. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Mnasri A, Mejri A, Al-Hazmy SM, Arfaoui Y, Özdemir I, Gürbüz N, Hamdi N. Silver-N-heterocyclic carbene complexes-catalyzed multicomponent reactions: Synthesis, spectroscopic characterization, density functional theory calculations, and antibacterial study. Arch Pharm (Weinheim) 2021; 354:e2100111. [PMID: 34128256 DOI: 10.1002/ardp.202100111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Nowadays, silver-N-heterocyclic carbene (silver-NHCs) complexes are widely used in medicinal chemistry due to their low toxic nature toward humans. Due to the success of silver-NHCs in medicinal applications, interest in these compounds is rapidly increasing. Therefore, the interaction of N,N-disubstituted benzimidazolium salts with Ag2 O in dichloromethane to prepare novel Ag(I)-NHCs complexes was carried out at room temperature for 120 h in the absence of light. The obtained complexes were identified and characterized by 1 H and 13 C nuclear magnetic resonance, Fourier-transform infrared, UV-Vis, and elemental analysis techniques. Then, the silver complexes were applied for three-component coupling reactions of aldehydes, amines, and alkynes. The effect of changing the alkyl substituent on the NHCs ligand on the catalytic performance was investigated. In addition, it has been found that the complexes are antimicrobially active and show higher activity than the free ligand. The silver-carbene complexes showed antimicrobial activity against specified microorganisms with MIC values between 0.24 and 62.5 μg/ml. These results showed that the silver-NHC complexes exhibit an effective antimicrobial activity against bacterial and fungal strains. A density functional theory calculation study was performed to identify the stability of the obtained complexes. All geometries were optimized employing an effective core potential basis, such as LANL2DZ for the Ag atom and 6-311+G(d,p) for all the other atoms in the gas phase. Electrostatic potential surfaces and LUMO-HOMO energy were computed. Transition energies and excited-state structures were obtained from the time-dependent density functional theory calculations.
Collapse
Affiliation(s)
- Aziza Mnasri
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Tunis, Tunisia.,Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Amal Mejri
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Sadeq M Al-Hazmy
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Youssef Arfaoui
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Ismail Özdemir
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - Nevin Gürbüz
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Tunis, Tunisia.,Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| |
Collapse
|
16
|
Xie X, Xiong SS, Li X, Huang H, Wu FB, Shen PF, Peng C, He G, Han B. Design and organocatalytic synthesis of spirooxindole–cyclopentene–isoxazole hybrids as novel MDM2–p53 inhibitors. Org Chem Front 2021. [DOI: 10.1039/d0qo01626h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An organocatalytic 1,6-cycloaddition with exclusive α-regioselectivity to synthesize designed spirooxindole–cyclopentene–isoxazole hybrids as novel MDM2–p53 inhibitors.
Collapse
Affiliation(s)
- Xin Xie
- College of Medical Technology and School of Pharmacy
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Shan-Shan Xiong
- State Key Laboratory of Biotherapy and Department of Pharmacy
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Xiang Li
- College of Medical Technology and School of Pharmacy
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - He Huang
- College of Medical Technology and School of Pharmacy
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Feng-Bo Wu
- College of Medical Technology and School of Pharmacy
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Peng-Fei Shen
- State Key Laboratory of Biotherapy and Department of Pharmacy
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Cheng Peng
- College of Medical Technology and School of Pharmacy
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Pharmacy
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Bo Han
- College of Medical Technology and School of Pharmacy
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| |
Collapse
|
17
|
Agarwal M, Verma K, Kumar Tailor Y, Khandelwal S, Rushell E, Pathak S, Kumari Y, Awasthi K, Kumar M. Efficient and Sustainable Synthesis of Spiroannulated Hybrid Molecules with Privileged Substructures using Nanostructured Heterogeneous Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202003752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Monu Agarwal
- Department of Chemistry University of Rajasthan Jaipur India
| | - Kanchan Verma
- Department of Chemistry University of Rajasthan Jaipur India
