1
|
Drafi F, Bauerova K, Chrastina M, Taghdisiesfejír M, Rocha J, Direito R, Figueira ME, Sepodes B, Ponist S. Rhodiola rosea L. Extract, a Known Adaptogen, Evaluated in Experimental Arthritis. Molecules 2023; 28:5053. [PMID: 37446715 DOI: 10.3390/molecules28135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Rhodiola rosea L. extract (RSE) is mostly known for its adaptogen properties, but not for its antiarthritic activities, therefore monotherapy and combination with low-dose methotrexate (MTX) was studied. The collagen-induced arthritis (CIA) model was used to measure the functional score, and the change in hind paw volume (HPV). Both parameters had significant antiarthritic effects. Based on these preliminary results, an adjuvant arthritis (AA) model was further applied to assess another parameters. The experiment included these animal groups: healthy controls, untreated AA, AA administered with RSE (150 mg/kg b.w. daily, p.o.), AA administered by MTX (0.3 mg/kg b.w. twice a week, p.o.), and AA treated with the combination of RSE+MTX. The combination of RSE+MTX significantly reduced the HPV and increased the body weight. The combination significantly decreased HPV when compared to MTX monotherapy. The plasmatic levels of inflammatory markers (IL-6, IL-17A, MMP-9 and CRP) were significantly decreased by MTX+RSE treatment. The RSE monotherapy didn't influence any of the inflammatory parameters studied. In CIA, the RSE monotherapy significantly decreased the arthritic parameters studied. In summary, the combination of RSE and sub-therapeutic MTX was significantly effective in AA by improving inflammatory and arthritic parameters.
Collapse
Affiliation(s)
- Frantisek Drafi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
| | - Katarina Bauerova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
| | - Martin Chrastina
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia
| | - Mohsen Taghdisiesfejír
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - João Rocha
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rosa Direito
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo Figueira
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bruno Sepodes
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Silvester Ponist
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
| |
Collapse
|
2
|
Enhanced Anti-Inflammatory Effect of the Combination of Lactiplantibacillus plantarum LS/07 with Methotrexate Compared to Their Monotherapies Studied in Experimental Arthritis. Molecules 2022; 28:molecules28010297. [PMID: 36615489 PMCID: PMC9822002 DOI: 10.3390/molecules28010297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The gut microbiome (GM) of rheumatic arthritis (RA) patients is often altered in composition and function. Moreover, methotrexate (MTX), one of the most frequently used disease-modifying antirheumatic drugs, is known to negatively affect GM composition. The modulation of immune system activity is one of the therapeutic benefits of probiotics. The aim of the current investigation was to determine the impact of MTX therapy combined with one of the Lactobacillus strains, Lactoplantibacillus plantarum LS/07 (LB), on adjuvant arthritis (AA) in rats. Methods focused on biometric and inflammatory parameters in AA, particularly on plasmatic levels of IL-17A, MMP-9, and MCP-1, and the activities of gamma-glutamyl transferase in the spleen and joints were applied. Enhancing the effect of MTX, LB positively influenced all biometric and inflammatory parameters. The findings of the present study may be of help in proposing novel therapeutic strategies for RA patients.
Collapse
|
3
|
Mazumdar P, Kashyap A, Choudhury D, Borgohain G. A Density Functional Theory and Molecular Dynamics Study of Antifolate Molecules under Physiological Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202203588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Angarag Kashyap
- Department of Chemistry B. Borooah College Guwahati Assam 781007 India
| | - Diganta Choudhury
- Department of Chemistry B. Borooah College Guwahati Assam 781007 India
| | - Gargi Borgohain
- Department of Chemistry Cotton University Guwahati Assam 781001 India
| |
Collapse
|
4
|
Kucharská J, Poništ S, Vančová O, Gvozdjáková A, Uličná O, Slovák L, Taghdisiesfejir M, Bauerová K. Treatment with coenzyme Q10, omega-3-polyunsaturated fatty acids and their combination improved bioenergetics and levels of coenzyme Q9 and Q10 in skeletal muscle mitochondria in experimental model of arthritis. Physiol Res 2021; 70:723-733. [PMID: 34505525 PMCID: PMC8820522 DOI: 10.33549/physiolres.934664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023] Open
Abstract
Rheumatoid arthritis (RA) and its animal model adjuvant arthritis (AA) are inflammatory diseases characterized by chronic inflammation, systemic oxidative stress and disturbed mitochondrial bioenergetics of skeletal muscle. The present study aimed to evaluate the effects of coenzyme Q10 - CoQ10 (100 mg/kg b.w.), omega-3-polyunsaturated fatty acids - omega-3-PUFA (400 mg/kg b.w.) and their combined treatment in AA on impaired skeletal muscle mitochondrial bioenergetics, inflammation and changes in levels CoQ9 and CoQ10 in plasma. Markers of inflammation (C-reactive protein, monocyte-chemotactic protein-1), antioxidant capacity of plasma, respiratory chain parameters of skeletal muscle mitochondria and concentrations of CoQ9 and CoQ10 in plasma and in muscle tissue were estimated. Treatment of the arthritic rats with CoQ10, omega-3-PUFA alone and in combination partially reduced markers of inflammation and increased antioxidant capacity of plasma, significantly increased concentrations of coenzyme Q in mitochondria and improved mitochondrial function in the skeletal muscle. Combined treatment has similar effect on the mitochondrial function as monotherapies; however, it has affected inflammation and antioxidant status more intensively than monotherapies. Long-term supplementary administration of coenzyme Q10 and omega-3-PUFA and especially their combination is able to restore the impaired mitochondrial bioenergetics and antioxidant status in AA.