| | | | | | - Esha Rushell
- Department of Chemistry University of Rajasthan Jaipur India
| | - Sakshi Pathak
- Department of Chemistry University of Rajasthan Jaipur India
| | - Yogita Kumari
- Soft Materials Lab, Department of Physics Malaviya National Institute of Technology Jaipur India
| | - Kamlendra Awasthi
- Soft Materials Lab, Department of Physics Malaviya National Institute of Technology Jaipur India
| | - Mahendra Kumar
- Department of Chemistry University of Rajasthan Jaipur India
| |
Collapse
|
18
|
Delaude L. The Chemistry of Azolium‐Carboxylate Zwitterions and Related Compounds: a Survey of the Years 2009–2020. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lionel Delaude
- Laboratory of CatalysisMolSys Research UnitInstitut de Chimie Organique (B6a)Université de Liège Allée du six Août 13 4000 Liège Belgium
| |
Collapse
|
19
|
Wang ZY, Yang T, Chen R, Ma X, Liu H, Wang KK. 1,3-Dipolar cycloaddition of isatin N, N'-cyclic azomethine imines with α,β-unsaturated aldehydes catalyzed by DBU in water. RSC Adv 2020; 10:24288-24292. [PMID: 35516173 PMCID: PMC9055116 DOI: 10.1039/d0ra03806g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
A simple and green procedure was established by [3 + 3] cycloaddition reaction of isatin derived cyclic imine 1,3-dipoles with α,β-unsaturated aldehydes, giving the desired spiro heterocyclic oxindoles with aza-quaternary centers in good yields and diastereoselectivities. It should be noted that water can be employed as a suitable solvent for the improvement of diastereoselectivity. A simple and green procedure was established by [3 + 3] cycloaddition reaction of isatin derived cyclic imine 1,3-dipoles with α,β-unsaturated aldehydes, giving spirooxindoles with aza-quaternary center in good yields and diastereoselectivities.![]()
Collapse
Affiliation(s)
- Zhan-Yong Wang
- College of Chemistry and Chemical Engineering, Xinxiang University Xinxiang 453003 P. R. China
| | - Ting Yang
- Medical College, Xinxiang University Xinxiang 453003 P. R. China
| | - Rongxiang Chen
- College of Chemistry and Chemical Engineering, Xinxiang University Xinxiang 453003 P. R. China
| | - Xueji Ma
- College of Chemistry and Chemical Engineering, Xinxiang University Xinxiang 453003 P. R. China
| | - Huan Liu
- College of Chemistry and Chemical Engineering, Xinxiang University Xinxiang 453003 P. R. China
| | - Kai-Kai Wang
- College of Chemistry and Chemical Engineering, Xinxiang University Xinxiang 453003 P. R. China
| |
Collapse
|
20
|
Sarı Y, Gürses C, Celepci DB, Keleştemur Ü, Aktaş A, Yüksel Ş, Ateş B, Gök Y. 4-Vinylbenzyl and 2-morpholinoethyl substituted ruthenium (II) complexes: Design, synthesis, and biological evaluation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Hsu DS, Liang SP. NHC-Mediated Synthesis of Tricyclic Spirocarbocycles via an Intramolecular Stetter Reaction of Cyclic Enal-Enones. J Org Chem 2020; 85:1270-1278. [PMID: 31794214 DOI: 10.1021/acs.joc.9b02881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general and efficient method for the synthesis of tricyclic spirocarbocycles is described. Various cyclic enal-enones were reacted with an N-heterocyclic carbene, and an intramolecular Stetter reaction proceeded smoothly to give various tricyclic spiro-1,4-diketones in 31-72% yields. The ring size of the spiro compounds can be easily controlled using different cyclic enals and enones or by altering the length of the carbon tether.
Collapse
Affiliation(s)
- Day-Shin Hsu
- Department of Chemistry and Biochemistry , National Chung Cheng University , Minxiong 62102 , Taiwan
| | - Suz-Ping Liang
- Department of Chemistry and Biochemistry , National Chung Cheng University , Minxiong 62102 , Taiwan
| |
Collapse
|
22
|
Çevik-Yıldız E, Şahin N, Şahin-Bölükbaşı S. Synthesis, characterization, and investigation of antiproliferative activity of novel Ag (I)-N-Heterocyclic Carbene (NHC) compounds. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Hsu DS, Cheng CY. Construction of Spirofused Tricyclic Frameworks by NHC-Catalyzed Intramolecular Stetter Reaction of a Benzaldehyde Tether with a Cyclic Enone. J Org Chem 2019; 84:10832-10842. [PMID: 31397574 DOI: 10.1021/acs.joc.9b01403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Various benzaldehyde tethers with a cyclic enone were prepared from commercially available 2-hydroxybenzaldehydes via a three-step sequence involving triflate formation, Sonogashira cross-coupling, and regioselective hydrogenation. These substrates were then exposed to an N-heterocyclic carbene, whereupon intramolecular Stetter reaction proceeded smoothly to give various spirofused tricyclic 1,4-diketones in 30-87% yields. Furaldehyde and nicotinaldehyde derivatives also participated in the reaction under the Stetter conditions.
Collapse
Affiliation(s)
- Day-Shin Hsu
- Department of Chemistry and Biochemistry , National Chung Cheng University , Minhsiung 621 , Taiwan
| | - Chiao-Yun Cheng
- Department of Chemistry and Biochemistry , National Chung Cheng University , Minhsiung 621 , Taiwan
| |
Collapse
|
24
|
Pakravan N, Shayani-Jam H, Beiginejad H, Tavafi H, Paziresh S. A green method for the synthesis of novel spiro compounds: Enhancement of antibacterial properties of caffeic acid through electrooxidation in the presence of barbituric acid derivatives. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Enantioselective, Organocatalytic, Dissymmetric 1,4- and 1,2-Addition of Malononitrile to a Keto-bisenone Followed by an Oxa-Michael Addition Cascade. Org Lett 2019; 21:5793-5797. [PMID: 31298544 DOI: 10.1021/acs.orglett.9b01705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An unprecedented enantioselective dissymmetric 1,4- and 1,2-addition of malononitrile to a keto-bisenone followed by an oxa-Michael addition cascade to trap the in situ generated unstable tertiary alcohol have been developed. The quinine-derived amino-squaramide bifunctional organocatalyst worked efficiently and provides the oxa-spiro-[4,4]-nonanes in good yields and excellent diastereo- and enantioselectivities (up to 99:1 dr and 99% ee). Notably, a complete chemoselective addition of a methylene unit to an aliphatic-tethered enone over the aromatic-tethered enone was observed.
Collapse
|
26
|
Yang Z, Zhong Q, Zheng S, Wang G, He L. Synthesis and Antitumor Activity of a Series of Novel 1-Oxa-4-azaspiro[4,5]deca-6,9-diene-3,8-dione Derivatives. Molecules 2019; 24:molecules24050936. [PMID: 30866506 PMCID: PMC6429447 DOI: 10.3390/molecules24050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
A series of novel 1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-diones were designed and synthesized by using 4-aminophenol and α-glycolic acid or lactic acid as starting materials in three or four steps. The key step is the metal-catalyzed oxidative cyclization of the amide to 1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-diones (10a and 10b), the reaction conditions of which are investigated and optimized. The anticancer activity of 17 1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-dione derivatives was evaluated. Preliminary results showed that 15 compounds have moderate to potent activity against human lung cancer A549, human breast cancer MDA-MB-231, and human cervical cancer HeLa cancer cell lines. Among them, compounds 11b and 11h were the most potent against A549 cell line with 0.18 and 0.19 µM of IC50, respectively; compounds 11d, 11h, and 11k showed the most potent cytotoxicity against MDA-MB-231 cell line with 0.08, 0.08, and 0.09 µM of IC50, respectively, while the activities of 11h, 11k, and 12c against HeLa cell line were the most potent with 0.15, 0.14, and 0.14 µM of IC50, respectively. Compound 11h is a promising candidate for further development, which emerged as the most effective compound overall against the three tested cancer cell lines.
Collapse
Affiliation(s)
- Ze Yang
- Key Laboratory of Drug⁻Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Engineering Laboratory for Plant⁻Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiu Zhong
- Department of Chemistry, RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Shilong Zheng
- Department of Chemistry, RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- Department of Chemistry, RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Ling He
- Key Laboratory of Drug⁻Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
27
|
Sun K, Jin S, Fang S, Ma R, Zhang X, Gao M, Zhang W, Lu T, Du D. N-Heterocyclic carbene-catalyzed formal [3 + 3] annulation of alkynoic acid esters with indolin-3-ones: access to functionalized pyrano[3,2-b]indol-2-ones. Org Chem Front 2019. [DOI: 10.1039/c9qo00468h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structurally interesting pyrano[3,2-b]indol-2-ones were synthesized by an N-heterocyclic carbene-catalyzed formal [3 + 3] annulation of alkynoic acid esters.
Collapse
Affiliation(s)
- Kewen Sun
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Shiyi Jin
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Shuaishuai Fang
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Rui Ma
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Xinmiao Zhang
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Maoyu Gao
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Wanqi Zhang
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|
28
|
Yang KC, Li QZ, Liu Y, He QQ, Liu Y, Leng HJ, Jia AQ, Ramachandran S, Li JL. Highly Stereoselective Assembly of α-Carbolinone Skeletons via N-Heterocyclic Carbene-Catalyzed [4 + 2] Annulations. Org Lett 2018; 20:7518-7521. [DOI: 10.1021/acs.orglett.8b03277] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kai-Chuan Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yu Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Qing-Qing He
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Ai-Qiong Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Shanmugavel Ramachandran
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|