Collapse
Affiliation(s)
- J Kucharská
- Pharmacobiochemical Laboratory of Third Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic. Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang X, Sun Y, Ling L, Ren X, Liu X, Wang Y, Dong Y, Ma J, Song R, Yu A, Wei J, Fan Q, Guo M, Zhao T, Dao R, She G. Gaultheria leucocarpa var. yunnanensis for Treating Rheumatoid Arthritis-An Assessment Combining Machine Learning-Guided ADME Properties Prediction, Network Pharmacology, and Pharmacological Assessment. Front Pharmacol 2021; 12:704040. [PMID: 34671253 PMCID: PMC8520986 DOI: 10.3389/fphar.2021.704040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Dianbaizhu (Gaultheria leucocarpa var. yunnanensis), a traditional Chinese/ethnic medicine (TC/EM), has been used to treat rheumatoid arthritis (RA) for a long time. The anti-rheumatic arthritis fraction (ARF) of G. yunnanensis has significant anti-inflammatory and analgesic activities and is mainly composed of methyl salicylate glycosides, flavonoids, organic acids, and others. The effective ingredients and rudimentary mechanism of ARF remedying RA have not been elucidated to date. Purpose: The aim of the present study is to give an insight into the effective components and mechanisms of Dianbaizhu in ameliorating RA, based on the estimation of the absorption, distribution, metabolism, and excretion (ADME) properties, analysis of network pharmacology, and in vivo and in vitro validations. Study design and methods: The IL-1β-induced human fibroblast-like synoviocytes of RA (HFLS-RA) model and adjuvant-induced arthritis in the rat model were adopted to assess the anti-RA effect of ARF. The components in ARF were identified by using UHPLC-LTQ-Orbitrap-MSn. The quantitative structure-activity relationship (QSAR) models were developed by using five machine learning algorithms, alone or in combination with genetic algorithms for predicting the ADME properties of ARF. The molecular networks and pathways presumably referring to the therapy of ARF on RA were yielded by using common databases and visible software, and the experimental validations of the key targets conducted in vitro. Results: ARF effectively relieved RA in vivo and in vitro. The five optimized QSAR models that were developed showed robustness and predictive ability. The characterized 48 components in ARF had good biological potency. Four key signaling pathways were obtained, which were related to both cytokine signaling and cell immune response. ARF suppressed IL-1β-induced expression of EGFR, MMP 9, IL2, MAPK14, and KDR in the HFLS-RA . Conclusions: ARF has good druggability and high exploitation potential. Methyl salicylate glycosides and flavonoids play essential roles in attuning RA. ARF may partially attenuate RA by regulating the expression of multi-targets in the inflammation-immune system. These provide valuable information to rationalize ARF and other TC/EMs in the treatment of RA.
Collapse
Affiliation(s)
- Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Youyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Ling
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Miaoxian Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rina Dao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| |
Collapse
|
6
|
Kataoka T, Sanagawa A, Suzuki J, Muto T, Hotta Y, Kawade Y, Maeda Y, Tohkin M, Kimura K. Influence of anticancer agents on sexual function: an in Vivo study based on the US FDA Adverse Event Reporting System. Andrology 2021; 10:166-178. [PMID: 34390622 PMCID: PMC9291990 DOI: 10.1111/andr.13094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Background Patients with cancer are treated with chemotherapeutics that cause adverse effects, including erectile dysfunction (ED). Objectives We investigated erectile function in rats after the administration of anticancer agents based on data retrieved through mining of the US Food and Drug Administration (FDA) Adverse Event Reporting System (AERS) database. Materials and methods The statistical signal strength for the association between anticancer drugs and ED was calculated using the reporting odds ratio (ROR). A drug–event combination was detected when the lower limit of the 95% confidence interval (CI) of the ROR exceeded 1.00. Rats were administered anticancer agents detected in the FDA AERS analysis. Erectile function was assessed using intracavernous pressure (ICP) and mean arterial pressure (MAP) analysis after electrical stimulation of the cavernous nerve. Statistical significance was determined using Welch's t‐test or two‐way ANOVA. Results Melphalan (L‐PAM; ROR = 4.72, 95% CI = 2.78–8.00), vincristine (VCR; ROR = 2.47, 95% CI = 1.54–3.97), docetaxel (DTX; ROR = 2.25, 95% CI = 1.28–3.95), methotrexate (MTX; ROR = 1.96, 95% CI = 1.39–2.75), and doxorubicin (DOX; ROR = 1.82, 95% CI = 1.07–3.19) enhanced ED risk. L‐PAM and MTX decreased the ICP/MAP ratio 1 week after administration. VCR and DOX decreased erectile function 4 weeks after administration. DTX decreased erectile function at all assessed time points. Discussion and conclusion Certain anticancer agents should be considered risk factors for ED. Our results provide possible treatment strategies for maintaining erectile function in cancer survivors, including careful erectile function monitoring after treatment.
Collapse
Affiliation(s)
- Tomoya Kataoka
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Akimasa Sanagawa
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Jun Suzuki
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tatsuya Muto
- Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yoshihiro Kawade
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yasuhiro Maeda
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Masahiro Tohkin
- Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Kazunori Kimura
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.,Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
7
|
Corilagin ameliorates atherosclerosis by regulating MMP-1, -2, and -9 expression in vitro and in vivo. Eur J Pharmacol 2021; 906:174200. [PMID: 34062170 DOI: 10.1016/j.ejphar.2021.174200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022]
Abstract
Corilagin is a polyphenol has been identified anti-inflammatory properties. However, the anti-atherosclerotic effects of corilagin are not well understood. Here, we evaluated the anti-atherosclerotic effects and the underlying mechanisms of corilagin. We also verified whether corilagin can reverse atherosclerosis by regulating matrix metalloproteinase (MMP)-1, -2, and -9 in vitro and in vivo. An atherosclerosis model was established by feeding minipigs a high-fat diet combined with balloon injury, and the effects of different concentrations of corilagin on common carotid artery atherosclerosis in minipigs were monitored. Murine RAW264.7 macrophages were cultured and induced with oxidized low-density lipoprotein; fluorescence microscopy revealed the nuclear translocation of NF-κB. Furthermore, MMP-1, -2, and -9 expression in common carotid artery plaques and cellular models was detected by immunohistochemistry, western blotting, and RT-PCR. The pathological results suggested that the vascular intima of the model control group was significantly thickened, a large amount of collagen fibers was deposited, endothelial cells were damaged and detached, and plaque and foam cell formation occurred to varying degrees on the arterial wall, with lipid deposition. Corilagin treatment significantly reduced the degree of injury in the common carotid artery and decreased the number of lipid plaques and foam cells. Additionally, corilagin downregulated MMP-1, -2, and -9 expression in the common carotid artery plaques and cellular model. Moreover, corilagin significantly inhibited NF-κB nuclear translocation in vitro. Overall, corilagin exerted substantial therapeutic effects on experimental atherosclerotic minipigs via the downregulation of MMP-1, -2, and -9 expression.
Collapse
|
8
|
Kour G, Haq SA, Bajaj BK, Gupta PN, Ahmed Z. Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends. Pharmacol Res 2021; 169:105618. [PMID: 33878447 DOI: 10.1016/j.phrs.2021.105618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/25/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
The use of biologically active compounds derived from plants i.e. phytochemicals, have been known for ages for their pharmacological activities in the treatment of autoimmune disorders like rheumatoid arthritis (RA). Besides enormous scientific evidence, the therapeutic potential of phytochemicals is often undervalued. The treatment in RA involves the use of synthetic and biological disease modifying anti-rheumatic drugs (DMARDs). However, the long-term treatment in RA is associated with the risk of gastrointestinal, liver, pulmonary and renal toxicities and serious infections including latent tuberculosis, pneumococcus influenza, herpes zoster and hepatitis. These adverse effects sometimes lead to discontinuation of the therapy. A relatively new vision based on the combination of DMARDs with phytochemicals exhibiting anti-inflammatory, anti-arthritic, anti-oxidant, hepatoprotective and nephroprotective properties for the treatment of RA has achieved substantial importance in the last decade. From this perspective, the present review focuses on the combination of DMARDs (primarily MTX) with phytochemicals that have shown synergistic therapeutic effects while decreasing the toxic repercussions of current RA therapy. The review covers recent evidences of such combination studies that have shown promising results both in experimental arthritic models and clinical arthritis. Few of the combinations including resveratrol, sinomenine, coenzyme Q10 exhibited considerable interest because of their efficacy as an adjuvant to the MTX/standard DMARDs therapy in clinical trials. Besides giving an overview of such combination studies the review also critically discusses the limitations with the use of phytochemicals (e.g. solubility, permeability and bioavailability) compromising their clinical application. Additionally, it stresses upon the need of novel delivery systems and pharmaceutical technologies to increase the therapeutic efficacy of the combination therapy. Overall, the review unveils the potential of phytochemicals in combination with DMARDs with increased tolerability and superior efficacy in further refining the future of the RA therapy.
Collapse
Affiliation(s)
- Gurleen Kour
- Inflammation Pharmacology Division, CSIR, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; School of Biotechnology, University of Jammu, Baba Saheb Ambedkar Road, Jammu Tawi, 180006 J&K, India
| | - Syed Assim Haq
- Formulation & Drug Delivery Division, CSIR, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bijender Kumar Bajaj
- School of Biotechnology, University of Jammu, Baba Saheb Ambedkar Road, Jammu Tawi, 180006 J&K, India
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J&K, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Protective Effects of Gynostemma pentaphyllum (var. Ginpent) against Lipopolysaccharide-Induced Inflammation and Motor Alteration in Mice. Molecules 2021; 26:molecules26030570. [PMID: 33499104 PMCID: PMC7865846 DOI: 10.3390/molecules26030570] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Gynostemma pentaphyllum (var. Ginpent) (GP) is a variety of Cucurbit with anti-inflammatory and antioxidant effects in patients. In this manuscript, the main components present in the dry extract of GP have been identified using Ultra High Performance Liquid Chromatography quadrupole-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). In addition, the anti-inflammatory action of GP was evaluated in animal models with acute peripheral inflammation and motor alteration induced by lipopolysaccharide. The results showed that GP dry extract is rich in secondary metabolites with potential antioxidant and anti-inflammatory properties. We found that the treatment with GP induced a recovery of motor function measured with the rotarod test and pole test, and a reduction in inflammatory cytokines such as interleukin-1β and interleukin-6 measured with the ELISA test. The data collected in this study on the effects of GP in in vivo models may help integrate the therapeutic strategies of inflammatory-based disorders.
Collapse
|
10
|
Therapeutic effects of celecoxib polymeric systems in rat models of inflammation and adjuvant-induced rheumatoid arthritis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111042. [DOI: 10.1016/j.msec.2020.111042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023]
|
11
|
Bauerova K, Kucharska J, Ponist S, Slovak L, Svik K, Jakus V, Muchova J. The Role of Endogenous Antioxidants in the Treatment of Experimental Arthritis. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.85568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
El-Saka MH, Madi NM, Shahba A. The possible role of heat shock protein-70 induction in collagen-induced arthritis in rats. Physiol Int 2019; 106:128-139. [PMID: 31262206 DOI: 10.1556/2060.106.2019.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM This study aimed to evaluate the possible role of heat shock protein-70 (HSP70) induction by 17-allylaminodemethoxygeldanamycin (17-AAG) in collagen-induced arthritis in rats. MATERIAL AND METHODS Male Wistar rats were divided into five groups (n = 10/group) and were treated intraperitoneally twice a week for 4 weeks, namely normal control (saline), arthritis control (AR; saline), AR + 17-AAG, AR + methotrexate (MTX), and AR + 17-AAG + MTX. At the end of the treatments, arthritic score was determined and then the animals were sacrificed. Erythrocyte sedimentation rate (ESR), serum levels of HSP70, interleukin-17 (IL-17), tumor necrosis factor-alpha (TNF-α), rheumatic factor (RF), C-reactive protein (CRP), malondialdehyde (MDA), glutathione peroxidase (GPx), and matrix metalloproteinase-9 (MMP-9) were determined. RESULTS In the AR group, all parameters increased significantly, except for GPx, which showed a pronounced decrease. The 17-AAG and/or MTX treatments significantly reduced arthritic score, ESR, IL-17, TNF-α, RF, CRP, MDA, and MMP-9 with significant increase in GPx compared to the AR group. The HSP70 level was significantly higher in the AR + 17-AAG and the AR + 17-AAG + MTX groups but significantly lower in the AR + MTX group as compared to the AR group. Also, it was significantly lower in the AR + MTX group as compared to the AR + 17-AAG group. CONCLUSION We concluded that HSP70 induction by 17-AAG attenuated the inflammatory process in a rheumatoid arthritis (RA) model induced by collagen, which suggested that HSP70 inducers can be promising agents in the treatment of RA.
Collapse
Affiliation(s)
- M H El-Saka
- 1 Department of Physiology, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - N M Madi
- 1 Department of Physiology, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - A Shahba
- 2 Department of Internal Medicine, Faculty of Medicine, Tanta University , Tanta, Egypt
| |
Collapse
|